1619 lines
42 KiB
C
1619 lines
42 KiB
C
#define _GNU_SOURCE
|
|
|
|
#include "utils.h"
|
|
#include <math.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
|
|
#ifdef HAVE_GETTIMEOFDAY
|
|
#include <sys/time.h>
|
|
#else
|
|
#include <time.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_MMAN_H
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_FENV_H
|
|
#include <fenv.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBPNG
|
|
#include <png.h>
|
|
#endif
|
|
|
|
/* Random number generator state
|
|
*/
|
|
|
|
prng_t prng_state_data;
|
|
prng_t *prng_state;
|
|
|
|
/*----------------------------------------------------------------------------*\
|
|
* CRC-32 version 2.0.0 by Craig Bruce, 2006-04-29.
|
|
*
|
|
* This program generates the CRC-32 values for the files named in the
|
|
* command-line arguments. These are the same CRC-32 values used by GZIP,
|
|
* PKZIP, and ZMODEM. The Crc32_ComputeBuf () can also be detached and
|
|
* used independently.
|
|
*
|
|
* THIS PROGRAM IS PUBLIC-DOMAIN SOFTWARE.
|
|
*
|
|
* Based on the byte-oriented implementation "File Verification Using CRC"
|
|
* by Mark R. Nelson in Dr. Dobb's Journal, May 1992, pp. 64-67.
|
|
*
|
|
* v1.0.0: original release.
|
|
* v1.0.1: fixed printf formats.
|
|
* v1.0.2: fixed something else.
|
|
* v1.0.3: replaced CRC constant table by generator function.
|
|
* v1.0.4: reformatted code, made ANSI C. 1994-12-05.
|
|
* v2.0.0: rewrote to use memory buffer & static table, 2006-04-29.
|
|
\*----------------------------------------------------------------------------*/
|
|
|
|
/*----------------------------------------------------------------------------*\
|
|
* NAME:
|
|
* Crc32_ComputeBuf () - computes the CRC-32 value of a memory buffer
|
|
* DESCRIPTION:
|
|
* Computes or accumulates the CRC-32 value for a memory buffer.
|
|
* The 'inCrc32' gives a previously accumulated CRC-32 value to allow
|
|
* a CRC to be generated for multiple sequential buffer-fuls of data.
|
|
* The 'inCrc32' for the first buffer must be zero.
|
|
* ARGUMENTS:
|
|
* inCrc32 - accumulated CRC-32 value, must be 0 on first call
|
|
* buf - buffer to compute CRC-32 value for
|
|
* bufLen - number of bytes in buffer
|
|
* RETURNS:
|
|
* crc32 - computed CRC-32 value
|
|
* ERRORS:
|
|
* (no errors are possible)
|
|
\*----------------------------------------------------------------------------*/
|
|
|
|
uint32_t
|
|
compute_crc32 (uint32_t in_crc32,
|
|
const void *buf,
|
|
size_t buf_len)
|
|
{
|
|
static const uint32_t crc_table[256] = {
|
|
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F,
|
|
0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
|
|
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2,
|
|
0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
|
|
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
|
|
0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
|
|
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
|
|
0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
|
|
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423,
|
|
0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
|
|
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106,
|
|
0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
|
|
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
|
|
0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
|
|
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
|
|
0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
|
|
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7,
|
|
0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
|
|
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA,
|
|
0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
|
|
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
|
|
0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
|
|
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84,
|
|
0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
|
|
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
|
|
0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
|
|
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E,
|
|
0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
|
|
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55,
|
|
0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
|
|
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28,
|
|
0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
|
|
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F,
|
|
0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
|
|
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
|
|
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
|
|
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69,
|
|
0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
|
|
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
|
|
0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
|
|
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693,
|
|
0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
|
|
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
|
|
};
|
|
|
|
uint32_t crc32;
|
|
unsigned char * byte_buf;
|
|
size_t i;
|
|
|
|
/* accumulate crc32 for buffer */
|
|
crc32 = in_crc32 ^ 0xFFFFFFFF;
|
|
byte_buf = (unsigned char*) buf;
|
|
|
|
for (i = 0; i < buf_len; i++)
|
|
crc32 = (crc32 >> 8) ^ crc_table[(crc32 ^ byte_buf[i]) & 0xFF];
|
|
|
|
return (crc32 ^ 0xFFFFFFFF);
|
|
}
|
|
|
|
static uint32_t
|
|
compute_crc32_for_image_internal (uint32_t crc32,
|
|
pixman_image_t *img,
|
|
pixman_bool_t remove_alpha,
|
|
pixman_bool_t remove_rgb)
|
|
{
|
|
pixman_format_code_t fmt = pixman_image_get_format (img);
|
|
uint32_t *data = pixman_image_get_data (img);
|
|
int stride = pixman_image_get_stride (img);
|
|
int height = pixman_image_get_height (img);
|
|
uint32_t mask = 0xffffffff;
|
|
int i;
|
|
|
|
if (stride < 0)
|
|
{
|
|
data += (stride / 4) * (height - 1);
|
|
stride = - stride;
|
|
}
|
|
|
|
/* mask unused 'x' part */
|
|
if (PIXMAN_FORMAT_BPP (fmt) - PIXMAN_FORMAT_DEPTH (fmt) &&
|
|
PIXMAN_FORMAT_DEPTH (fmt) != 0)
|
|
{
|
|
uint32_t m = (1 << PIXMAN_FORMAT_DEPTH (fmt)) - 1;
|
|
|
|
if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA ||
|
|
PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA)
|
|
{
|
|
m <<= (PIXMAN_FORMAT_BPP (fmt) - PIXMAN_FORMAT_DEPTH (fmt));
|
|
}
|
|
|
|
mask &= m;
|
|
}
|
|
|
|
/* mask alpha channel */
|
|
if (remove_alpha && PIXMAN_FORMAT_A (fmt))
|
|
{
|
|
uint32_t m;
|
|
|
|
if (PIXMAN_FORMAT_BPP (fmt) == 32)
|
|
m = 0xffffffff;
|
|
else
|
|
m = (1 << PIXMAN_FORMAT_BPP (fmt)) - 1;
|
|
|
|
m >>= PIXMAN_FORMAT_A (fmt);
|
|
|
|
if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA ||
|
|
PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA ||
|
|
PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_A)
|
|
{
|
|
/* Alpha is at the bottom of the pixel */
|
|
m <<= PIXMAN_FORMAT_A (fmt);
|
|
}
|
|
|
|
mask &= m;
|
|
}
|
|
|
|
/* mask rgb channels */
|
|
if (remove_rgb && PIXMAN_FORMAT_RGB (fmt))
|
|
{
|
|
uint32_t m = ((uint32_t)~0) >> (32 - PIXMAN_FORMAT_BPP (fmt));
|
|
uint32_t size = PIXMAN_FORMAT_R (fmt) + PIXMAN_FORMAT_G (fmt) + PIXMAN_FORMAT_B (fmt);
|
|
|
|
m &= ~((1 << size) - 1);
|
|
|
|
if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA ||
|
|
PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA)
|
|
{
|
|
/* RGB channels are at the top of the pixel */
|
|
m >>= size;
|
|
}
|
|
|
|
mask &= m;
|
|
}
|
|
|
|
for (i = 0; i * PIXMAN_FORMAT_BPP (fmt) < 32; i++)
|
|
mask |= mask << (i * PIXMAN_FORMAT_BPP (fmt));
|
|
|
|
for (i = 0; i < stride * height / 4; i++)
|
|
data[i] &= mask;
|
|
|
|
/* swap endiannes in order to provide identical results on both big
|
|
* and litte endian systems
|
|
*/
|
|
image_endian_swap (img);
|
|
|
|
return compute_crc32 (crc32, data, stride * height);
|
|
}
|
|
|
|
uint32_t
|
|
compute_crc32_for_image (uint32_t crc32,
|
|
pixman_image_t *img)
|
|
{
|
|
if (img->common.alpha_map)
|
|
{
|
|
crc32 = compute_crc32_for_image_internal (crc32, img, TRUE, FALSE);
|
|
crc32 = compute_crc32_for_image_internal (
|
|
crc32, (pixman_image_t *)img->common.alpha_map, FALSE, TRUE);
|
|
}
|
|
else
|
|
{
|
|
crc32 = compute_crc32_for_image_internal (crc32, img, FALSE, FALSE);
|
|
}
|
|
|
|
return crc32;
|
|
}
|
|
|
|
void
|
|
print_image (pixman_image_t *image)
|
|
{
|
|
int i, j;
|
|
int width, height, stride;
|
|
pixman_format_code_t format;
|
|
uint8_t *buffer;
|
|
int s;
|
|
|
|
width = pixman_image_get_width (image);
|
|
height = pixman_image_get_height (image);
|
|
stride = pixman_image_get_stride (image);
|
|
format = pixman_image_get_format (image);
|
|
buffer = (uint8_t *)pixman_image_get_data (image);
|
|
|
|
s = (stride >= 0)? stride : - stride;
|
|
|
|
printf ("---\n");
|
|
for (i = 0; i < height; i++)
|
|
{
|
|
for (j = 0; j < s; j++)
|
|
{
|
|
if (j == (width * PIXMAN_FORMAT_BPP (format) + 7) / 8)
|
|
printf ("| ");
|
|
|
|
printf ("%02X ", *((uint8_t *)buffer + i * stride + j));
|
|
}
|
|
printf ("\n");
|
|
}
|
|
printf ("---\n");
|
|
}
|
|
|
|
/* perform endian conversion of pixel data
|
|
*/
|
|
void
|
|
image_endian_swap (pixman_image_t *img)
|
|
{
|
|
int stride = pixman_image_get_stride (img);
|
|
uint32_t *data = pixman_image_get_data (img);
|
|
int height = pixman_image_get_height (img);
|
|
int bpp = PIXMAN_FORMAT_BPP (pixman_image_get_format (img));
|
|
int i, j;
|
|
|
|
/* swap bytes only on big endian systems */
|
|
if (is_little_endian())
|
|
return;
|
|
|
|
if (bpp == 8)
|
|
return;
|
|
|
|
for (i = 0; i < height; i++)
|
|
{
|
|
uint8_t *line_data = (uint8_t *)data + stride * i;
|
|
int s = (stride >= 0)? stride : - stride;
|
|
|
|
switch (bpp)
|
|
{
|
|
case 1:
|
|
for (j = 0; j < s; j++)
|
|
{
|
|
line_data[j] =
|
|
((line_data[j] & 0x80) >> 7) |
|
|
((line_data[j] & 0x40) >> 5) |
|
|
((line_data[j] & 0x20) >> 3) |
|
|
((line_data[j] & 0x10) >> 1) |
|
|
((line_data[j] & 0x08) << 1) |
|
|
((line_data[j] & 0x04) << 3) |
|
|
((line_data[j] & 0x02) << 5) |
|
|
((line_data[j] & 0x01) << 7);
|
|
}
|
|
break;
|
|
case 4:
|
|
for (j = 0; j < s; j++)
|
|
{
|
|
line_data[j] = (line_data[j] >> 4) | (line_data[j] << 4);
|
|
}
|
|
break;
|
|
case 16:
|
|
for (j = 0; j + 2 <= s; j += 2)
|
|
{
|
|
char t1 = line_data[j + 0];
|
|
char t2 = line_data[j + 1];
|
|
|
|
line_data[j + 1] = t1;
|
|
line_data[j + 0] = t2;
|
|
}
|
|
break;
|
|
case 24:
|
|
for (j = 0; j + 3 <= s; j += 3)
|
|
{
|
|
char t1 = line_data[j + 0];
|
|
char t2 = line_data[j + 1];
|
|
char t3 = line_data[j + 2];
|
|
|
|
line_data[j + 2] = t1;
|
|
line_data[j + 1] = t2;
|
|
line_data[j + 0] = t3;
|
|
}
|
|
break;
|
|
case 32:
|
|
for (j = 0; j + 4 <= s; j += 4)
|
|
{
|
|
char t1 = line_data[j + 0];
|
|
char t2 = line_data[j + 1];
|
|
char t3 = line_data[j + 2];
|
|
char t4 = line_data[j + 3];
|
|
|
|
line_data[j + 3] = t1;
|
|
line_data[j + 2] = t2;
|
|
line_data[j + 1] = t3;
|
|
line_data[j + 0] = t4;
|
|
}
|
|
break;
|
|
default:
|
|
assert (FALSE);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define N_LEADING_PROTECTED 10
|
|
#define N_TRAILING_PROTECTED 10
|
|
|
|
typedef struct
|
|
{
|
|
void *addr;
|
|
uint32_t len;
|
|
uint8_t *trailing;
|
|
int n_bytes;
|
|
} info_t;
|
|
|
|
#if defined(HAVE_MPROTECT) && defined(HAVE_GETPAGESIZE) && defined(HAVE_SYS_MMAN_H) && defined(HAVE_MMAP)
|
|
|
|
/* This is apparently necessary on at least OS X */
|
|
#ifndef MAP_ANONYMOUS
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
void *
|
|
fence_malloc (int64_t len)
|
|
{
|
|
unsigned long page_size = getpagesize();
|
|
unsigned long page_mask = page_size - 1;
|
|
uint32_t n_payload_bytes = (len + page_mask) & ~page_mask;
|
|
uint32_t n_bytes =
|
|
(page_size * (N_LEADING_PROTECTED + N_TRAILING_PROTECTED + 2) +
|
|
n_payload_bytes) & ~page_mask;
|
|
uint8_t *initial_page;
|
|
uint8_t *leading_protected;
|
|
uint8_t *trailing_protected;
|
|
uint8_t *payload;
|
|
uint8_t *addr;
|
|
|
|
if (len < 0)
|
|
abort();
|
|
|
|
addr = mmap (NULL, n_bytes, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
|
|
if (addr == MAP_FAILED)
|
|
{
|
|
printf ("mmap failed on %lld %u\n", (long long int)len, n_bytes);
|
|
return NULL;
|
|
}
|
|
|
|
initial_page = (uint8_t *)(((uintptr_t)addr + page_mask) & ~page_mask);
|
|
leading_protected = initial_page + page_size;
|
|
payload = leading_protected + N_LEADING_PROTECTED * page_size;
|
|
trailing_protected = payload + n_payload_bytes;
|
|
|
|
((info_t *)initial_page)->addr = addr;
|
|
((info_t *)initial_page)->len = len;
|
|
((info_t *)initial_page)->trailing = trailing_protected;
|
|
((info_t *)initial_page)->n_bytes = n_bytes;
|
|
|
|
if ((mprotect (leading_protected, N_LEADING_PROTECTED * page_size,
|
|
PROT_NONE) == -1) ||
|
|
(mprotect (trailing_protected, N_TRAILING_PROTECTED * page_size,
|
|
PROT_NONE) == -1))
|
|
{
|
|
munmap (addr, n_bytes);
|
|
return NULL;
|
|
}
|
|
|
|
return payload;
|
|
}
|
|
|
|
void
|
|
fence_free (void *data)
|
|
{
|
|
uint32_t page_size = getpagesize();
|
|
uint8_t *payload = data;
|
|
uint8_t *leading_protected = payload - N_LEADING_PROTECTED * page_size;
|
|
uint8_t *initial_page = leading_protected - page_size;
|
|
info_t *info = (info_t *)initial_page;
|
|
|
|
munmap (info->addr, info->n_bytes);
|
|
}
|
|
|
|
#else
|
|
|
|
void *
|
|
fence_malloc (int64_t len)
|
|
{
|
|
return malloc (len);
|
|
}
|
|
|
|
void
|
|
fence_free (void *data)
|
|
{
|
|
free (data);
|
|
}
|
|
|
|
#endif
|
|
|
|
uint8_t *
|
|
make_random_bytes (int n_bytes)
|
|
{
|
|
uint8_t *bytes = fence_malloc (n_bytes);
|
|
|
|
if (!bytes)
|
|
return NULL;
|
|
|
|
prng_randmemset (bytes, n_bytes, 0);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
void
|
|
a8r8g8b8_to_rgba_np (uint32_t *dst, uint32_t *src, int n_pixels)
|
|
{
|
|
uint8_t *dst8 = (uint8_t *)dst;
|
|
int i;
|
|
|
|
for (i = 0; i < n_pixels; ++i)
|
|
{
|
|
uint32_t p = src[i];
|
|
uint8_t a, r, g, b;
|
|
|
|
a = (p & 0xff000000) >> 24;
|
|
r = (p & 0x00ff0000) >> 16;
|
|
g = (p & 0x0000ff00) >> 8;
|
|
b = (p & 0x000000ff) >> 0;
|
|
|
|
if (a != 0)
|
|
{
|
|
#define DIVIDE(c, a) \
|
|
do \
|
|
{ \
|
|
int t = ((c) * 255) / a; \
|
|
(c) = t < 0? 0 : t > 255? 255 : t; \
|
|
} while (0)
|
|
|
|
DIVIDE (r, a);
|
|
DIVIDE (g, a);
|
|
DIVIDE (b, a);
|
|
}
|
|
|
|
*dst8++ = r;
|
|
*dst8++ = g;
|
|
*dst8++ = b;
|
|
*dst8++ = a;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_LIBPNG
|
|
|
|
pixman_bool_t
|
|
write_png (pixman_image_t *image, const char *filename)
|
|
{
|
|
int width = pixman_image_get_width (image);
|
|
int height = pixman_image_get_height (image);
|
|
int stride = width * 4;
|
|
uint32_t *data = malloc (height * stride);
|
|
pixman_image_t *copy;
|
|
png_struct *write_struct;
|
|
png_info *info_struct;
|
|
pixman_bool_t result = FALSE;
|
|
FILE *f = fopen (filename, "wb");
|
|
png_bytep *row_pointers;
|
|
int i;
|
|
|
|
if (!f)
|
|
return FALSE;
|
|
|
|
row_pointers = malloc (height * sizeof (png_bytep));
|
|
|
|
copy = pixman_image_create_bits (
|
|
PIXMAN_a8r8g8b8, width, height, data, stride);
|
|
|
|
pixman_image_composite32 (
|
|
PIXMAN_OP_SRC, image, NULL, copy, 0, 0, 0, 0, 0, 0, width, height);
|
|
|
|
a8r8g8b8_to_rgba_np (data, data, height * width);
|
|
|
|
for (i = 0; i < height; ++i)
|
|
row_pointers[i] = (png_bytep)(data + i * width);
|
|
|
|
if (!(write_struct = png_create_write_struct (
|
|
PNG_LIBPNG_VER_STRING, NULL, NULL, NULL)))
|
|
goto out1;
|
|
|
|
if (!(info_struct = png_create_info_struct (write_struct)))
|
|
goto out2;
|
|
|
|
png_init_io (write_struct, f);
|
|
|
|
png_set_IHDR (write_struct, info_struct, width, height,
|
|
8, PNG_COLOR_TYPE_RGB_ALPHA,
|
|
PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE,
|
|
PNG_FILTER_TYPE_BASE);
|
|
|
|
png_write_info (write_struct, info_struct);
|
|
|
|
png_write_image (write_struct, row_pointers);
|
|
|
|
png_write_end (write_struct, NULL);
|
|
|
|
result = TRUE;
|
|
|
|
out2:
|
|
png_destroy_write_struct (&write_struct, &info_struct);
|
|
|
|
out1:
|
|
if (fclose (f) != 0)
|
|
result = FALSE;
|
|
|
|
pixman_image_unref (copy);
|
|
free (row_pointers);
|
|
free (data);
|
|
return result;
|
|
}
|
|
|
|
#else /* no libpng */
|
|
|
|
pixman_bool_t
|
|
write_png (pixman_image_t *image, const char *filename)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void
|
|
color8_to_color16 (uint32_t color8, pixman_color_t *color16)
|
|
{
|
|
color16->alpha = ((color8 & 0xff000000) >> 24);
|
|
color16->red = ((color8 & 0x00ff0000) >> 16);
|
|
color16->green = ((color8 & 0x0000ff00) >> 8);
|
|
color16->blue = ((color8 & 0x000000ff) >> 0);
|
|
|
|
color16->alpha |= color16->alpha << 8;
|
|
color16->red |= color16->red << 8;
|
|
color16->blue |= color16->blue << 8;
|
|
color16->green |= color16->green << 8;
|
|
}
|
|
|
|
void
|
|
draw_checkerboard (pixman_image_t *image,
|
|
int check_size,
|
|
uint32_t color1, uint32_t color2)
|
|
{
|
|
pixman_color_t check1, check2;
|
|
pixman_image_t *c1, *c2;
|
|
int n_checks_x, n_checks_y;
|
|
int i, j;
|
|
|
|
color8_to_color16 (color1, &check1);
|
|
color8_to_color16 (color2, &check2);
|
|
|
|
c1 = pixman_image_create_solid_fill (&check1);
|
|
c2 = pixman_image_create_solid_fill (&check2);
|
|
|
|
n_checks_x = (
|
|
pixman_image_get_width (image) + check_size - 1) / check_size;
|
|
n_checks_y = (
|
|
pixman_image_get_height (image) + check_size - 1) / check_size;
|
|
|
|
for (j = 0; j < n_checks_y; j++)
|
|
{
|
|
for (i = 0; i < n_checks_x; i++)
|
|
{
|
|
pixman_image_t *src;
|
|
|
|
if (((i ^ j) & 1))
|
|
src = c1;
|
|
else
|
|
src = c2;
|
|
|
|
pixman_image_composite32 (PIXMAN_OP_SRC, src, NULL, image,
|
|
0, 0, 0, 0,
|
|
i * check_size, j * check_size,
|
|
check_size, check_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
call_test_function (uint32_t (*test_function)(int testnum, int verbose),
|
|
int testnum,
|
|
int verbose)
|
|
{
|
|
uint32_t retval;
|
|
|
|
#if defined (__GNUC__) && defined (_WIN32) && (defined (__i386) || defined (__i386__))
|
|
__asm__ (
|
|
/* Deliberately avoid aligning the stack to 16 bytes */
|
|
"pushl %1\n\t"
|
|
"pushl %2\n\t"
|
|
"call *%3\n\t"
|
|
"addl $8, %%esp\n\t"
|
|
: "=a" (retval)
|
|
: "r" (verbose),
|
|
"r" (testnum),
|
|
"r" (test_function)
|
|
: "edx", "ecx"); /* caller save registers */
|
|
#else
|
|
retval = test_function (testnum, verbose);
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* A function, which can be used as a core part of the test programs,
|
|
* intended to detect various problems with the help of fuzzing input
|
|
* to pixman API (according to some templates, aka "smart" fuzzing).
|
|
* Some general information about such testing can be found here:
|
|
* http://en.wikipedia.org/wiki/Fuzz_testing
|
|
*
|
|
* It may help detecting:
|
|
* - crashes on bad handling of valid or reasonably invalid input to
|
|
* pixman API.
|
|
* - deviations from the behavior of older pixman releases.
|
|
* - deviations from the behavior of the same pixman release, but
|
|
* configured in a different way (for example with SIMD optimizations
|
|
* disabled), or running on a different OS or hardware.
|
|
*
|
|
* The test is performed by calling a callback function a huge number
|
|
* of times. The callback function is expected to run some snippet of
|
|
* pixman code with pseudorandom variations to the data feeded to
|
|
* pixman API. A result of running each callback function should be
|
|
* some deterministic value which depends on test number (test number
|
|
* can be used as a seed for PRNG). When 'verbose' argument is nonzero,
|
|
* callback function is expected to print to stdout some information
|
|
* about what it does.
|
|
*
|
|
* Return values from many small tests are accumulated together and
|
|
* used as final checksum, which can be compared to some expected
|
|
* value. Running the tests not individually, but in a batch helps
|
|
* to reduce process start overhead and also allows to parallelize
|
|
* testing and utilize multiple CPU cores.
|
|
*
|
|
* The resulting executable can be run without any arguments. In
|
|
* this case it runs a batch of tests starting from 1 and up to
|
|
* 'default_number_of_iterations'. The resulting checksum is
|
|
* compared with 'expected_checksum' and FAIL or PASS verdict
|
|
* depends on the result of this comparison.
|
|
*
|
|
* If the executable is run with 2 numbers provided as command line
|
|
* arguments, they specify the starting and ending numbers for a test
|
|
* batch.
|
|
*
|
|
* If the executable is run with only one number provided as a command
|
|
* line argument, then this number is used to call the callback function
|
|
* once, and also with verbose flag set.
|
|
*/
|
|
int
|
|
fuzzer_test_main (const char *test_name,
|
|
int default_number_of_iterations,
|
|
uint32_t expected_checksum,
|
|
uint32_t (*test_function)(int testnum, int verbose),
|
|
int argc,
|
|
const char *argv[])
|
|
{
|
|
int i, n1 = 1, n2 = 0;
|
|
uint32_t checksum = 0;
|
|
int verbose = getenv ("VERBOSE") != NULL;
|
|
|
|
if (argc >= 3)
|
|
{
|
|
n1 = atoi (argv[1]);
|
|
n2 = atoi (argv[2]);
|
|
if (n2 < n1)
|
|
{
|
|
printf ("invalid test range\n");
|
|
return 1;
|
|
}
|
|
}
|
|
else if (argc >= 2)
|
|
{
|
|
n2 = atoi (argv[1]);
|
|
|
|
checksum = call_test_function (test_function, n2, 1);
|
|
|
|
printf ("%d: checksum=%08X\n", n2, checksum);
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
n1 = 1;
|
|
n2 = default_number_of_iterations;
|
|
}
|
|
|
|
#ifdef USE_OPENMP
|
|
#pragma omp parallel for reduction(+:checksum) default(none) \
|
|
shared(n1, n2, test_function, verbose)
|
|
#endif
|
|
for (i = n1; i <= n2; i++)
|
|
{
|
|
uint32_t crc = call_test_function (test_function, i, 0);
|
|
if (verbose)
|
|
printf ("%d: %08X\n", i, crc);
|
|
checksum += crc;
|
|
}
|
|
|
|
if (n1 == 1 && n2 == default_number_of_iterations)
|
|
{
|
|
if (checksum == expected_checksum)
|
|
{
|
|
printf ("%s test passed (checksum=%08X)\n",
|
|
test_name, checksum);
|
|
}
|
|
else
|
|
{
|
|
printf ("%s test failed! (checksum=%08X, expected %08X)\n",
|
|
test_name, checksum, expected_checksum);
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printf ("%d-%d: checksum=%08X\n", n1, n2, checksum);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Try to obtain current time in seconds */
|
|
double
|
|
gettime (void)
|
|
{
|
|
#ifdef HAVE_GETTIMEOFDAY
|
|
struct timeval tv;
|
|
|
|
gettimeofday (&tv, NULL);
|
|
return (double)((int64_t)tv.tv_sec * 1000000 + tv.tv_usec) / 1000000.;
|
|
#else
|
|
return (double)clock() / (double)CLOCKS_PER_SEC;
|
|
#endif
|
|
}
|
|
|
|
uint32_t
|
|
get_random_seed (void)
|
|
{
|
|
union { double d; uint32_t u32; } t;
|
|
t.d = gettime();
|
|
prng_srand (t.u32);
|
|
|
|
return prng_rand ();
|
|
}
|
|
|
|
#ifdef HAVE_SIGACTION
|
|
#ifdef HAVE_ALARM
|
|
static const char *global_msg;
|
|
|
|
static void
|
|
on_alarm (int signo)
|
|
{
|
|
printf ("%s\n", global_msg);
|
|
exit (1);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void
|
|
fail_after (int seconds, const char *msg)
|
|
{
|
|
#ifdef HAVE_SIGACTION
|
|
#ifdef HAVE_ALARM
|
|
struct sigaction action;
|
|
|
|
global_msg = msg;
|
|
|
|
memset (&action, 0, sizeof (action));
|
|
action.sa_handler = on_alarm;
|
|
|
|
alarm (seconds);
|
|
|
|
sigaction (SIGALRM, &action, NULL);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void
|
|
enable_divbyzero_exceptions (void)
|
|
{
|
|
#ifdef HAVE_FENV_H
|
|
#ifdef HAVE_FEENABLEEXCEPT
|
|
feenableexcept (FE_DIVBYZERO);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void *
|
|
aligned_malloc (size_t align, size_t size)
|
|
{
|
|
void *result;
|
|
|
|
#ifdef HAVE_POSIX_MEMALIGN
|
|
if (posix_memalign (&result, align, size) != 0)
|
|
result = NULL;
|
|
#else
|
|
result = malloc (size);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
#define CONVERT_15(c, is_rgb) \
|
|
(is_rgb? \
|
|
((((c) >> 3) & 0x001f) | \
|
|
(((c) >> 6) & 0x03e0) | \
|
|
(((c) >> 9) & 0x7c00)) : \
|
|
(((((c) >> 16) & 0xff) * 153 + \
|
|
(((c) >> 8) & 0xff) * 301 + \
|
|
(((c) ) & 0xff) * 58) >> 2))
|
|
|
|
double
|
|
convert_srgb_to_linear (double c)
|
|
{
|
|
if (c <= 0.04045)
|
|
return c / 12.92;
|
|
else
|
|
return pow ((c + 0.055) / 1.055, 2.4);
|
|
}
|
|
|
|
double
|
|
convert_linear_to_srgb (double c)
|
|
{
|
|
if (c <= 0.0031308)
|
|
return c * 12.92;
|
|
else
|
|
return 1.055 * pow (c, 1.0/2.4) - 0.055;
|
|
}
|
|
|
|
void
|
|
initialize_palette (pixman_indexed_t *palette, uint32_t depth, int is_rgb)
|
|
{
|
|
int i;
|
|
uint32_t mask = (1 << depth) - 1;
|
|
|
|
for (i = 0; i < 32768; ++i)
|
|
palette->ent[i] = prng_rand() & mask;
|
|
|
|
memset (palette->rgba, 0, sizeof (palette->rgba));
|
|
|
|
for (i = 0; i < mask + 1; ++i)
|
|
{
|
|
uint32_t rgba24;
|
|
pixman_bool_t retry;
|
|
uint32_t i15;
|
|
|
|
/* We filled the rgb->index map with random numbers, but we
|
|
* do need the ability to round trip, that is if some indexed
|
|
* color expands to an argb24, then the 15 bit version of that
|
|
* color must map back to the index. Anything else, we don't
|
|
* care about too much.
|
|
*/
|
|
do
|
|
{
|
|
uint32_t old_idx;
|
|
|
|
rgba24 = prng_rand();
|
|
i15 = CONVERT_15 (rgba24, is_rgb);
|
|
|
|
old_idx = palette->ent[i15];
|
|
if (CONVERT_15 (palette->rgba[old_idx], is_rgb) == i15)
|
|
retry = 1;
|
|
else
|
|
retry = 0;
|
|
} while (retry);
|
|
|
|
palette->rgba[i] = rgba24;
|
|
palette->ent[i15] = i;
|
|
}
|
|
|
|
for (i = 0; i < mask + 1; ++i)
|
|
{
|
|
assert (palette->ent[CONVERT_15 (palette->rgba[i], is_rgb)] == i);
|
|
}
|
|
}
|
|
|
|
const char *
|
|
operator_name (pixman_op_t op)
|
|
{
|
|
switch (op)
|
|
{
|
|
case PIXMAN_OP_CLEAR: return "PIXMAN_OP_CLEAR";
|
|
case PIXMAN_OP_SRC: return "PIXMAN_OP_SRC";
|
|
case PIXMAN_OP_DST: return "PIXMAN_OP_DST";
|
|
case PIXMAN_OP_OVER: return "PIXMAN_OP_OVER";
|
|
case PIXMAN_OP_OVER_REVERSE: return "PIXMAN_OP_OVER_REVERSE";
|
|
case PIXMAN_OP_IN: return "PIXMAN_OP_IN";
|
|
case PIXMAN_OP_IN_REVERSE: return "PIXMAN_OP_IN_REVERSE";
|
|
case PIXMAN_OP_OUT: return "PIXMAN_OP_OUT";
|
|
case PIXMAN_OP_OUT_REVERSE: return "PIXMAN_OP_OUT_REVERSE";
|
|
case PIXMAN_OP_ATOP: return "PIXMAN_OP_ATOP";
|
|
case PIXMAN_OP_ATOP_REVERSE: return "PIXMAN_OP_ATOP_REVERSE";
|
|
case PIXMAN_OP_XOR: return "PIXMAN_OP_XOR";
|
|
case PIXMAN_OP_ADD: return "PIXMAN_OP_ADD";
|
|
case PIXMAN_OP_SATURATE: return "PIXMAN_OP_SATURATE";
|
|
|
|
case PIXMAN_OP_DISJOINT_CLEAR: return "PIXMAN_OP_DISJOINT_CLEAR";
|
|
case PIXMAN_OP_DISJOINT_SRC: return "PIXMAN_OP_DISJOINT_SRC";
|
|
case PIXMAN_OP_DISJOINT_DST: return "PIXMAN_OP_DISJOINT_DST";
|
|
case PIXMAN_OP_DISJOINT_OVER: return "PIXMAN_OP_DISJOINT_OVER";
|
|
case PIXMAN_OP_DISJOINT_OVER_REVERSE: return "PIXMAN_OP_DISJOINT_OVER_REVERSE";
|
|
case PIXMAN_OP_DISJOINT_IN: return "PIXMAN_OP_DISJOINT_IN";
|
|
case PIXMAN_OP_DISJOINT_IN_REVERSE: return "PIXMAN_OP_DISJOINT_IN_REVERSE";
|
|
case PIXMAN_OP_DISJOINT_OUT: return "PIXMAN_OP_DISJOINT_OUT";
|
|
case PIXMAN_OP_DISJOINT_OUT_REVERSE: return "PIXMAN_OP_DISJOINT_OUT_REVERSE";
|
|
case PIXMAN_OP_DISJOINT_ATOP: return "PIXMAN_OP_DISJOINT_ATOP";
|
|
case PIXMAN_OP_DISJOINT_ATOP_REVERSE: return "PIXMAN_OP_DISJOINT_ATOP_REVERSE";
|
|
case PIXMAN_OP_DISJOINT_XOR: return "PIXMAN_OP_DISJOINT_XOR";
|
|
|
|
case PIXMAN_OP_CONJOINT_CLEAR: return "PIXMAN_OP_CONJOINT_CLEAR";
|
|
case PIXMAN_OP_CONJOINT_SRC: return "PIXMAN_OP_CONJOINT_SRC";
|
|
case PIXMAN_OP_CONJOINT_DST: return "PIXMAN_OP_CONJOINT_DST";
|
|
case PIXMAN_OP_CONJOINT_OVER: return "PIXMAN_OP_CONJOINT_OVER";
|
|
case PIXMAN_OP_CONJOINT_OVER_REVERSE: return "PIXMAN_OP_CONJOINT_OVER_REVERSE";
|
|
case PIXMAN_OP_CONJOINT_IN: return "PIXMAN_OP_CONJOINT_IN";
|
|
case PIXMAN_OP_CONJOINT_IN_REVERSE: return "PIXMAN_OP_CONJOINT_IN_REVERSE";
|
|
case PIXMAN_OP_CONJOINT_OUT: return "PIXMAN_OP_CONJOINT_OUT";
|
|
case PIXMAN_OP_CONJOINT_OUT_REVERSE: return "PIXMAN_OP_CONJOINT_OUT_REVERSE";
|
|
case PIXMAN_OP_CONJOINT_ATOP: return "PIXMAN_OP_CONJOINT_ATOP";
|
|
case PIXMAN_OP_CONJOINT_ATOP_REVERSE: return "PIXMAN_OP_CONJOINT_ATOP_REVERSE";
|
|
case PIXMAN_OP_CONJOINT_XOR: return "PIXMAN_OP_CONJOINT_XOR";
|
|
|
|
case PIXMAN_OP_MULTIPLY: return "PIXMAN_OP_MULTIPLY";
|
|
case PIXMAN_OP_SCREEN: return "PIXMAN_OP_SCREEN";
|
|
case PIXMAN_OP_OVERLAY: return "PIXMAN_OP_OVERLAY";
|
|
case PIXMAN_OP_DARKEN: return "PIXMAN_OP_DARKEN";
|
|
case PIXMAN_OP_LIGHTEN: return "PIXMAN_OP_LIGHTEN";
|
|
case PIXMAN_OP_COLOR_DODGE: return "PIXMAN_OP_COLOR_DODGE";
|
|
case PIXMAN_OP_COLOR_BURN: return "PIXMAN_OP_COLOR_BURN";
|
|
case PIXMAN_OP_HARD_LIGHT: return "PIXMAN_OP_HARD_LIGHT";
|
|
case PIXMAN_OP_SOFT_LIGHT: return "PIXMAN_OP_SOFT_LIGHT";
|
|
case PIXMAN_OP_DIFFERENCE: return "PIXMAN_OP_DIFFERENCE";
|
|
case PIXMAN_OP_EXCLUSION: return "PIXMAN_OP_EXCLUSION";
|
|
case PIXMAN_OP_HSL_HUE: return "PIXMAN_OP_HSL_HUE";
|
|
case PIXMAN_OP_HSL_SATURATION: return "PIXMAN_OP_HSL_SATURATION";
|
|
case PIXMAN_OP_HSL_COLOR: return "PIXMAN_OP_HSL_COLOR";
|
|
case PIXMAN_OP_HSL_LUMINOSITY: return "PIXMAN_OP_HSL_LUMINOSITY";
|
|
|
|
case PIXMAN_OP_NONE:
|
|
return "<invalid operator 'none'>";
|
|
};
|
|
|
|
return "<unknown operator>";
|
|
}
|
|
|
|
const char *
|
|
format_name (pixman_format_code_t format)
|
|
{
|
|
switch (format)
|
|
{
|
|
/* 32bpp formats */
|
|
case PIXMAN_a8r8g8b8: return "a8r8g8b8";
|
|
case PIXMAN_x8r8g8b8: return "x8r8g8b8";
|
|
case PIXMAN_a8b8g8r8: return "a8b8g8r8";
|
|
case PIXMAN_x8b8g8r8: return "x8b8g8r8";
|
|
case PIXMAN_b8g8r8a8: return "b8g8r8a8";
|
|
case PIXMAN_b8g8r8x8: return "b8g8r8x8";
|
|
case PIXMAN_r8g8b8a8: return "r8g8b8a8";
|
|
case PIXMAN_r8g8b8x8: return "r8g8b8x8";
|
|
case PIXMAN_x14r6g6b6: return "x14r6g6b6";
|
|
case PIXMAN_x2r10g10b10: return "x2r10g10b10";
|
|
case PIXMAN_a2r10g10b10: return "a2r10g10b10";
|
|
case PIXMAN_x2b10g10r10: return "x2b10g10r10";
|
|
case PIXMAN_a2b10g10r10: return "a2b10g10r10";
|
|
|
|
/* sRGB formats */
|
|
case PIXMAN_a8r8g8b8_sRGB: return "a8r8g8b8_sRGB";
|
|
|
|
/* 24bpp formats */
|
|
case PIXMAN_r8g8b8: return "r8g8b8";
|
|
case PIXMAN_b8g8r8: return "b8g8r8";
|
|
|
|
/* 16bpp formats */
|
|
case PIXMAN_r5g6b5: return "r5g6b5";
|
|
case PIXMAN_b5g6r5: return "b5g6r5";
|
|
|
|
case PIXMAN_a1r5g5b5: return "a1r5g5b5";
|
|
case PIXMAN_x1r5g5b5: return "x1r5g5b5";
|
|
case PIXMAN_a1b5g5r5: return "a1b5g5r5";
|
|
case PIXMAN_x1b5g5r5: return "x1b5g5r5";
|
|
case PIXMAN_a4r4g4b4: return "a4r4g4b4";
|
|
case PIXMAN_x4r4g4b4: return "x4r4g4b4";
|
|
case PIXMAN_a4b4g4r4: return "a4b4g4r4";
|
|
case PIXMAN_x4b4g4r4: return "x4b4g4r4";
|
|
|
|
/* 8bpp formats */
|
|
case PIXMAN_a8: return "a8";
|
|
case PIXMAN_r3g3b2: return "r3g3b2";
|
|
case PIXMAN_b2g3r3: return "b2g3r3";
|
|
case PIXMAN_a2r2g2b2: return "a2r2g2b2";
|
|
case PIXMAN_a2b2g2r2: return "a2b2g2r2";
|
|
|
|
#if 0
|
|
case PIXMAN_x4c4: return "x4c4";
|
|
case PIXMAN_g8: return "g8";
|
|
#endif
|
|
case PIXMAN_c8: return "x4c4 / c8";
|
|
case PIXMAN_x4g4: return "x4g4 / g8";
|
|
|
|
case PIXMAN_x4a4: return "x4a4";
|
|
|
|
/* 4bpp formats */
|
|
case PIXMAN_a4: return "a4";
|
|
case PIXMAN_r1g2b1: return "r1g2b1";
|
|
case PIXMAN_b1g2r1: return "b1g2r1";
|
|
case PIXMAN_a1r1g1b1: return "a1r1g1b1";
|
|
case PIXMAN_a1b1g1r1: return "a1b1g1r1";
|
|
|
|
case PIXMAN_c4: return "c4";
|
|
case PIXMAN_g4: return "g4";
|
|
|
|
/* 1bpp formats */
|
|
case PIXMAN_a1: return "a1";
|
|
|
|
case PIXMAN_g1: return "g1";
|
|
|
|
/* YUV formats */
|
|
case PIXMAN_yuy2: return "yuy2";
|
|
case PIXMAN_yv12: return "yv12";
|
|
};
|
|
|
|
/* Fake formats.
|
|
*
|
|
* This is separate switch to prevent GCC from complaining
|
|
* that the values are not in the pixman_format_code_t enum.
|
|
*/
|
|
switch ((uint32_t)format)
|
|
{
|
|
case PIXMAN_null: return "null";
|
|
case PIXMAN_solid: return "solid";
|
|
case PIXMAN_pixbuf: return "pixbuf";
|
|
case PIXMAN_rpixbuf: return "rpixbuf";
|
|
case PIXMAN_unknown: return "unknown";
|
|
};
|
|
|
|
return "<unknown format>";
|
|
};
|
|
|
|
static double
|
|
calc_op (pixman_op_t op, double src, double dst, double srca, double dsta)
|
|
{
|
|
#define mult_chan(src, dst, Fa, Fb) MIN ((src) * (Fa) + (dst) * (Fb), 1.0)
|
|
|
|
double Fa, Fb;
|
|
|
|
switch (op)
|
|
{
|
|
case PIXMAN_OP_CLEAR:
|
|
case PIXMAN_OP_DISJOINT_CLEAR:
|
|
case PIXMAN_OP_CONJOINT_CLEAR:
|
|
return mult_chan (src, dst, 0.0, 0.0);
|
|
|
|
case PIXMAN_OP_SRC:
|
|
case PIXMAN_OP_DISJOINT_SRC:
|
|
case PIXMAN_OP_CONJOINT_SRC:
|
|
return mult_chan (src, dst, 1.0, 0.0);
|
|
|
|
case PIXMAN_OP_DST:
|
|
case PIXMAN_OP_DISJOINT_DST:
|
|
case PIXMAN_OP_CONJOINT_DST:
|
|
return mult_chan (src, dst, 0.0, 1.0);
|
|
|
|
case PIXMAN_OP_OVER:
|
|
return mult_chan (src, dst, 1.0, 1.0 - srca);
|
|
|
|
case PIXMAN_OP_OVER_REVERSE:
|
|
return mult_chan (src, dst, 1.0 - dsta, 1.0);
|
|
|
|
case PIXMAN_OP_IN:
|
|
return mult_chan (src, dst, dsta, 0.0);
|
|
|
|
case PIXMAN_OP_IN_REVERSE:
|
|
return mult_chan (src, dst, 0.0, srca);
|
|
|
|
case PIXMAN_OP_OUT:
|
|
return mult_chan (src, dst, 1.0 - dsta, 0.0);
|
|
|
|
case PIXMAN_OP_OUT_REVERSE:
|
|
return mult_chan (src, dst, 0.0, 1.0 - srca);
|
|
|
|
case PIXMAN_OP_ATOP:
|
|
return mult_chan (src, dst, dsta, 1.0 - srca);
|
|
|
|
case PIXMAN_OP_ATOP_REVERSE:
|
|
return mult_chan (src, dst, 1.0 - dsta, srca);
|
|
|
|
case PIXMAN_OP_XOR:
|
|
return mult_chan (src, dst, 1.0 - dsta, 1.0 - srca);
|
|
|
|
case PIXMAN_OP_ADD:
|
|
return mult_chan (src, dst, 1.0, 1.0);
|
|
|
|
case PIXMAN_OP_SATURATE:
|
|
case PIXMAN_OP_DISJOINT_OVER_REVERSE:
|
|
if (srca == 0.0)
|
|
Fa = 1.0;
|
|
else
|
|
Fa = MIN (1.0, (1.0 - dsta) / srca);
|
|
return mult_chan (src, dst, Fa, 1.0);
|
|
|
|
case PIXMAN_OP_DISJOINT_OVER:
|
|
if (dsta == 0.0)
|
|
Fb = 1.0;
|
|
else
|
|
Fb = MIN (1.0, (1.0 - srca) / dsta);
|
|
return mult_chan (src, dst, 1.0, Fb);
|
|
|
|
case PIXMAN_OP_DISJOINT_IN:
|
|
if (srca == 0.0)
|
|
Fa = 0.0;
|
|
else
|
|
Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca);
|
|
return mult_chan (src, dst, Fa, 0.0);
|
|
|
|
case PIXMAN_OP_DISJOINT_IN_REVERSE:
|
|
if (dsta == 0.0)
|
|
Fb = 0.0;
|
|
else
|
|
Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta);
|
|
return mult_chan (src, dst, 0.0, Fb);
|
|
|
|
case PIXMAN_OP_DISJOINT_OUT:
|
|
if (srca == 0.0)
|
|
Fa = 1.0;
|
|
else
|
|
Fa = MIN (1.0, (1.0 - dsta) / srca);
|
|
return mult_chan (src, dst, Fa, 0.0);
|
|
|
|
case PIXMAN_OP_DISJOINT_OUT_REVERSE:
|
|
if (dsta == 0.0)
|
|
Fb = 1.0;
|
|
else
|
|
Fb = MIN (1.0, (1.0 - srca) / dsta);
|
|
return mult_chan (src, dst, 0.0, Fb);
|
|
|
|
case PIXMAN_OP_DISJOINT_ATOP:
|
|
if (srca == 0.0)
|
|
Fa = 0.0;
|
|
else
|
|
Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca);
|
|
if (dsta == 0.0)
|
|
Fb = 1.0;
|
|
else
|
|
Fb = MIN (1.0, (1.0 - srca) / dsta);
|
|
return mult_chan (src, dst, Fa, Fb);
|
|
|
|
case PIXMAN_OP_DISJOINT_ATOP_REVERSE:
|
|
if (srca == 0.0)
|
|
Fa = 1.0;
|
|
else
|
|
Fa = MIN (1.0, (1.0 - dsta) / srca);
|
|
if (dsta == 0.0)
|
|
Fb = 0.0;
|
|
else
|
|
Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta);
|
|
return mult_chan (src, dst, Fa, Fb);
|
|
|
|
case PIXMAN_OP_DISJOINT_XOR:
|
|
if (srca == 0.0)
|
|
Fa = 1.0;
|
|
else
|
|
Fa = MIN (1.0, (1.0 - dsta) / srca);
|
|
if (dsta == 0.0)
|
|
Fb = 1.0;
|
|
else
|
|
Fb = MIN (1.0, (1.0 - srca) / dsta);
|
|
return mult_chan (src, dst, Fa, Fb);
|
|
|
|
case PIXMAN_OP_CONJOINT_OVER:
|
|
if (dsta == 0.0)
|
|
Fb = 0.0;
|
|
else
|
|
Fb = MAX (0.0, 1.0 - srca / dsta);
|
|
return mult_chan (src, dst, 1.0, Fb);
|
|
|
|
case PIXMAN_OP_CONJOINT_OVER_REVERSE:
|
|
if (srca == 0.0)
|
|
Fa = 0.0;
|
|
else
|
|
Fa = MAX (0.0, 1.0 - dsta / srca);
|
|
return mult_chan (src, dst, Fa, 1.0);
|
|
|
|
case PIXMAN_OP_CONJOINT_IN:
|
|
if (srca == 0.0)
|
|
Fa = 1.0;
|
|
else
|
|
Fa = MIN (1.0, dsta / srca);
|
|
return mult_chan (src, dst, Fa, 0.0);
|
|
|
|
case PIXMAN_OP_CONJOINT_IN_REVERSE:
|
|
if (dsta == 0.0)
|
|
Fb = 1.0;
|
|
else
|
|
Fb = MIN (1.0, srca / dsta);
|
|
return mult_chan (src, dst, 0.0, Fb);
|
|
|
|
case PIXMAN_OP_CONJOINT_OUT:
|
|
if (srca == 0.0)
|
|
Fa = 0.0;
|
|
else
|
|
Fa = MAX (0.0, 1.0 - dsta / srca);
|
|
return mult_chan (src, dst, Fa, 0.0);
|
|
|
|
case PIXMAN_OP_CONJOINT_OUT_REVERSE:
|
|
if (dsta == 0.0)
|
|
Fb = 0.0;
|
|
else
|
|
Fb = MAX (0.0, 1.0 - srca / dsta);
|
|
return mult_chan (src, dst, 0.0, Fb);
|
|
|
|
case PIXMAN_OP_CONJOINT_ATOP:
|
|
if (srca == 0.0)
|
|
Fa = 1.0;
|
|
else
|
|
Fa = MIN (1.0, dsta / srca);
|
|
if (dsta == 0.0)
|
|
Fb = 0.0;
|
|
else
|
|
Fb = MAX (0.0, 1.0 - srca / dsta);
|
|
return mult_chan (src, dst, Fa, Fb);
|
|
|
|
case PIXMAN_OP_CONJOINT_ATOP_REVERSE:
|
|
if (srca == 0.0)
|
|
Fa = 0.0;
|
|
else
|
|
Fa = MAX (0.0, 1.0 - dsta / srca);
|
|
if (dsta == 0.0)
|
|
Fb = 1.0;
|
|
else
|
|
Fb = MIN (1.0, srca / dsta);
|
|
return mult_chan (src, dst, Fa, Fb);
|
|
|
|
case PIXMAN_OP_CONJOINT_XOR:
|
|
if (srca == 0.0)
|
|
Fa = 0.0;
|
|
else
|
|
Fa = MAX (0.0, 1.0 - dsta / srca);
|
|
if (dsta == 0.0)
|
|
Fb = 0.0;
|
|
else
|
|
Fb = MAX (0.0, 1.0 - srca / dsta);
|
|
return mult_chan (src, dst, Fa, Fb);
|
|
|
|
case PIXMAN_OP_MULTIPLY:
|
|
case PIXMAN_OP_SCREEN:
|
|
case PIXMAN_OP_OVERLAY:
|
|
case PIXMAN_OP_DARKEN:
|
|
case PIXMAN_OP_LIGHTEN:
|
|
case PIXMAN_OP_COLOR_DODGE:
|
|
case PIXMAN_OP_COLOR_BURN:
|
|
case PIXMAN_OP_HARD_LIGHT:
|
|
case PIXMAN_OP_SOFT_LIGHT:
|
|
case PIXMAN_OP_DIFFERENCE:
|
|
case PIXMAN_OP_EXCLUSION:
|
|
case PIXMAN_OP_HSL_HUE:
|
|
case PIXMAN_OP_HSL_SATURATION:
|
|
case PIXMAN_OP_HSL_COLOR:
|
|
case PIXMAN_OP_HSL_LUMINOSITY:
|
|
default:
|
|
abort();
|
|
return 0; /* silence MSVC */
|
|
}
|
|
#undef mult_chan
|
|
}
|
|
|
|
void
|
|
do_composite (pixman_op_t op,
|
|
const color_t *src,
|
|
const color_t *mask,
|
|
const color_t *dst,
|
|
color_t *result,
|
|
pixman_bool_t component_alpha)
|
|
{
|
|
color_t srcval, srcalpha;
|
|
|
|
if (mask == NULL)
|
|
{
|
|
srcval = *src;
|
|
|
|
srcalpha.r = src->a;
|
|
srcalpha.g = src->a;
|
|
srcalpha.b = src->a;
|
|
srcalpha.a = src->a;
|
|
}
|
|
else if (component_alpha)
|
|
{
|
|
srcval.r = src->r * mask->r;
|
|
srcval.g = src->g * mask->g;
|
|
srcval.b = src->b * mask->b;
|
|
srcval.a = src->a * mask->a;
|
|
|
|
srcalpha.r = src->a * mask->r;
|
|
srcalpha.g = src->a * mask->g;
|
|
srcalpha.b = src->a * mask->b;
|
|
srcalpha.a = src->a * mask->a;
|
|
}
|
|
else
|
|
{
|
|
srcval.r = src->r * mask->a;
|
|
srcval.g = src->g * mask->a;
|
|
srcval.b = src->b * mask->a;
|
|
srcval.a = src->a * mask->a;
|
|
|
|
srcalpha.r = src->a * mask->a;
|
|
srcalpha.g = src->a * mask->a;
|
|
srcalpha.b = src->a * mask->a;
|
|
srcalpha.a = src->a * mask->a;
|
|
}
|
|
|
|
result->r = calc_op (op, srcval.r, dst->r, srcalpha.r, dst->a);
|
|
result->g = calc_op (op, srcval.g, dst->g, srcalpha.g, dst->a);
|
|
result->b = calc_op (op, srcval.b, dst->b, srcalpha.b, dst->a);
|
|
result->a = calc_op (op, srcval.a, dst->a, srcalpha.a, dst->a);
|
|
}
|
|
|
|
static double
|
|
round_channel (double p, int m)
|
|
{
|
|
int t;
|
|
double r;
|
|
|
|
t = p * ((1 << m));
|
|
t -= t >> m;
|
|
|
|
r = t / (double)((1 << m) - 1);
|
|
|
|
return r;
|
|
}
|
|
|
|
void
|
|
round_color (pixman_format_code_t format, color_t *color)
|
|
{
|
|
if (PIXMAN_FORMAT_R (format) == 0)
|
|
{
|
|
color->r = 0.0;
|
|
color->g = 0.0;
|
|
color->b = 0.0;
|
|
}
|
|
else
|
|
{
|
|
color->r = round_channel (color->r, PIXMAN_FORMAT_R (format));
|
|
color->g = round_channel (color->g, PIXMAN_FORMAT_G (format));
|
|
color->b = round_channel (color->b, PIXMAN_FORMAT_B (format));
|
|
}
|
|
|
|
if (PIXMAN_FORMAT_A (format) == 0)
|
|
color->a = 1;
|
|
else
|
|
color->a = round_channel (color->a, PIXMAN_FORMAT_A (format));
|
|
}
|
|
|
|
/* Check whether @pixel is a valid quantization of the a, r, g, b
|
|
* parameters. Some slack is permitted.
|
|
*/
|
|
void
|
|
pixel_checker_init (pixel_checker_t *checker, pixman_format_code_t format)
|
|
{
|
|
assert (PIXMAN_FORMAT_VIS (format));
|
|
|
|
checker->format = format;
|
|
|
|
switch (PIXMAN_FORMAT_TYPE (format))
|
|
{
|
|
case PIXMAN_TYPE_A:
|
|
checker->bs = 0;
|
|
checker->gs = 0;
|
|
checker->rs = 0;
|
|
checker->as = 0;
|
|
break;
|
|
|
|
case PIXMAN_TYPE_ARGB:
|
|
case PIXMAN_TYPE_ARGB_SRGB:
|
|
checker->bs = 0;
|
|
checker->gs = checker->bs + PIXMAN_FORMAT_B (format);
|
|
checker->rs = checker->gs + PIXMAN_FORMAT_G (format);
|
|
checker->as = checker->rs + PIXMAN_FORMAT_R (format);
|
|
break;
|
|
|
|
case PIXMAN_TYPE_ABGR:
|
|
checker->rs = 0;
|
|
checker->gs = checker->rs + PIXMAN_FORMAT_R (format);
|
|
checker->bs = checker->gs + PIXMAN_FORMAT_G (format);
|
|
checker->as = checker->bs + PIXMAN_FORMAT_B (format);
|
|
break;
|
|
|
|
case PIXMAN_TYPE_BGRA:
|
|
/* With BGRA formats we start counting at the high end of the pixel */
|
|
checker->bs = PIXMAN_FORMAT_BPP (format) - PIXMAN_FORMAT_B (format);
|
|
checker->gs = checker->bs - PIXMAN_FORMAT_B (format);
|
|
checker->rs = checker->gs - PIXMAN_FORMAT_G (format);
|
|
checker->as = checker->rs - PIXMAN_FORMAT_R (format);
|
|
break;
|
|
|
|
case PIXMAN_TYPE_RGBA:
|
|
/* With BGRA formats we start counting at the high end of the pixel */
|
|
checker->rs = PIXMAN_FORMAT_BPP (format) - PIXMAN_FORMAT_R (format);
|
|
checker->gs = checker->rs - PIXMAN_FORMAT_R (format);
|
|
checker->bs = checker->gs - PIXMAN_FORMAT_G (format);
|
|
checker->as = checker->bs - PIXMAN_FORMAT_B (format);
|
|
break;
|
|
|
|
default:
|
|
assert (0);
|
|
break;
|
|
}
|
|
|
|
checker->am = ((1 << PIXMAN_FORMAT_A (format)) - 1) << checker->as;
|
|
checker->rm = ((1 << PIXMAN_FORMAT_R (format)) - 1) << checker->rs;
|
|
checker->gm = ((1 << PIXMAN_FORMAT_G (format)) - 1) << checker->gs;
|
|
checker->bm = ((1 << PIXMAN_FORMAT_B (format)) - 1) << checker->bs;
|
|
|
|
checker->aw = PIXMAN_FORMAT_A (format);
|
|
checker->rw = PIXMAN_FORMAT_R (format);
|
|
checker->gw = PIXMAN_FORMAT_G (format);
|
|
checker->bw = PIXMAN_FORMAT_B (format);
|
|
}
|
|
|
|
void
|
|
pixel_checker_split_pixel (const pixel_checker_t *checker, uint32_t pixel,
|
|
int *a, int *r, int *g, int *b)
|
|
{
|
|
*a = (pixel & checker->am) >> checker->as;
|
|
*r = (pixel & checker->rm) >> checker->rs;
|
|
*g = (pixel & checker->gm) >> checker->gs;
|
|
*b = (pixel & checker->bm) >> checker->bs;
|
|
}
|
|
|
|
void
|
|
pixel_checker_get_masks (const pixel_checker_t *checker,
|
|
uint32_t *am,
|
|
uint32_t *rm,
|
|
uint32_t *gm,
|
|
uint32_t *bm)
|
|
{
|
|
if (am)
|
|
*am = checker->am;
|
|
if (rm)
|
|
*rm = checker->rm;
|
|
if (gm)
|
|
*gm = checker->gm;
|
|
if (bm)
|
|
*bm = checker->bm;
|
|
}
|
|
|
|
void
|
|
pixel_checker_convert_pixel_to_color (const pixel_checker_t *checker,
|
|
uint32_t pixel, color_t *color)
|
|
{
|
|
int a, r, g, b;
|
|
|
|
pixel_checker_split_pixel (checker, pixel, &a, &r, &g, &b);
|
|
|
|
if (checker->am == 0)
|
|
color->a = 1.0;
|
|
else
|
|
color->a = a / (double)(checker->am >> checker->as);
|
|
|
|
if (checker->rm == 0)
|
|
color->r = 0.0;
|
|
else
|
|
color->r = r / (double)(checker->rm >> checker->rs);
|
|
|
|
if (checker->gm == 0)
|
|
color->g = 0.0;
|
|
else
|
|
color->g = g / (double)(checker->gm >> checker->gs);
|
|
|
|
if (checker->bm == 0)
|
|
color->b = 0.0;
|
|
else
|
|
color->b = b / (double)(checker->bm >> checker->bs);
|
|
|
|
if (PIXMAN_FORMAT_TYPE (checker->format) == PIXMAN_TYPE_ARGB_SRGB)
|
|
{
|
|
color->r = convert_srgb_to_linear (color->r);
|
|
color->g = convert_srgb_to_linear (color->g);
|
|
color->b = convert_srgb_to_linear (color->b);
|
|
}
|
|
}
|
|
|
|
static int32_t
|
|
convert (double v, uint32_t width, uint32_t mask, uint32_t shift, double def)
|
|
{
|
|
int32_t r;
|
|
|
|
if (!mask)
|
|
v = def;
|
|
|
|
r = (v * ((mask >> shift) + 1));
|
|
r -= r >> width;
|
|
|
|
return r;
|
|
}
|
|
|
|
static void
|
|
get_limits (const pixel_checker_t *checker, double limit,
|
|
color_t *color,
|
|
int *ao, int *ro, int *go, int *bo)
|
|
{
|
|
color_t tmp;
|
|
|
|
if (PIXMAN_FORMAT_TYPE (checker->format) == PIXMAN_TYPE_ARGB_SRGB)
|
|
{
|
|
tmp.a = color->a;
|
|
tmp.r = convert_linear_to_srgb (color->r);
|
|
tmp.g = convert_linear_to_srgb (color->g);
|
|
tmp.b = convert_linear_to_srgb (color->b);
|
|
|
|
color = &tmp;
|
|
}
|
|
|
|
*ao = convert (color->a + limit, checker->aw, checker->am, checker->as, 1.0);
|
|
*ro = convert (color->r + limit, checker->rw, checker->rm, checker->rs, 0.0);
|
|
*go = convert (color->g + limit, checker->gw, checker->gm, checker->gs, 0.0);
|
|
*bo = convert (color->b + limit, checker->bw, checker->bm, checker->bs, 0.0);
|
|
}
|
|
|
|
/* The acceptable deviation in units of [0.0, 1.0]
|
|
*/
|
|
#define DEVIATION (0.0064)
|
|
|
|
void
|
|
pixel_checker_get_max (const pixel_checker_t *checker, color_t *color,
|
|
int *am, int *rm, int *gm, int *bm)
|
|
{
|
|
get_limits (checker, DEVIATION, color, am, rm, gm, bm);
|
|
}
|
|
|
|
void
|
|
pixel_checker_get_min (const pixel_checker_t *checker, color_t *color,
|
|
int *am, int *rm, int *gm, int *bm)
|
|
{
|
|
get_limits (checker, - DEVIATION, color, am, rm, gm, bm);
|
|
}
|
|
|
|
pixman_bool_t
|
|
pixel_checker_check (const pixel_checker_t *checker, uint32_t pixel,
|
|
color_t *color)
|
|
{
|
|
int32_t a_lo, a_hi, r_lo, r_hi, g_lo, g_hi, b_lo, b_hi;
|
|
int32_t ai, ri, gi, bi;
|
|
pixman_bool_t result;
|
|
|
|
pixel_checker_get_min (checker, color, &a_lo, &r_lo, &g_lo, &b_lo);
|
|
pixel_checker_get_max (checker, color, &a_hi, &r_hi, &g_hi, &b_hi);
|
|
pixel_checker_split_pixel (checker, pixel, &ai, &ri, &gi, &bi);
|
|
|
|
result =
|
|
a_lo <= ai && ai <= a_hi &&
|
|
r_lo <= ri && ri <= r_hi &&
|
|
g_lo <= gi && gi <= g_hi &&
|
|
b_lo <= bi && bi <= b_hi;
|
|
|
|
return result;
|
|
}
|