xenocara/lib/pixman/test/cover-test.c
2016-10-01 10:17:43 +00:00

450 lines
15 KiB
C

/*
* Copyright © 2015 RISC OS Open Ltd
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of the copyright holders not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. The copyright holders make no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* Author: Ben Avison (bavison@riscosopen.org)
*
*/
/*
* This test aims to verify both numerical correctness and the honouring of
* array bounds for scaled plots (both nearest-neighbour and bilinear) at or
* close to the boundary conditions for applicability of "cover" type fast paths
* and iter fetch routines.
*
* It has a secondary purpose: by setting the env var EXACT (to any value) it
* will only test plots that are exactly on the boundary condition. This makes
* it possible to ensure that "cover" routines are being used to the maximum,
* although this requires the use of a debugger or code instrumentation to
* verify.
*/
#include "utils.h"
#include <stdlib.h>
#include <stdio.h>
/* Approximate limits for random scale factor generation - these ensure we can
* get at least 8x reduction and 8x enlargement.
*/
#define LOG2_MAX_FACTOR (3)
/* 1/sqrt(2) (or sqrt(0.5), or 2^-0.5) as a 0.32 fixed-point number */
#define INV_SQRT_2_0POINT32_FIXED (0xB504F334u)
/* The largest increment that can be generated by random_scale_factor().
* This occurs when the "mantissa" part is 0xFFFFFFFF and the "exponent"
* part is -LOG2_MAX_FACTOR.
*/
#define MAX_INC ((pixman_fixed_t) \
(INV_SQRT_2_0POINT32_FIXED >> (31 - 16 - LOG2_MAX_FACTOR)))
/* Minimum source width (in pixels) based on a typical page size of 4K and
* maximum colour depth of 32bpp.
*/
#define MIN_SRC_WIDTH (4096 / 4)
/* Derive the destination width so that at max increment we fit within source */
#define DST_WIDTH (MIN_SRC_WIDTH * pixman_fixed_1 / MAX_INC)
/* Calculate heights the other way round.
* No limits due to page alignment here.
*/
#define DST_HEIGHT 3
#define SRC_HEIGHT ((DST_HEIGHT * MAX_INC + pixman_fixed_1 - 1) / pixman_fixed_1)
/* At the time of writing, all the scaled fast paths use SRC, OVER or ADD
* Porter-Duff operators. XOR is included in the list to ensure good
* representation of iter scanline fetch routines.
*/
static const pixman_op_t op_list[] = {
PIXMAN_OP_SRC,
PIXMAN_OP_OVER,
PIXMAN_OP_ADD,
PIXMAN_OP_XOR,
};
/* At the time of writing, all the scaled fast paths use a8r8g8b8, x8r8g8b8
* or r5g6b5, or red-blue swapped versions of the same. When a mask channel is
* used, it is always a8 (and so implicitly not component alpha). a1r5g5b5 is
* included because it is the only other format to feature in any iters. */
static const pixman_format_code_t img_fmt_list[] = {
PIXMAN_a8r8g8b8,
PIXMAN_x8r8g8b8,
PIXMAN_r5g6b5,
PIXMAN_a1r5g5b5
};
/* This is a flag reflecting the environment variable EXACT. It can be used
* to ensure that source coordinates corresponding exactly to the "cover" limits
* are used, rather than any "near misses". This can, for example, be used in
* conjunction with a debugger to ensure that only COVER fast paths are used.
*/
static int exact;
static pixman_image_t *
create_src_image (pixman_format_code_t fmt)
{
pixman_image_t *tmp_img, *img;
/* We need the left-most and right-most MIN_SRC_WIDTH pixels to have
* predictable values, even though fence_image_create_bits() may allocate
* an image somewhat larger than that, by an amount that varies depending
* upon the page size on the current platform. The solution is to create a
* temporary non-fenced image that is exactly MIN_SRC_WIDTH wide and blit it
* into the fenced image.
*/
tmp_img = pixman_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT,
NULL, 0);
if (tmp_img == NULL)
return NULL;
img = fence_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, TRUE);
if (img == NULL)
{
pixman_image_unref (tmp_img);
return NULL;
}
prng_randmemset (tmp_img->bits.bits,
tmp_img->bits.rowstride * SRC_HEIGHT * sizeof (uint32_t),
0);
image_endian_swap (tmp_img);
pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
0, 0, 0, 0, 0, 0,
MIN_SRC_WIDTH, SRC_HEIGHT);
pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
0, 0, 0, 0, img->bits.width - MIN_SRC_WIDTH, 0,
MIN_SRC_WIDTH, SRC_HEIGHT);
pixman_image_unref (tmp_img);
return img;
}
static pixman_fixed_t
random_scale_factor(void)
{
/* Get a random number with top bit set. */
uint32_t f = prng_rand () | 0x80000000u;
/* In log(2) space, this is still approximately evenly spread between 31
* and 32. Divide by sqrt(2) to centre the distribution on 2^31.
*/
f = ((uint64_t) f * INV_SQRT_2_0POINT32_FIXED) >> 32;
/* Now shift right (ie divide by an integer power of 2) to spread the
* distribution between centres at 2^(16 +/- LOG2_MAX_FACTOR).
*/
f >>= 31 - 16 + prng_rand_n (2 * LOG2_MAX_FACTOR + 1) - LOG2_MAX_FACTOR;
return f;
}
static pixman_fixed_t
calc_translate (int dst_size,
int src_size,
pixman_fixed_t scale,
pixman_bool_t low_align,
pixman_bool_t bilinear)
{
pixman_fixed_t ref_src, ref_dst, scaled_dst;
if (low_align)
{
ref_src = bilinear ? pixman_fixed_1 / 2 : pixman_fixed_e;
ref_dst = pixman_fixed_1 / 2;
}
else
{
ref_src = pixman_int_to_fixed (src_size) -
bilinear * pixman_fixed_1 / 2;
ref_dst = pixman_int_to_fixed (dst_size) - pixman_fixed_1 / 2;
}
scaled_dst = ((uint64_t) ref_dst * scale + pixman_fixed_1 / 2) /
pixman_fixed_1;
/* We need the translation to be set such that when ref_dst is fed through
* the transformation matrix, we get ref_src as the result.
*/
return ref_src - scaled_dst;
}
static pixman_fixed_t
random_offset (void)
{
pixman_fixed_t offset = 0;
/* Ensure we test the exact case quite a lot */
if (prng_rand_n (2))
return offset;
/* What happens when we are close to the edge of the first
* interpolation step?
*/
if (prng_rand_n (2))
offset += (pixman_fixed_1 >> BILINEAR_INTERPOLATION_BITS) - 16;
/* Try fine-grained variations */
offset += prng_rand_n (32);
/* Test in both directions */
if (prng_rand_n (2))
offset = -offset;
return offset;
}
static void
check_transform (pixman_image_t *dst_img,
pixman_image_t *src_img,
pixman_transform_t *transform,
pixman_bool_t bilinear)
{
pixman_vector_t v1, v2;
v1.vector[0] = pixman_fixed_1 / 2;
v1.vector[1] = pixman_fixed_1 / 2;
v1.vector[2] = pixman_fixed_1;
assert (pixman_transform_point (transform, &v1));
v2.vector[0] = pixman_int_to_fixed (dst_img->bits.width) -
pixman_fixed_1 / 2;
v2.vector[1] = pixman_int_to_fixed (dst_img->bits.height) -
pixman_fixed_1 / 2;
v2.vector[2] = pixman_fixed_1;
assert (pixman_transform_point (transform, &v2));
if (bilinear)
{
assert (v1.vector[0] >= pixman_fixed_1 / 2);
assert (v1.vector[1] >= pixman_fixed_1 / 2);
assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width) -
pixman_fixed_1 / 2);
assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height) -
pixman_fixed_1 / 2);
}
else
{
assert (v1.vector[0] >= pixman_fixed_e);
assert (v1.vector[1] >= pixman_fixed_e);
assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width));
assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height));
}
}
static uint32_t
test_cover (int testnum, int verbose)
{
pixman_fixed_t x_scale, y_scale;
pixman_bool_t left_align, top_align;
pixman_bool_t bilinear;
pixman_filter_t filter;
pixman_op_t op;
size_t src_fmt_index;
pixman_format_code_t src_fmt, dst_fmt, mask_fmt;
pixman_image_t *src_img, *dst_img, *mask_img;
pixman_transform_t src_transform, mask_transform;
pixman_fixed_t fuzz[4];
uint32_t crc32;
/* We allocate one fenced image for each pixel format up-front. This is to
* avoid spending a lot of time on memory management rather than on testing
* Pixman optimisations. We need one per thread because the transformation
* matrices and filtering are properties of the source and mask images.
*/
static pixman_image_t *src_imgs[ARRAY_LENGTH (img_fmt_list)];
static pixman_image_t *mask_bits_img;
static pixman_bool_t fence_images_created;
#ifdef USE_OPENMP
#pragma omp threadprivate (src_imgs)
#pragma omp threadprivate (mask_bits_img)
#pragma omp threadprivate (fence_images_created)
#endif
if (!fence_images_created)
{
int i;
prng_srand (0);
for (i = 0; i < ARRAY_LENGTH (img_fmt_list); i++)
src_imgs[i] = create_src_image (img_fmt_list[i]);
mask_bits_img = create_src_image (PIXMAN_a8);
fence_images_created = TRUE;
}
prng_srand (testnum);
x_scale = random_scale_factor ();
y_scale = random_scale_factor ();
left_align = prng_rand_n (2);
top_align = prng_rand_n (2);
bilinear = prng_rand_n (2);
filter = bilinear ? PIXMAN_FILTER_BILINEAR : PIXMAN_FILTER_NEAREST;
op = op_list[prng_rand_n (ARRAY_LENGTH (op_list))];
dst_fmt = img_fmt_list[prng_rand_n (ARRAY_LENGTH (img_fmt_list))];
dst_img = pixman_image_create_bits (dst_fmt, DST_WIDTH, DST_HEIGHT,
NULL, 0);
prng_randmemset (dst_img->bits.bits,
dst_img->bits.rowstride * DST_HEIGHT * sizeof (uint32_t),
0);
image_endian_swap (dst_img);
src_fmt_index = prng_rand_n (ARRAY_LENGTH (img_fmt_list));
src_fmt = img_fmt_list[src_fmt_index];
src_img = src_imgs[src_fmt_index];
pixman_image_set_filter (src_img, filter, NULL, 0);
pixman_transform_init_scale (&src_transform, x_scale, y_scale);
src_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
src_img->bits.width,
x_scale, left_align, bilinear);
src_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
src_img->bits.height,
y_scale, top_align, bilinear);
if (prng_rand_n (2))
{
/* No mask */
mask_fmt = PIXMAN_null;
mask_img = NULL;
}
else if (prng_rand_n (2))
{
/* a8 bitmap mask */
mask_fmt = PIXMAN_a8;
mask_img = mask_bits_img;
pixman_image_set_filter (mask_img, filter, NULL, 0);
pixman_transform_init_scale (&mask_transform, x_scale, y_scale);
mask_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
mask_img->bits.width,
x_scale, left_align,
bilinear);
mask_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
mask_img->bits.height,
y_scale, top_align,
bilinear);
}
else
{
/* Solid mask */
pixman_color_t color;
memset (&color, 0xAA, sizeof color);
mask_fmt = PIXMAN_solid;
mask_img = pixman_image_create_solid_fill (&color);
}
if (!exact)
{
int i = 0;
while (i < 4)
fuzz[i++] = random_offset ();
src_transform.matrix[0][2] += fuzz[0];
src_transform.matrix[1][2] += fuzz[1];
mask_transform.matrix[0][2] += fuzz[2];
mask_transform.matrix[1][2] += fuzz[3];
}
pixman_image_set_transform (src_img, &src_transform);
if (mask_fmt == PIXMAN_a8)
pixman_image_set_transform (mask_img, &mask_transform);
if (verbose)
{
printf ("op=%s\n", operator_name (op));
printf ("src_fmt=%s, dst_fmt=%s, mask_fmt=%s\n",
format_name (src_fmt), format_name (dst_fmt),
format_name (mask_fmt));
printf ("x_scale=0x%08X, y_scale=0x%08X, align %s/%s, %s\n",
x_scale, y_scale,
left_align ? "left" : "right", top_align ? "top" : "bottom",
bilinear ? "bilinear" : "nearest");
if (!exact)
{
int i = 0;
printf ("fuzz factors");
while (i < 4)
printf (" %d", fuzz[i++]);
printf ("\n");
}
}
if (exact)
{
check_transform (dst_img, src_img, &src_transform, bilinear);
if (mask_fmt == PIXMAN_a8)
check_transform (dst_img, mask_img, &mask_transform, bilinear);
}
pixman_image_composite (op, src_img, mask_img, dst_img,
0, 0, 0, 0, 0, 0,
dst_img->bits.width, dst_img->bits.height);
if (verbose)
print_image (dst_img);
crc32 = compute_crc32_for_image (0, dst_img);
pixman_image_unref (dst_img);
if (mask_fmt == PIXMAN_solid)
pixman_image_unref (mask_img);
return crc32;
}
#if BILINEAR_INTERPOLATION_BITS == 7
#define CHECKSUM_FUZZ 0x6B56F607
#define CHECKSUM_EXACT 0xA669F4A3
#elif BILINEAR_INTERPOLATION_BITS == 4
#define CHECKSUM_FUZZ 0x83119ED0
#define CHECKSUM_EXACT 0x0D3382CD
#else
#define CHECKSUM_FUZZ 0x00000000
#define CHECKSUM_EXACT 0x00000000
#endif
int
main (int argc, const char *argv[])
{
unsigned long page_size;
page_size = fence_get_page_size ();
if (page_size == 0 || page_size > 16 * 1024)
return 77; /* automake SKIP */
exact = getenv ("EXACT") != NULL;
if (exact)
printf ("Doing plots that are exactly aligned to boundaries\n");
return fuzzer_test_main ("cover", 2000000,
exact ? CHECKSUM_EXACT : CHECKSUM_FUZZ,
test_cover, argc, argv);
}