855 lines
26 KiB
C
855 lines
26 KiB
C
/************************************************************
|
|
Copyright 1987 by Sun Microsystems, Inc. Mountain View, CA.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this
|
|
software and its documentation for any purpose and without
|
|
fee is hereby granted, provided that the above copyright no-
|
|
tice appear in all copies and that both that copyright no-
|
|
tice and this permission notice appear in supporting docu-
|
|
mentation, and that the names of Sun or The Open Group
|
|
not be used in advertising or publicity pertaining to
|
|
distribution of the software without specific prior
|
|
written permission. Sun and The Open Group make no
|
|
representations about the suitability of this software for
|
|
any purpose. It is provided "as is" without any express or
|
|
implied warranty.
|
|
|
|
SUN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
|
|
NESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SUN BE LI-
|
|
ABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
|
|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
|
|
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
|
|
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
|
|
THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
********************************************************/
|
|
|
|
/* Optimizations for PSZ == 32 added by Kyle Marvin (marvin@vitec.com) */
|
|
|
|
#include <X11/X.h>
|
|
#include <X11/Xmd.h>
|
|
#include "servermd.h"
|
|
#include "compiler.h"
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Converted from mfb to support memory-mapped color framebuffer by smarks@sun,
|
|
* April-May 1987.
|
|
*
|
|
* The way I did the conversion was to consider each longword as an
|
|
* array of four bytes instead of an array of 32 one-bit pixels. So
|
|
* getbits() and putbits() retain much the same calling sequence, but
|
|
* they move bytes around instead of bits. Of course, this entails the
|
|
* removal of all of the one-bit-pixel dependencies from the other
|
|
* files, but the major bit-hacking stuff should be covered here.
|
|
*
|
|
* I've created some new macros that make it easier to understand what's
|
|
* going on in the pixel calculations, and that make it easier to change the
|
|
* pixel size.
|
|
*
|
|
* name explanation
|
|
* ---- -----------
|
|
* PSZ pixel size (in bits)
|
|
* PGSZ pixel group size (in bits)
|
|
* PGSZB pixel group size (in bytes)
|
|
* PGSZBMSK mask with lowest PGSZB bits set to 1
|
|
* PPW pixels per word (pixels per pixel group)
|
|
* PPWMSK mask with lowest PPW bits set to 1
|
|
* PLST index of last pixel in a word (should be PPW-1)
|
|
* PIM pixel index mask (index within a pixel group)
|
|
* PWSH pixel-to-word shift (should be log2(PPW))
|
|
* PMSK mask with lowest PSZ bits set to 1
|
|
*
|
|
*
|
|
* Here are some sample values. In the notation cfbA,B: A is PSZ, and
|
|
* B is PGSZB. All the other values are derived from these
|
|
* two. This table does not show all combinations!
|
|
*
|
|
* name cfb8,4 cfb24,4 cfb32,4 cfb8,8 cfb24,8 cfb32,8
|
|
* ---- ------ ------- ------ ------ ------ -------
|
|
* PSZ 8 24 32 8 24 32
|
|
* PGSZ 32 32 32 64 64 64
|
|
* PGSZB 4 4 4 8 8 8
|
|
* PGSZBMSK 0xF 0xF? 0xF 0xFF 0xFF 0xFF
|
|
* PPW 4 1 1 8 2 2
|
|
* PPWMSK 0xF 0x1 0x1 0xFF 0x3? 0x3
|
|
* PLST 3 0 0 7 1 1
|
|
* PIM 0x3 0x0 0x0 0x7 0x1? 0x1
|
|
* PWSH 2 0 0 3 1 1
|
|
* PMSK 0xFF 0xFFFFFF 0xFFFFFFFF 0xFF 0xFFFFFF 0xFFFFFFFF
|
|
*
|
|
*
|
|
* I have also added a new macro, PFILL, that takes one pixel and
|
|
* replicates it throughout a word. This macro definition is dependent
|
|
* upon pixel and word size; it doesn't use macros like PPW and so
|
|
* forth. Examples: for monochrome, PFILL(1) => 0xffffffff, PFILL(0) =>
|
|
* 0x00000000. For 8-bit color, PFILL(0x5d) => 0x5d5d5d5d. This macro
|
|
* is used primarily for replicating a plane mask into a word.
|
|
*
|
|
* Color framebuffers operations also support the notion of a plane
|
|
* mask. This mask determines which planes of the framebuffer can be
|
|
* altered; the others are left unchanged. I have added another
|
|
* parameter to the putbits and putbitsrop macros that is the plane
|
|
* mask.
|
|
* ==========================================================================
|
|
*
|
|
* Keith Packard (keithp@suse.com)
|
|
* 64bit code is no longer supported; it requires DIX support
|
|
* for repadding images which significantly impacts performance
|
|
*/
|
|
|
|
/*
|
|
* PSZ needs to be defined before we get here. Usually it comes from a
|
|
* -DPSZ=foo on the compilation command line.
|
|
*/
|
|
|
|
#ifndef PSZ
|
|
#define PSZ 8
|
|
#endif
|
|
|
|
/*
|
|
* PixelGroup is the data type used to operate on groups of pixels.
|
|
* We typedef it here to CARD32 with the assumption that you
|
|
* want to manipulate 32 bits worth of pixels at a time as you can. If CARD32
|
|
* is not appropriate for your server, define it to something else
|
|
* before including this file. In this case you will also have to define
|
|
* PGSZB to the size in bytes of PixelGroup.
|
|
*/
|
|
#ifndef PixelGroup
|
|
#define PixelGroup CARD32
|
|
#define PGSZB 4
|
|
#endif /* PixelGroup */
|
|
|
|
#ifndef CfbBits
|
|
#define CfbBits CARD32
|
|
#endif
|
|
|
|
#define PGSZ (PGSZB << 3)
|
|
#define PPW (PGSZ/PSZ)
|
|
#define PLST (PPW-1)
|
|
#define PIM PLST
|
|
#define PMSK (((PixelGroup)1 << PSZ) - 1)
|
|
#define PPWMSK (((PixelGroup)1 << PPW) - 1) /* instead of BITMSK */
|
|
#define PGSZBMSK (((PixelGroup)1 << PGSZB) - 1)
|
|
|
|
/* set PWSH = log2(PPW) using brute force */
|
|
|
|
#if PPW == 1
|
|
#define PWSH 0
|
|
#else
|
|
#if PPW == 2
|
|
#define PWSH 1
|
|
#else
|
|
#if PPW == 4
|
|
#define PWSH 2
|
|
#else
|
|
#if PPW == 8
|
|
#define PWSH 3
|
|
#else
|
|
#if PPW == 16
|
|
#define PWSH 4
|
|
#endif /* PPW == 16 */
|
|
#endif /* PPW == 8 */
|
|
#endif /* PPW == 4 */
|
|
#endif /* PPW == 2 */
|
|
#endif /* PPW == 1 */
|
|
|
|
/* Defining PIXEL_ADDR means that individual pixels are addressable by this
|
|
* machine (as type PixelType). A possible CFB architecture which supported
|
|
* 8-bits-per-pixel on a non byte-addressable machine would not have this
|
|
* defined.
|
|
*
|
|
* Defining FOUR_BIT_CODE means that cfb knows how to stipple on this machine;
|
|
* eventually, stippling code for 16 and 32 bit devices should be written
|
|
* which would allow them to also use FOUR_BIT_CODE. There isn't that
|
|
* much to do in those cases, but it would make them quite a bit faster.
|
|
*/
|
|
|
|
#if PSZ == 8
|
|
#define PIXEL_ADDR
|
|
typedef CARD8 PixelType;
|
|
#define FOUR_BIT_CODE
|
|
#endif
|
|
|
|
#if PSZ == 16
|
|
#define PIXEL_ADDR
|
|
typedef CARD16 PixelType;
|
|
#endif
|
|
|
|
#if PSZ == 24
|
|
#undef PMSK
|
|
#define PMSK 0xFFFFFF
|
|
/*#undef PIM
|
|
#define PIM 3*/
|
|
#define PIXEL_ADDR
|
|
typedef CARD32 PixelType;
|
|
#endif
|
|
|
|
#if PSZ == 32
|
|
#undef PMSK
|
|
#define PMSK 0xFFFFFFFF
|
|
#define PIXEL_ADDR
|
|
typedef CARD32 PixelType;
|
|
#endif
|
|
|
|
|
|
/* the following notes use the following conventions:
|
|
SCREEN LEFT SCREEN RIGHT
|
|
in this file and maskbits.c, left and right refer to screen coordinates,
|
|
NOT bit numbering in registers.
|
|
|
|
cfbstarttab[n]
|
|
pixels[0,n-1] = 0's pixels[n,PPW-1] = 1's
|
|
cfbendtab[n] =
|
|
pixels[0,n-1] = 1's pixels[n,PPW-1] = 0's
|
|
|
|
cfbstartpartial[], cfbendpartial[]
|
|
these are used as accelerators for doing putbits and masking out
|
|
bits that are all contained between longword boudaries. the extra
|
|
256 bytes of data seems a small price to pay -- code is smaller,
|
|
and narrow things (e.g. window borders) go faster.
|
|
|
|
the names may seem misleading; they are derived not from which end
|
|
of the word the bits are turned on, but at which end of a scanline
|
|
the table tends to be used.
|
|
|
|
look at the tables and macros to understand boundary conditions.
|
|
(careful readers will note that starttab[n] = ~endtab[n] for n != 0)
|
|
|
|
-----------------------------------------------------------------------
|
|
these two macros depend on the screen's bit ordering.
|
|
in both of them x is a screen position. they are used to
|
|
combine bits collected from multiple longwords into a
|
|
single destination longword, and to unpack a single
|
|
source longword into multiple destinations.
|
|
|
|
SCRLEFT(dst, x)
|
|
takes dst[x, PPW] and moves them to dst[0, PPW-x]
|
|
the contents of the rest of dst are 0 ONLY IF
|
|
dst is UNSIGNED.
|
|
is cast as an unsigned.
|
|
this is a right shift on the VAX, left shift on
|
|
Sun and pc-rt.
|
|
|
|
SCRRIGHT(dst, x)
|
|
takes dst[0,x] and moves them to dst[PPW-x, PPW]
|
|
the contents of the rest of dst are 0 ONLY IF
|
|
dst is UNSIGNED.
|
|
this is a left shift on the VAX, right shift on
|
|
Sun and pc-rt.
|
|
|
|
|
|
the remaining macros are cpu-independent; all bit order dependencies
|
|
are built into the tables and the two macros above.
|
|
|
|
maskbits(x, w, startmask, endmask, nlw)
|
|
for a span of width w starting at position x, returns
|
|
a mask for ragged pixels at start, mask for ragged pixels at end,
|
|
and the number of whole longwords between the ends.
|
|
|
|
maskpartialbits(x, w, mask)
|
|
works like maskbits(), except all the pixels are in the
|
|
same longword (i.e. (x&0xPIM + w) <= PPW)
|
|
|
|
mask32bits(x, w, startmask, endmask, nlw)
|
|
as maskbits, but does not calculate nlw. it is used by
|
|
cfbGlyphBlt to put down glyphs <= PPW bits wide.
|
|
|
|
getbits(psrc, x, w, dst)
|
|
starting at position x in psrc (x < PPW), collect w
|
|
pixels and put them in the screen left portion of dst.
|
|
psrc is a longword pointer. this may span longword boundaries.
|
|
it special-cases fetching all w bits from one longword.
|
|
|
|
+--------+--------+ +--------+
|
|
| | m |n| | ==> | m |n| |
|
|
+--------+--------+ +--------+
|
|
x x+w 0 w
|
|
psrc psrc+1 dst
|
|
m = PPW - x
|
|
n = w - m
|
|
|
|
implementation:
|
|
get m pixels, move to screen-left of dst, zeroing rest of dst;
|
|
get n pixels from next word, move screen-right by m, zeroing
|
|
lower m pixels of word.
|
|
OR the two things together.
|
|
|
|
putbits(src, x, w, pdst, planemask)
|
|
starting at position x in pdst, put down the screen-leftmost
|
|
w bits of src. pdst is a longword pointer. this may
|
|
span longword boundaries.
|
|
it special-cases putting all w bits into the same longword.
|
|
|
|
+--------+ +--------+--------+
|
|
| m |n| | ==> | | m |n| |
|
|
+--------+ +--------+--------+
|
|
0 w x x+w
|
|
dst pdst pdst+1
|
|
m = PPW - x
|
|
n = w - m
|
|
|
|
implementation:
|
|
get m pixels, shift screen-right by x, zero screen-leftmost x
|
|
pixels; zero rightmost m bits of *pdst and OR in stuff
|
|
from before the semicolon.
|
|
shift src screen-left by m, zero bits n-32;
|
|
zero leftmost n pixels of *(pdst+1) and OR in the
|
|
stuff from before the semicolon.
|
|
|
|
putbitsrop(src, x, w, pdst, planemask, ROP)
|
|
like putbits but calls DoRop with the rasterop ROP (see cfb.h for
|
|
DoRop)
|
|
|
|
getleftbits(psrc, w, dst)
|
|
get the leftmost w (w<=PPW) bits from *psrc and put them
|
|
in dst. this is used by the cfbGlyphBlt code for glyphs
|
|
<=PPW bits wide.
|
|
*/
|
|
|
|
#if (BITMAP_BIT_ORDER == MSBFirst)
|
|
#define BitRight(lw,n) ((lw) >> (n))
|
|
#define BitLeft(lw,n) ((lw) << (n))
|
|
#else /* (BITMAP_BIT_ORDER == LSBFirst) */
|
|
#define BitRight(lw,n) ((lw) << (n))
|
|
#define BitLeft(lw,n) ((lw) >> (n))
|
|
#endif /* (BITMAP_BIT_ORDER == MSBFirst) */
|
|
|
|
#define SCRLEFT(lw, n) BitLeft (lw, (n) * PSZ)
|
|
#define SCRRIGHT(lw, n) BitRight(lw, (n) * PSZ)
|
|
|
|
/*
|
|
* Note that the shift direction is independent of the byte ordering of the
|
|
* machine. The following is portable code.
|
|
*/
|
|
#if PPW == 16
|
|
#define PFILL(p) ( ((p)&PMSK) | \
|
|
((p)&PMSK) << PSZ | \
|
|
((p)&PMSK) << 2*PSZ | \
|
|
((p)&PMSK) << 3*PSZ | \
|
|
((p)&PMSK) << 4*PSZ | \
|
|
((p)&PMSK) << 5*PSZ | \
|
|
((p)&PMSK) << 6*PSZ | \
|
|
((p)&PMSK) << 7*PSZ | \
|
|
((p)&PMSK) << 8*PSZ | \
|
|
((p)&PMSK) << 9*PSZ | \
|
|
((p)&PMSK) << 10*PSZ | \
|
|
((p)&PMSK) << 11*PSZ | \
|
|
((p)&PMSK) << 12*PSZ | \
|
|
((p)&PMSK) << 13*PSZ | \
|
|
((p)&PMSK) << 14*PSZ | \
|
|
((p)&PMSK) << 15*PSZ )
|
|
#define PFILL2(p, pf) { \
|
|
pf = (p) & PMSK; \
|
|
pf |= (pf << PSZ); \
|
|
pf |= (pf << 2*PSZ); \
|
|
pf |= (pf << 4*PSZ); \
|
|
pf |= (pf << 8*PSZ); \
|
|
}
|
|
#endif /* PPW == 16 */
|
|
#if PPW == 8
|
|
#define PFILL(p) ( ((p)&PMSK) | \
|
|
((p)&PMSK) << PSZ | \
|
|
((p)&PMSK) << 2*PSZ | \
|
|
((p)&PMSK) << 3*PSZ | \
|
|
((p)&PMSK) << 4*PSZ | \
|
|
((p)&PMSK) << 5*PSZ | \
|
|
((p)&PMSK) << 6*PSZ | \
|
|
((p)&PMSK) << 7*PSZ )
|
|
#define PFILL2(p, pf) { \
|
|
pf = (p) & PMSK; \
|
|
pf |= (pf << PSZ); \
|
|
pf |= (pf << 2*PSZ); \
|
|
pf |= (pf << 4*PSZ); \
|
|
}
|
|
#endif
|
|
#if PPW == 4
|
|
#define PFILL(p) ( ((p)&PMSK) | \
|
|
((p)&PMSK) << PSZ | \
|
|
((p)&PMSK) << 2*PSZ | \
|
|
((p)&PMSK) << 3*PSZ )
|
|
#define PFILL2(p, pf) { \
|
|
pf = (p) & PMSK; \
|
|
pf |= (pf << PSZ); \
|
|
pf |= (pf << 2*PSZ); \
|
|
}
|
|
#endif
|
|
#if PPW == 2
|
|
#define PFILL(p) ( ((p)&PMSK) | \
|
|
((p)&PMSK) << PSZ )
|
|
#define PFILL2(p, pf) { \
|
|
pf = (p) & PMSK; \
|
|
pf |= (pf << PSZ); \
|
|
}
|
|
#endif
|
|
#if PPW == 1
|
|
#define PFILL(p) (p)
|
|
#define PFILL2(p,pf) (pf = (p))
|
|
#endif
|
|
|
|
/*
|
|
* Reduced raster op - using precomputed values, perform the above
|
|
* in three instructions
|
|
*/
|
|
|
|
#define DoRRop(dst, and, xor) (((dst) & (and)) ^ (xor))
|
|
|
|
#define DoMaskRRop(dst, and, xor, mask) \
|
|
(((dst) & ((and) | ~(mask))) ^ (xor & mask))
|
|
|
|
#if PSZ != 32 || PPW != 1
|
|
|
|
# if (PSZ == 24 && PPW == 1)
|
|
#define maskbits(x, w, startmask, endmask, nlw) {\
|
|
startmask = cfbstarttab[(x)&3]; \
|
|
endmask = cfbendtab[((x)+(w)) & 3]; \
|
|
nlw = ((((x)+(w))*3)>>2) - (((x)*3 +3)>>2); \
|
|
}
|
|
|
|
#define mask32bits(x, w, startmask, endmask) \
|
|
startmask = cfbstarttab[(x)&3]; \
|
|
endmask = cfbendtab[((x)+(w)) & 3];
|
|
|
|
#define maskpartialbits(x, w, mask) \
|
|
mask = cfbstartpartial[(x) & 3] & cfbendpartial[((x)+(w)) & 3];
|
|
|
|
#define maskbits24(x, w, startmask, endmask, nlw) \
|
|
startmask = cfbstarttab24[(x) & 3]; \
|
|
endmask = cfbendtab24[((x)+(w)) & 3]; \
|
|
if (startmask){ \
|
|
nlw = (((w) - (4 - ((x) & 3))) >> 2); \
|
|
} else { \
|
|
nlw = (w) >> 2; \
|
|
}
|
|
|
|
#define getbits24(psrc, dst, index) {\
|
|
register int idx; \
|
|
switch(idx = ((index)&3)<<1){ \
|
|
case 0: \
|
|
dst = (*(psrc) &cfbmask[idx]); \
|
|
break; \
|
|
case 6: \
|
|
dst = BitLeft((*(psrc) &cfbmask[idx]), cfb24Shift[idx]); \
|
|
break; \
|
|
default: \
|
|
dst = BitLeft((*(psrc) &cfbmask[idx]), cfb24Shift[idx]) | \
|
|
BitRight(((*((psrc)+1)) &cfbmask[idx+1]), cfb24Shift[idx+1]); \
|
|
}; \
|
|
}
|
|
|
|
#define putbits24(src, w, pdst, planemask, index) {\
|
|
register PixelGroup dstpixel; \
|
|
register unsigned int idx; \
|
|
switch(idx = ((index)&3)<<1){ \
|
|
case 0: \
|
|
dstpixel = (*(pdst) &cfbmask[idx]); \
|
|
break; \
|
|
case 6: \
|
|
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx]); \
|
|
break; \
|
|
default: \
|
|
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx])| \
|
|
BitRight(((*((pdst)+1)) &cfbmask[idx+1]), cfb24Shift[idx+1]); \
|
|
}; \
|
|
dstpixel &= ~(planemask); \
|
|
dstpixel |= (src & planemask); \
|
|
*(pdst) &= cfbrmask[idx]; \
|
|
switch(idx){ \
|
|
case 0: \
|
|
*(pdst) |= (dstpixel & cfbmask[idx]); \
|
|
break; \
|
|
case 2: \
|
|
case 4: \
|
|
pdst++;idx++; \
|
|
*(pdst) = ((*(pdst)) & cfbrmask[idx]) | \
|
|
(BitLeft(dstpixel, cfb24Shift[idx]) & cfbmask[idx]); \
|
|
pdst--;idx--; \
|
|
case 6: \
|
|
*(pdst) |= (BitRight(dstpixel, cfb24Shift[idx]) & cfbmask[idx]); \
|
|
break; \
|
|
}; \
|
|
}
|
|
|
|
#define putbitsrop24(src, x, pdst, planemask, rop) \
|
|
{ \
|
|
register PixelGroup t1, dstpixel; \
|
|
register unsigned int idx; \
|
|
switch(idx = (x)<<1){ \
|
|
case 0: \
|
|
dstpixel = (*(pdst) &cfbmask[idx]); \
|
|
break; \
|
|
case 6: \
|
|
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx]); \
|
|
break; \
|
|
default: \
|
|
dstpixel = BitLeft((*(pdst) &cfbmask[idx]), cfb24Shift[idx])| \
|
|
BitRight(((*((pdst)+1)) &cfbmask[idx+1]), cfb24Shift[idx+1]); \
|
|
}; \
|
|
DoRop(t1, rop, (src), dstpixel); \
|
|
dstpixel &= ~planemask; \
|
|
dstpixel |= (t1 & planemask); \
|
|
*(pdst) &= cfbrmask[idx]; \
|
|
switch(idx){ \
|
|
case 0: \
|
|
*(pdst) |= (dstpixel & cfbmask[idx]); \
|
|
break; \
|
|
case 2: \
|
|
case 4: \
|
|
*((pdst)+1) = ((*((pdst)+1)) & cfbrmask[idx+1]) | \
|
|
(BitLeft(dstpixel, cfb24Shift[idx+1]) & (cfbmask[idx+1])); \
|
|
case 6: \
|
|
*(pdst) |= (BitRight(dstpixel, cfb24Shift[idx]) & cfbmask[idx]); \
|
|
}; \
|
|
}
|
|
# else /* PSZ == 24 && PPW == 1 */
|
|
#define maskbits(x, w, startmask, endmask, nlw) \
|
|
startmask = cfbstarttab[(x)&PIM]; \
|
|
endmask = cfbendtab[((x)+(w)) & PIM]; \
|
|
if (startmask) \
|
|
nlw = (((w) - (PPW - ((x)&PIM))) >> PWSH); \
|
|
else \
|
|
nlw = (w) >> PWSH;
|
|
|
|
#define maskpartialbits(x, w, mask) \
|
|
mask = cfbstartpartial[(x) & PIM] & cfbendpartial[((x) + (w)) & PIM];
|
|
|
|
#define mask32bits(x, w, startmask, endmask) \
|
|
startmask = cfbstarttab[(x)&PIM]; \
|
|
endmask = cfbendtab[((x)+(w)) & PIM];
|
|
|
|
/* FIXME */
|
|
#define maskbits24(x, w, startmask, endmask, nlw) \
|
|
abort()
|
|
#define getbits24(psrc, dst, index) \
|
|
abort()
|
|
#define putbits24(src, w, pdst, planemask, index) \
|
|
abort()
|
|
#define putbitsrop24(src, x, pdst, planemask, rop) \
|
|
abort()
|
|
|
|
#endif /* PSZ == 24 && PPW == 1 */
|
|
|
|
#define getbits(psrc, x, w, dst) \
|
|
if ( ((x) + (w)) <= PPW) \
|
|
{ \
|
|
dst = SCRLEFT(*(psrc), (x)); \
|
|
} \
|
|
else \
|
|
{ \
|
|
int m; \
|
|
m = PPW-(x); \
|
|
dst = (SCRLEFT(*(psrc), (x)) & cfbendtab[m]) | \
|
|
(SCRRIGHT(*((psrc)+1), m) & cfbstarttab[m]); \
|
|
}
|
|
|
|
|
|
#define putbits(src, x, w, pdst, planemask) \
|
|
if ( ((x)+(w)) <= PPW) \
|
|
{ \
|
|
PixelGroup tmpmask; \
|
|
maskpartialbits((x), (w), tmpmask); \
|
|
tmpmask &= PFILL(planemask); \
|
|
*(pdst) = (*(pdst) & ~tmpmask) | (SCRRIGHT(src, x) & tmpmask); \
|
|
} \
|
|
else \
|
|
{ \
|
|
unsigned int m; \
|
|
unsigned int n; \
|
|
PixelGroup pm = PFILL(planemask); \
|
|
m = PPW-(x); \
|
|
n = (w) - m; \
|
|
*(pdst) = (*(pdst) & (cfbendtab[x] | ~pm)) | \
|
|
(SCRRIGHT(src, x) & (cfbstarttab[x] & pm)); \
|
|
*((pdst)+1) = (*((pdst)+1) & (cfbstarttab[n] | ~pm)) | \
|
|
(SCRLEFT(src, m) & (cfbendtab[n] & pm)); \
|
|
}
|
|
#if defined(__GNUC__) && defined(mc68020)
|
|
#undef getbits
|
|
#define FASTGETBITS(psrc, x, w, dst) \
|
|
asm ("bfextu %3{%1:%2},%0" \
|
|
: "=d" (dst) : "di" (x), "di" (w), "o" (*(char *)(psrc)))
|
|
|
|
#define getbits(psrc,x,w,dst) \
|
|
{ \
|
|
FASTGETBITS(psrc, (x) * PSZ, (w) * PSZ, dst); \
|
|
dst = SCRLEFT(dst,PPW-(w)); \
|
|
}
|
|
|
|
#define FASTPUTBITS(src, x, w, pdst) \
|
|
asm ("bfins %3,%0{%1:%2}" \
|
|
: "=o" (*(char *)(pdst)) \
|
|
: "di" (x), "di" (w), "d" (src), "0" (*(char *) (pdst)))
|
|
|
|
#undef putbits
|
|
#define putbits(src, x, w, pdst, planemask) \
|
|
{ \
|
|
if (planemask != PMSK) { \
|
|
PixelGroup _m, _pm; \
|
|
FASTGETBITS(pdst, (x) * PSZ , (w) * PSZ, _m); \
|
|
PFILL2(planemask, _pm); \
|
|
_m &= (~_pm); \
|
|
_m |= (SCRRIGHT(src, PPW-(w)) & _pm); \
|
|
FASTPUTBITS(_m, (x) * PSZ, (w) * PSZ, pdst); \
|
|
} else { \
|
|
FASTPUTBITS(SCRRIGHT(src, PPW-(w)), (x) * PSZ, (w) * PSZ, pdst); \
|
|
} \
|
|
}
|
|
|
|
|
|
#endif /* mc68020 */
|
|
|
|
#define putbitsrop(src, x, w, pdst, planemask, rop) \
|
|
if ( ((x)+(w)) <= PPW) \
|
|
{ \
|
|
PixelGroup tmpmask; \
|
|
PixelGroup t1, t2; \
|
|
maskpartialbits((x), (w), tmpmask); \
|
|
PFILL2(planemask, t1); \
|
|
tmpmask &= t1; \
|
|
t1 = SCRRIGHT((src), (x)); \
|
|
DoRop(t2, rop, t1, *(pdst)); \
|
|
*(pdst) = (*(pdst) & ~tmpmask) | (t2 & tmpmask); \
|
|
} \
|
|
else \
|
|
{ \
|
|
CfbBits m; \
|
|
CfbBits n; \
|
|
PixelGroup t1, t2; \
|
|
PixelGroup pm; \
|
|
PFILL2(planemask, pm); \
|
|
m = PPW-(x); \
|
|
n = (w) - m; \
|
|
t1 = SCRRIGHT((src), (x)); \
|
|
DoRop(t2, rop, t1, *(pdst)); \
|
|
*(pdst) = (*(pdst) & (cfbendtab[x] | ~pm)) | (t2 & (cfbstarttab[x] & pm));\
|
|
t1 = SCRLEFT((src), m); \
|
|
DoRop(t2, rop, t1, *((pdst) + 1)); \
|
|
*((pdst)+1) = (*((pdst)+1) & (cfbstarttab[n] | ~pm)) | \
|
|
(t2 & (cfbendtab[n] & pm)); \
|
|
}
|
|
|
|
#else /* PSZ == 32 && PPW == 1*/
|
|
|
|
/*
|
|
* These macros can be optimized for 32-bit pixels since there is no
|
|
* need to worry about left/right edge masking. These macros were
|
|
* derived from the above using the following reductions:
|
|
*
|
|
* - x & PIW = 0 [since PIW = 0]
|
|
* - all masking tables are only indexed by 0 [ due to above ]
|
|
* - cfbstartab[0] and cfbendtab[0] = 0 [ no left/right edge masks]
|
|
* - cfbstartpartial[0] and cfbendpartial[0] = ~0 [no partial pixel mask]
|
|
*
|
|
* Macro reduction based upon constants cannot be performed automatically
|
|
* by the compiler since it does not know the contents of the masking
|
|
* arrays in cfbmskbits.c.
|
|
*/
|
|
#define maskbits(x, w, startmask, endmask, nlw) \
|
|
startmask = endmask = 0; \
|
|
nlw = (w);
|
|
|
|
#define maskpartialbits(x, w, mask) \
|
|
mask = 0xFFFFFFFF;
|
|
|
|
#define mask32bits(x, w, startmask, endmask) \
|
|
startmask = endmask = 0;
|
|
|
|
/*
|
|
* For 32-bit operations, getbits(), putbits(), and putbitsrop()
|
|
* will only be invoked with x = 0 and w = PPW (1). The getbits()
|
|
* macro is only called within left/right edge logic, which doesn't
|
|
* happen for 32-bit pixels.
|
|
*/
|
|
#define getbits(psrc, x, w, dst) (dst) = *(psrc)
|
|
|
|
#define putbits(src, x, w, pdst, planemask) \
|
|
*(pdst) = (*(pdst) & ~planemask) | (src & planemask);
|
|
|
|
#define putbitsrop(src, x, w, pdst, planemask, rop) \
|
|
{ \
|
|
PixelGroup t1; \
|
|
DoRop(t1, rop, (src), *(pdst)); \
|
|
*(pdst) = (*(pdst) & ~planemask) | (t1 & planemask); \
|
|
}
|
|
|
|
#endif /* PSZ != 32 */
|
|
|
|
/*
|
|
* Use these macros only when you're using the MergeRop stuff
|
|
* in ../mfb/mergerop.h
|
|
*/
|
|
|
|
/* useful only when not spanning destination longwords */
|
|
#if PSZ == 24
|
|
#define putbitsmropshort24(src,x,w,pdst,index) {\
|
|
PixelGroup _tmpmask; \
|
|
PixelGroup _t1; \
|
|
maskpartialbits ((x), (w), _tmpmask); \
|
|
_t1 = SCRRIGHT((src), (x)); \
|
|
DoMaskMergeRop24(_t1, pdst, _tmpmask, index); \
|
|
}
|
|
#endif
|
|
#define putbitsmropshort(src,x,w,pdst) {\
|
|
PixelGroup _tmpmask; \
|
|
PixelGroup _t1; \
|
|
maskpartialbits ((x), (w), _tmpmask); \
|
|
_t1 = SCRRIGHT((src), (x)); \
|
|
*pdst = DoMaskMergeRop(_t1, *pdst, _tmpmask); \
|
|
}
|
|
|
|
/* useful only when spanning destination longwords */
|
|
#define putbitsmroplong(src,x,w,pdst) { \
|
|
PixelGroup _startmask, _endmask; \
|
|
int _m; \
|
|
PixelGroup _t1; \
|
|
_m = PPW - (x); \
|
|
_startmask = cfbstarttab[x]; \
|
|
_endmask = cfbendtab[(w) - _m]; \
|
|
_t1 = SCRRIGHT((src), (x)); \
|
|
pdst[0] = DoMaskMergeRop(_t1,pdst[0],_startmask); \
|
|
_t1 = SCRLEFT ((src),_m); \
|
|
pdst[1] = DoMaskMergeRop(_t1,pdst[1],_endmask); \
|
|
}
|
|
|
|
#define putbitsmrop(src,x,w,pdst) \
|
|
if ((x) + (w) <= PPW) {\
|
|
putbitsmropshort(src,x,w,pdst); \
|
|
} else { \
|
|
putbitsmroplong(src,x,w,pdst); \
|
|
}
|
|
|
|
#if GETLEFTBITS_ALIGNMENT == 1
|
|
#define getleftbits(psrc, w, dst) dst = *((unsigned int *) psrc)
|
|
#define getleftbits24(psrc, w, dst, idx){ \
|
|
regiseter int index; \
|
|
switch(index = ((idx)&3)<<1){ \
|
|
case 0: \
|
|
dst = (*((unsigned int *) psrc))&cfbmask[index]; \
|
|
break; \
|
|
case 2: \
|
|
case 4: \
|
|
dst = BitLeft(((*((unsigned int *) psrc))&cfbmask[index]), cfb24Shift[index]); \
|
|
dst |= BitRight(((*((unsigned int *) psrc)+1)&cfbmask[index]), cfb4Shift[index]); \
|
|
break; \
|
|
case 6: \
|
|
dst = BitLeft((*((unsigned int *) psrc)),cfb24Shift[index]); \
|
|
break; \
|
|
}; \
|
|
}
|
|
#endif /* GETLEFTBITS_ALIGNMENT == 1 */
|
|
|
|
#define getglyphbits(psrc, x, w, dst) \
|
|
{ \
|
|
dst = BitLeft((unsigned) *(psrc), (x)); \
|
|
if ( ((x) + (w)) > 32) \
|
|
dst |= (BitRight((unsigned) *((psrc)+1), 32-(x))); \
|
|
}
|
|
#if GETLEFTBITS_ALIGNMENT == 2
|
|
#define getleftbits(psrc, w, dst) \
|
|
{ \
|
|
if ( ((int)(psrc)) & 0x01 ) \
|
|
getglyphbits( ((unsigned int *)(((char *)(psrc))-1)), 8, (w), (dst) ); \
|
|
else \
|
|
dst = *((unsigned int *) psrc); \
|
|
}
|
|
#endif /* GETLEFTBITS_ALIGNMENT == 2 */
|
|
|
|
#if GETLEFTBITS_ALIGNMENT == 4
|
|
#define getleftbits(psrc, w, dst) \
|
|
{ \
|
|
int off, off_b; \
|
|
off_b = (off = ( ((int)(psrc)) & 0x03)) << 3; \
|
|
getglyphbits( \
|
|
(unsigned int *)( ((char *)(psrc)) - off), \
|
|
(off_b), (w), (dst) \
|
|
); \
|
|
}
|
|
#endif /* GETLEFTBITS_ALIGNMENT == 4 */
|
|
|
|
/*
|
|
* getstipplepixels( psrcstip, x, w, ones, psrcpix, destpix )
|
|
*
|
|
* Converts bits to pixels in a reasonable way. Takes w (1 <= w <= PPW)
|
|
* bits from *psrcstip, starting at bit x; call this a quartet of bits.
|
|
* Then, takes the pixels from *psrcpix corresponding to the one-bits (if
|
|
* ones is TRUE) or the zero-bits (if ones is FALSE) of the quartet
|
|
* and puts these pixels into destpix.
|
|
*
|
|
* Example:
|
|
*
|
|
* getstipplepixels( &(0x08192A3B), 17, 4, 1, &(0x4C5D6E7F), dest )
|
|
*
|
|
* 0x08192A3B = 0000 1000 0001 1001 0010 1010 0011 1011
|
|
*
|
|
* This will take 4 bits starting at bit 17, so the quartet is 0x5 = 0101.
|
|
* It will take pixels from 0x4C5D6E7F corresponding to the one-bits in this
|
|
* quartet, so dest = 0x005D007F.
|
|
*
|
|
* XXX Works with both byte order.
|
|
* XXX This works for all values of x and w within a doubleword.
|
|
*/
|
|
#if (BITMAP_BIT_ORDER == MSBFirst)
|
|
#define getstipplepixels( psrcstip, x, w, ones, psrcpix, destpix ) \
|
|
{ \
|
|
PixelGroup q; \
|
|
int m; \
|
|
if ((m = ((x) - ((PPW*PSZ)-PPW))) > 0) { \
|
|
q = (*(psrcstip)) << m; \
|
|
if ( (x)+(w) > (PPW*PSZ) ) \
|
|
q |= *((psrcstip)+1) >> ((PPW*PSZ)-m); \
|
|
} \
|
|
else \
|
|
q = (*(psrcstip)) >> -m; \
|
|
q = QuartetBitsTable[(w)] & ((ones) ? q : ~q); \
|
|
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
|
|
}
|
|
/* I just copied this to get the linker satisfied on PowerPC,
|
|
* so this may not be correct at all.
|
|
*/
|
|
#define getstipplepixels24(psrcstip,xt,ones,psrcpix,destpix,stipindex) \
|
|
{ \
|
|
PixelGroup q; \
|
|
q = *(psrcstip) >> (xt); \
|
|
q = ((ones) ? q : ~q) & 1; \
|
|
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
|
|
}
|
|
#else /* BITMAP_BIT_ORDER == LSB */
|
|
|
|
/* this must load 32 bits worth; for most machines, thats an int */
|
|
#define CfbFetchUnaligned(x) ldl_u(x)
|
|
|
|
#define getstipplepixels( psrcstip, xt, w, ones, psrcpix, destpix ) \
|
|
{ \
|
|
PixelGroup q; \
|
|
q = CfbFetchUnaligned(psrcstip) >> (xt); \
|
|
if ( ((xt)+(w)) > (PPW*PSZ) ) \
|
|
q |= (CfbFetchUnaligned((psrcstip)+1)) << ((PPW*PSZ)-(xt)); \
|
|
q = QuartetBitsTable[(w)] & ((ones) ? q : ~q); \
|
|
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
|
|
}
|
|
#if PSZ == 24
|
|
#define getstipplepixels24(psrcstip,xt,ones,psrcpix,destpix,stipindex) \
|
|
{ \
|
|
PixelGroup q; \
|
|
q = *(psrcstip) >> (xt); \
|
|
q = ((ones) ? q : ~q) & 1; \
|
|
*(destpix) = (*(psrcpix)) & QuartetPixelMaskTable[q]; \
|
|
}
|
|
#endif /* PSZ == 24 */
|
|
#endif
|
|
|
|
extern PixelGroup cfbstarttab[];
|
|
extern PixelGroup cfbendtab[];
|
|
extern PixelGroup cfbstartpartial[];
|
|
extern PixelGroup cfbendpartial[];
|
|
extern PixelGroup cfbrmask[];
|
|
extern PixelGroup cfbmask[];
|
|
extern PixelGroup QuartetBitsTable[];
|
|
extern PixelGroup QuartetPixelMaskTable[];
|
|
#if PSZ == 24
|
|
extern int cfb24Shift[];
|
|
#endif
|