xenocara/xserver/hw/xfree86/common/xf86pciBus.c

963 lines
23 KiB
C

/*
* Copyright (c) 1997-2003 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the copyright holder(s)
* and author(s) shall not be used in advertising or otherwise to promote
* the sale, use or other dealings in this Software without prior written
* authorization from the copyright holder(s) and author(s).
*/
/*
* This file contains the interfaces to the bus-specific code
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include <ctype.h>
#include <stdlib.h>
#include <unistd.h>
#include <X11/X.h>
#include <pciaccess.h>
#include "os.h"
#include "Pci.h"
#include "xf86.h"
#include "xf86Priv.h"
#include "xf86Resources.h"
/* Bus-specific headers */
#include "xf86Bus.h"
#define XF86_OS_PRIVS
#define NEED_OS_RAC_PROTOS
#include "xf86_OSproc.h"
#include "xf86RAC.h"
/* Bus-specific globals */
Bool pciSlotClaimed = FALSE;
static struct pci_device ** xf86PciVideoInfo = NULL; /* PCI probe for video hw */
/* PCI classes that get included in xf86PciVideoInfo */
#define PCIINFOCLASSES(c) \
( (((c) & 0x00ff0000) == (PCI_CLASS_PREHISTORIC << 16)) \
|| (((c) & 0x00ff0000) == (PCI_CLASS_DISPLAY << 16)) \
|| ((((c) & 0x00ffff00) \
== ((PCI_CLASS_MULTIMEDIA << 16) | (PCI_SUBCLASS_MULTIMEDIA_VIDEO << 8)))) \
|| ((((c) & 0x00ffff00) \
== ((PCI_CLASS_PROCESSOR << 16) | (PCI_SUBCLASS_PROCESSOR_COPROC << 8)))) )
/*
* PCI classes that have messages printed always. The others are only
* have a message printed when the vendor/dev IDs are recognised.
*/
#define PCIALWAYSPRINTCLASSES(c) \
( (((c) & 0x00ffff00) \
== ((PCI_CLASS_PREHISTORIC << 16) | (PCI_SUBCLASS_PREHISTORIC_VGA << 8))) \
|| (((c) & 0x00ff0000) == (PCI_CLASS_DISPLAY << 16)) \
|| ((((c) & 0x00ffff00) \
== ((PCI_CLASS_MULTIMEDIA << 16) | (PCI_SUBCLASS_MULTIMEDIA_VIDEO << 8)))) )
#define IS_VGA(c) \
(((c) & 0x00ffff00) \
== ((PCI_CLASS_DISPLAY << 16) | (PCI_SUBCLASS_DISPLAY_VGA << 8)))
/*
* PCI classes for which potentially destructive checking of the map sizes
* may be done. Any classes where this may be unsafe should be omitted
* from this list.
*/
#define PCINONSYSTEMCLASSES(c) PCIALWAYSPRINTCLASSES(c)
/*
* PCI classes that use RAC
*/
#define PCISHAREDIOCLASSES(c) \
( (((c) & 0x00ffff00) \
== ((PCI_CLASS_PREHISTORIC << 16) | (PCI_SUBCLASS_PREHISTORIC_VGA << 8))) \
|| IS_VGA(c) )
_X_EXPORT void
xf86FormatPciBusNumber(int busnum, char *buffer)
{
/* 'buffer' should be at least 8 characters long */
if (busnum < 256)
sprintf(buffer, "%d", busnum);
else
sprintf(buffer, "%d@%d", busnum & 0x00ff, busnum >> 8);
}
/*
* IO enable/disable related routines for PCI
*/
#define pArg ((pciArg*)arg)
#define SETBITS PCI_CMD_IO_ENABLE
static void
pciIoAccessEnable(void* arg)
{
#if 0
#ifdef DEBUG
ErrorF("pciIoAccessEnable: 0x%05lx\n", *(PCITAG *)arg);
#endif
pArg->ctrl |= SETBITS | PCI_CMD_MASTER_ENABLE;
pci_device_cfg_write_u32(pArg->dev, pArg->ctrl, PCI_CMD_STAT_REG);
#endif
}
static void
pciIoAccessDisable(void* arg)
{
#if 0
#ifdef DEBUG
ErrorF("pciIoAccessDisable: 0x%05lx\n", *(PCITAG *)arg);
#endif
pArg->ctrl &= ~SETBITS;
pci_device_cfg_write_u32(pArg->dev, pArg->ctrl, PCI_CMD_STAT_REG);
#endif
}
#undef SETBITS
#define SETBITS (PCI_CMD_IO_ENABLE | PCI_CMD_MEM_ENABLE)
static void
pciIo_MemAccessEnable(void* arg)
{
#if 0
#ifdef DEBUG
ErrorF("pciIo_MemAccessEnable: 0x%05lx\n", *(PCITAG *)arg);
#endif
pArg->ctrl |= SETBITS | PCI_CMD_MASTER_ENABLE;
pci_device_cfg_write_u32(pArg->dev, pArg->ctrl, PCI_CMD_STAT_REG);
#endif
}
static void
pciIo_MemAccessDisable(void* arg)
{
#if 0
#ifdef DEBUG
ErrorF("pciIo_MemAccessDisable: 0x%05lx\n", *(PCITAG *)arg);
#endif
pArg->ctrl &= ~SETBITS;
pci_device_cfg_write_u32(pArg->dev, pArg->ctrl, PCI_CMD_STAT_REG);
#endif
}
#undef SETBITS
#define SETBITS (PCI_CMD_MEM_ENABLE)
static void
pciMemAccessEnable(void* arg)
{
#if 0
#ifdef DEBUG
ErrorF("pciMemAccessEnable: 0x%05lx\n", *(PCITAG *)arg);
#endif
pArg->ctrl |= SETBITS | PCI_CMD_MASTER_ENABLE;
pci_device_cfg_write_u32(pArg->dev, pArg->ctrl, PCI_CMD_STAT_REG);
#endif
}
static void
pciMemAccessDisable(void* arg)
{
#if 0
#ifdef DEBUG
ErrorF("pciMemAccessDisable: 0x%05lx\n", *(PCITAG *)arg);
#endif
pArg->ctrl &= ~SETBITS;
pci_device_cfg_write_u32(pArg->dev, pArg->ctrl, PCI_CMD_STAT_REG);
#endif
}
#undef SETBITS
#undef pArg
/* move to OS layer */
#define MASKBITS (PCI_PCI_BRIDGE_VGA_EN | PCI_PCI_BRIDGE_MASTER_ABORT_EN)
static void
pciBusAccessEnable(BusAccPtr ptr)
{
#if 0
struct pci_device * const dev = ptr->busdep.pci.dev;
uint16_t ctrl;
#ifdef DEBUG
ErrorF("pciBusAccessEnable: bus=%d\n", ptr->busdep.pci.bus);
#endif
pci_device_cfg_read_u16( dev, & ctrl, PCI_PCI_BRIDGE_CONTROL_REG );
if ((ctrl & MASKBITS) != PCI_PCI_BRIDGE_VGA_EN) {
ctrl = (ctrl | PCI_PCI_BRIDGE_VGA_EN) &
~(PCI_PCI_BRIDGE_MASTER_ABORT_EN | PCI_PCI_BRIDGE_SECONDARY_RESET);
pci_device_cfg_write_u16(dev, ctrl, PCI_PCI_BRIDGE_CONTROL_REG);
}
#endif
}
/* move to OS layer */
static void
pciBusAccessDisable(BusAccPtr ptr)
{
#if 0
struct pci_device * const dev = ptr->busdep.pci.dev;
uint16_t ctrl;
#ifdef DEBUG
ErrorF("pciBusAccessDisable: bus=%d\n", ptr->busdep.pci.bus);
#endif
pci_device_cfg_read_u16( dev, & ctrl, PCI_PCI_BRIDGE_CONTROL_REG );
if (ctrl & MASKBITS) {
ctrl &= ~(MASKBITS | PCI_PCI_BRIDGE_SECONDARY_RESET);
pci_device_cfg_write_u16(dev, ctrl, PCI_PCI_BRIDGE_CONTROL_REG);
}
#endif
}
#undef MASKBITS
static void
pciSetBusAccess(BusAccPtr ptr)
{
#if 0
#ifdef DEBUG
ErrorF("pciSetBusAccess: route VGA to bus %d\n", ptr->busdep.pci.bus);
#endif
if (!ptr->primary && !ptr->current)
return;
if (ptr->current && ptr->current->disable_f)
(*ptr->current->disable_f)(ptr->current);
ptr->current = NULL;
/* walk down */
while (ptr->primary) { /* No enable for root bus */
if (ptr != ptr->primary->current) {
if (ptr->primary->current && ptr->primary->current->disable_f)
(*ptr->primary->current->disable_f)(ptr->primary->current);
if (ptr->enable_f)
(*ptr->enable_f)(ptr);
ptr->primary->current = ptr;
}
ptr = ptr->primary;
}
#endif
}
/* move to OS layer */
static void
savePciState( struct pci_device * dev, pciSavePtr ptr )
{
#if 0
int i;
pci_device_cfg_read_u32( dev, & ptr->command, PCI_CMD_STAT_REG );
for ( i = 0; i < 6; i++ ) {
pci_device_cfg_read_u32( dev, & ptr->base[i],
PCI_CMD_BASE_REG + (i * 4) );
}
pci_device_cfg_read_u32( dev, & ptr->biosBase, PCI_CMD_BIOS_REG );
#endif
}
/* move to OS layer */
#if 0
static void
restorePciState( struct pci_device * dev, pciSavePtr ptr)
{
int i;
/* disable card before setting anything */
pci_device_cfg_write_bits(dev, PCI_CMD_MEM_ENABLE | PCI_CMD_IO_ENABLE, 0,
PCI_CMD_STAT_REG);
pci_device_cfg_write_u32(dev, ptr->biosBase, PCI_CMD_BIOS_REG);
for ( i = 0; i < 6; i++ ) {
pci_device_cfg_write_u32(dev, ptr->base[i],
PCI_CMD_BASE_REG + (i * 4));
}
pci_device_cfg_write_u32(dev, ptr->command, PCI_CMD_STAT_REG);
}
#endif
/* move to OS layer */
static void
savePciBusState(BusAccPtr ptr)
{
#if 0
struct pci_device * const dev = ptr->busdep.pci.dev;
uint16_t temp;
pci_device_cfg_read_u16( dev, & temp, PCI_PCI_BRIDGE_CONTROL_REG );
ptr->busdep.pci.save.control = temp & ~PCI_PCI_BRIDGE_SECONDARY_RESET;
/* Allow master aborts to complete normally on non-root buses */
if ( ptr->busdep.pci.save.control & PCI_PCI_BRIDGE_MASTER_ABORT_EN ) {
temp = ptr->busdep.pci.save.control & ~PCI_PCI_BRIDGE_MASTER_ABORT_EN;
pci_device_cfg_read_u16( dev, & temp, PCI_PCI_BRIDGE_CONTROL_REG );
}
#endif
}
/* move to OS layer */
#define MASKBITS (PCI_PCI_BRIDGE_VGA_EN | PCI_PCI_BRIDGE_MASTER_ABORT_EN)
static void
restorePciBusState(BusAccPtr ptr)
{
#if 0
struct pci_device * const dev = ptr->busdep.pci.dev;
uint16_t ctrl;
/* Only restore the bits we've changed (and don't cause resets) */
pci_device_cfg_read_u16( dev, & ctrl, PCI_PCI_BRIDGE_CONTROL_REG );
if ((ctrl ^ ptr->busdep.pci.save.control) & MASKBITS) {
ctrl &= ~(MASKBITS | PCI_PCI_BRIDGE_SECONDARY_RESET);
ctrl |= ptr->busdep.pci.save.control & MASKBITS;
pci_device_cfg_write_u16(dev, ctrl, PCI_PCI_BRIDGE_CONTROL_REG);
}
#endif
}
#undef MASKBITS
/*
* xf86Bus.c interface
*/
void
xf86PciProbe(void)
{
int i = 0, k;
int num = 0;
struct pci_device *info;
struct pci_device_iterator *iter;
if (!xf86scanpci()) {
xf86PciVideoInfo = NULL;
return;
}
iter = pci_slot_match_iterator_create(& xf86IsolateDevice);
while ((info = pci_device_next(iter)) != NULL) {
if (PCIINFOCLASSES(info->device_class)) {
num++;
xf86PciVideoInfo = xnfrealloc(xf86PciVideoInfo,
(sizeof(struct pci_device *)
* (num + 1)));
xf86PciVideoInfo[num] = NULL;
xf86PciVideoInfo[num - 1] = info;
pci_device_probe(info);
info->user_data = 0;
}
}
/* If we haven't found a primary device try a different heuristic */
if (primaryBus.type == BUS_NONE && num) {
for (i = 0; i < num; i++) {
uint16_t command;
info = xf86PciVideoInfo[i];
pci_device_cfg_read_u16(info, & command, 4);
if ((command & PCI_CMD_MEM_ENABLE)
&& ((num == 1) || IS_VGA(info->device_class))) {
if (primaryBus.type == BUS_NONE) {
primaryBus.type = BUS_PCI;
primaryBus.id.pci = info;
} else {
xf86Msg(X_NOTICE,
"More than one possible primary device found\n");
primaryBus.type ^= (BusType)(-1);
}
}
}
}
/* Print a summary of the video devices found */
for (k = 0; k < num; k++) {
const char *vendorname = NULL, *chipname = NULL;
const char *prim = " ";
Bool memdone = FALSE, iodone = FALSE;
info = xf86PciVideoInfo[k];
vendorname = pci_device_get_vendor_name( info );
chipname = pci_device_get_device_name( info );
if ((!vendorname || !chipname) &&
!PCIALWAYSPRINTCLASSES(info->device_class))
continue;
if (xf86IsPrimaryPci(info))
prim = "*";
xf86Msg( X_PROBED, "PCI:%s(%u@%u:%u:%u) ", prim, info->domain,
info->bus, info->dev, info->func );
if (vendorname)
xf86ErrorF("%s ", vendorname);
else
xf86ErrorF("unknown vendor (0x%04x) ", info->vendor_id);
if (chipname)
xf86ErrorF("%s ", chipname);
else
xf86ErrorF("unknown chipset (0x%04x) ", info->device_id);
xf86ErrorF("rev %d", info->revision);
for (i = 0; i < 6; i++) {
struct pci_mem_region * r = & info->regions[i];
if ( r->size && ! r->is_IO ) {
if (!memdone) {
xf86ErrorF(", Mem @ ");
memdone = TRUE;
} else
xf86ErrorF(", ");
xf86ErrorF("0x%08lx/%ld", r->base_addr, r->size);
}
}
for (i = 0; i < 6; i++) {
struct pci_mem_region * r = & info->regions[i];
if ( r->size && r->is_IO ) {
if (!iodone) {
xf86ErrorF(", I/O @ ");
iodone = TRUE;
} else
xf86ErrorF(", ");
xf86ErrorF("0x%08lx/%ld", r->base_addr, r->size);
}
}
if ( info->rom_size ) {
xf86ErrorF(", BIOS @ 0x\?\?\?\?\?\?\?\?/%ld", info->rom_size);
}
xf86ErrorF("\n");
}
}
void
initPciState(void)
{
unsigned i;
pciAccPtr pcaccp;
if (xf86PciVideoInfo == NULL) {
return;
}
for (i = 0 ; xf86PciVideoInfo[i] != NULL ; i++) {
struct pci_device * const pvp = xf86PciVideoInfo[i];
if (pvp->user_data == 0) {
pcaccp = xnfalloc( sizeof( pciAccRec ) );
pvp->user_data = (intptr_t) pcaccp;
pcaccp->arg.dev = pvp;
pcaccp->ioAccess.AccessDisable = pciIoAccessDisable;
pcaccp->ioAccess.AccessEnable = pciIoAccessEnable;
pcaccp->ioAccess.arg = &pcaccp->arg;
pcaccp->io_memAccess.AccessDisable = pciIo_MemAccessDisable;
pcaccp->io_memAccess.AccessEnable = pciIo_MemAccessEnable;
pcaccp->io_memAccess.arg = &pcaccp->arg;
pcaccp->memAccess.AccessDisable = pciMemAccessDisable;
pcaccp->memAccess.AccessEnable = pciMemAccessEnable;
pcaccp->memAccess.arg = &pcaccp->arg;
pcaccp->ctrl = PCISHAREDIOCLASSES(pvp->device_class);
savePciState(pvp, &pcaccp->save);
pcaccp->arg.ctrl = pcaccp->save.command;
}
}
}
/*
* initPciBusState() - fill out the BusAccRec for a PCI bus.
* Theory: each bus is associated with one bridge connecting it
* to its parent bus. The address of a bridge is therefore stored
* in the BusAccRec of the bus it connects to. Each bus can
* have several bridges connecting secondary buses to it. Only one
* of these bridges can be open. Therefore the status of a bridge
* associated with a bus is stored in the BusAccRec of the parent
* the bridge connects to. The first member of the structure is
* a pointer to a function that open access to this bus. This function
* receives a pointer to the structure itself as argument. This
* design should be common to BusAccRecs of any type of buses we
* support. The remeinder of the structure is bus type specific.
* In this case it contains a pointer to the structure of the
* parent bus. Thus enabling access to a specific bus is simple:
* 1. Close any bridge going to secondary buses.
* 2. Climb down the ladder and enable any bridge on buses
* on the path from the CPU to this bus.
*/
void
initPciBusState(void)
{
static const struct pci_id_match bridge_match = {
PCI_MATCH_ANY, PCI_MATCH_ANY, PCI_MATCH_ANY, PCI_MATCH_ANY,
(PCI_CLASS_BRIDGE << 16), 0x0000ff0000, 0
};
struct pci_device *dev;
struct pci_device_iterator *iter;
BusAccPtr pbap, pbap_tmp;
iter = pci_id_match_iterator_create(& bridge_match);
while((dev = pci_device_next(iter)) != NULL) {
const uint8_t subclass = (dev->device_class >> 8) & 0x0ff;
int primary;
int secondary;
int subordinate;
pci_device_get_bridge_buses(dev, &primary, &secondary, &subordinate);
pbap = xnfcalloc(1,sizeof(BusAccRec));
pbap->busdep.pci.bus = secondary;
pbap->busdep.pci.primary_bus = primary;
pbap->busdep_type = BUS_PCI;
pbap->busdep.pci.dev = dev;
pbap->set_f = pciSetBusAccess;
switch (subclass) {
case PCI_SUBCLASS_BRIDGE_HOST:
pbap->type = BUS_PCI;
break;
case PCI_SUBCLASS_BRIDGE_PCI:
case PCI_SUBCLASS_BRIDGE_CARDBUS:
pbap->type = BUS_PCI;
pbap->save_f = savePciBusState;
pbap->restore_f = restorePciBusState;
pbap->enable_f = pciBusAccessEnable;
pbap->disable_f = pciBusAccessDisable;
savePciBusState(pbap);
break;
case PCI_SUBCLASS_BRIDGE_ISA:
case PCI_SUBCLASS_BRIDGE_EISA:
case PCI_SUBCLASS_BRIDGE_MC:
pbap->type = BUS_ISA;
break;
}
pbap->next = xf86BusAccInfo;
xf86BusAccInfo = pbap;
}
pci_iterator_destroy(iter);
for (pbap = xf86BusAccInfo; pbap; pbap = pbap->next) {
pbap->primary = NULL;
if (pbap->busdep_type == BUS_PCI
&& pbap->busdep.pci.primary_bus > -1) {
pbap_tmp = xf86BusAccInfo;
while (pbap_tmp) {
if (pbap_tmp->busdep_type == BUS_PCI &&
pbap_tmp->busdep.pci.bus == pbap->busdep.pci.primary_bus) {
/* Don't create loops */
if (pbap == pbap_tmp)
break;
pbap->primary = pbap_tmp;
break;
}
pbap_tmp = pbap_tmp->next;
}
}
}
}
void
PciStateEnter(void)
{
#if 0
unsigned i;
if (xf86PciVideoInfo == NULL)
return;
for ( i = 0 ; xf86PciVideoInfo[i] != NULL ; i++ ) {
pciAccPtr paccp = (pciAccPtr) xf86PciVideoInfo[i]->user_data;
if ( (paccp != NULL) && paccp->ctrl ) {
savePciState(paccp->arg.dev, &paccp->save);
restorePciState(paccp->arg.dev, &paccp->restore);
paccp->arg.ctrl = paccp->restore.command;
}
}
#endif
}
void
PciBusStateEnter(void)
{
#if 0
BusAccPtr pbap = xf86BusAccInfo;
while (pbap) {
if (pbap->save_f)
pbap->save_f(pbap);
pbap = pbap->next;
}
#endif
}
void
PciStateLeave(void)
{
#if 0
unsigned i;
if (xf86PciVideoInfo == NULL)
return;
for ( i = 0 ; xf86PciVideoInfo[i] != NULL ; i++ ) {
pciAccPtr paccp = (pciAccPtr) xf86PciVideoInfo[i]->user_data;
if ( (paccp != NULL) && paccp->ctrl ) {
savePciState(paccp->arg.dev, &paccp->restore);
restorePciState(paccp->arg.dev, &paccp->save);
}
}
#endif
}
void
PciBusStateLeave(void)
{
#if 0
BusAccPtr pbap = xf86BusAccInfo;
while (pbap) {
if (pbap->restore_f)
pbap->restore_f(pbap);
pbap = pbap->next;
}
#endif
}
void
DisablePciAccess(void)
{
#if 0
unsigned i;
if (xf86PciVideoInfo == NULL)
return;
for ( i = 0 ; xf86PciVideoInfo[i] != NULL ; i++ ) {
pciAccPtr paccp = (pciAccPtr) xf86PciVideoInfo[i]->user_data;
if ( (paccp != NULL) && paccp->ctrl ) {
pciIo_MemAccessDisable(paccp->io_memAccess.arg);
}
}
#endif
}
void
DisablePciBusAccess(void)
{
#if 0
BusAccPtr pbap = xf86BusAccInfo;
while (pbap) {
if (pbap->disable_f)
pbap->disable_f(pbap);
if (pbap->primary)
pbap->primary->current = NULL;
pbap = pbap->next;
}
#endif
}
/*
* If the slot requested is already in use, return -1.
* Otherwise, claim the slot for the screen requesting it.
*/
_X_EXPORT int
xf86ClaimPciSlot(struct pci_device * d, DriverPtr drvp,
int chipset, GDevPtr dev, Bool active)
{
EntityPtr p = NULL;
pciAccPtr paccp = (pciAccPtr) d->user_data;
BusAccPtr pbap = xf86BusAccInfo;
const unsigned bus = PCI_MAKE_BUS(d->domain, d->bus);
int num;
if (xf86CheckPciSlot(d)) {
num = xf86AllocateEntity();
p = xf86Entities[num];
p->driver = drvp;
p->chipset = chipset;
p->bus.type = BUS_PCI;
p->bus.id.pci = d;
p->active = active;
p->inUse = FALSE;
if (dev)
xf86AddDevToEntity(num, dev);
/* Here we initialize the access structure */
p->access = xnfcalloc(1,sizeof(EntityAccessRec));
if (paccp != NULL) {
p->access->fallback = & paccp->io_memAccess;
p->access->pAccess = & paccp->io_memAccess;
paccp->ctrl = TRUE; /* mark control if not already */
}
else {
p->access->fallback = &AccessNULL;
p->access->pAccess = &AccessNULL;
}
p->busAcc = NULL;
while (pbap) {
if (pbap->type == BUS_PCI && pbap->busdep.pci.bus == bus)
p->busAcc = pbap;
pbap = pbap->next;
}
pciSlotClaimed = TRUE;
if (active) {
/* Map in this domain's I/O space */
p->domainIO = xf86MapLegacyIO(d);
}
return num;
} else
return -1;
}
/*
* Parse a BUS ID string, and return the PCI bus parameters if it was
* in the correct format for a PCI bus id.
*/
_X_EXPORT Bool
xf86ParsePciBusString(const char *busID, int *bus, int *device, int *func)
{
/*
* The format is assumed to be "bus[@domain]:device[:func]", where domain,
* bus, device and func are decimal integers. domain and func may be
* omitted and assumed to be zero, although doing this isn't encouraged.
*/
char *p, *s, *d;
const char *id;
int i;
if (StringToBusType(busID, &id) != BUS_PCI)
return FALSE;
s = xstrdup(id);
p = strtok(s, ":");
if (p == NULL || *p == 0) {
xfree(s);
return FALSE;
}
d = strpbrk(p, "@");
if (d != NULL) {
*(d++) = 0;
for (i = 0; d[i] != 0; i++) {
if (!isdigit(d[i])) {
xfree(s);
return FALSE;
}
}
}
for (i = 0; p[i] != 0; i++) {
if (!isdigit(p[i])) {
xfree(s);
return FALSE;
}
}
*bus = atoi(p);
if (d != NULL && *d != 0)
*bus += atoi(d) << 8;
p = strtok(NULL, ":");
if (p == NULL || *p == 0) {
xfree(s);
return FALSE;
}
for (i = 0; p[i] != 0; i++) {
if (!isdigit(p[i])) {
xfree(s);
return FALSE;
}
}
*device = atoi(p);
*func = 0;
p = strtok(NULL, ":");
if (p == NULL || *p == 0) {
xfree(s);
return TRUE;
}
for (i = 0; p[i] != 0; i++) {
if (!isdigit(p[i])) {
xfree(s);
return FALSE;
}
}
*func = atoi(p);
xfree(s);
return TRUE;
}
/*
* Compare a BUS ID string with a PCI bus id. Return TRUE if they match.
*/
_X_EXPORT Bool
xf86ComparePciBusString(const char *busID, int bus, int device, int func)
{
int ibus, idevice, ifunc;
if (xf86ParsePciBusString(busID, &ibus, &idevice, &ifunc)) {
return bus == ibus && device == idevice && func == ifunc;
} else {
return FALSE;
}
}
/*
* xf86IsPrimaryPci() -- return TRUE if primary device
* is PCI and bus, dev and func numbers match.
*/
_X_EXPORT Bool
xf86IsPrimaryPci(struct pci_device *pPci)
{
return ((primaryBus.type == BUS_PCI) && (pPci == primaryBus.id.pci));
}
/*
* xf86GetPciInfoForEntity() -- Get the pciVideoRec of entity.
*/
_X_EXPORT struct pci_device *
xf86GetPciInfoForEntity(int entityIndex)
{
EntityPtr p;
if (entityIndex >= xf86NumEntities)
return NULL;
p = xf86Entities[entityIndex];
return (p->bus.type == BUS_PCI) ? p->bus.id.pci : NULL;
}
/*
* xf86CheckPciMemBase() checks that the memory base value matches one of the
* PCI base address register values for the given PCI device.
*/
_X_EXPORT Bool
xf86CheckPciMemBase( struct pci_device * pPci, memType base )
{
int i;
for (i = 0; i < 6; i++)
if (base == pPci->regions[i].base_addr)
return TRUE;
return FALSE;
}
/*
* Check if the slot requested is free. If it is already in use, return FALSE.
*/
_X_EXPORT Bool
xf86CheckPciSlot(const struct pci_device *d)
{
int i;
for (i = 0; i < xf86NumEntities; i++) {
const EntityPtr p = xf86Entities[i];
if ((p->bus.type == BUS_PCI) && (p->bus.id.pci == d)) {
return FALSE;
}
}
return TRUE;
}
void
pciConvertRange2Host(int entityIndex, resRange *pRange)
{
struct pci_device *const pvp = xf86GetPciInfoForEntity(entityIndex);
const PCITAG tag = PCI_MAKE_TAG(PCI_MAKE_BUS(pvp->domain, pvp->bus),
pvp->dev, pvp->func);
if (pvp == NULL) {
return;
}
if (!(pRange->type & ResBus))
return;
switch(pRange->type & ResPhysMask) {
case ResMem:
switch(pRange->type & ResExtMask) {
case ResBlock:
pRange->rBegin = pciBusAddrToHostAddr(tag,PCI_MEM, pRange->rBegin);
pRange->rEnd = pciBusAddrToHostAddr(tag,PCI_MEM, pRange->rEnd);
break;
case ResSparse:
pRange->rBase = pciBusAddrToHostAddr(tag,PCI_MEM_SPARSE_BASE,
pRange->rBegin);
pRange->rMask = pciBusAddrToHostAddr(tag,PCI_MEM_SPARSE_MASK,
pRange->rEnd);
break;
}
break;
case ResIo:
switch(pRange->type & ResExtMask) {
case ResBlock:
pRange->rBegin = pciBusAddrToHostAddr(tag,PCI_IO, pRange->rBegin);
pRange->rEnd = pciBusAddrToHostAddr(tag,PCI_IO, pRange->rEnd);
break;
case ResSparse:
pRange->rBase = pciBusAddrToHostAddr(tag,PCI_IO_SPARSE_BASE
, pRange->rBegin);
pRange->rMask = pciBusAddrToHostAddr(tag,PCI_IO_SPARSE_MASK
, pRange->rEnd);
break;
}
break;
}
/* Set domain number */
pRange->type &= ~(ResDomain | ResBus);
pRange->type |= pvp->domain << 24;
}