xenocara/xserver/dix/inpututils.c
matthieu 1a66cad3fb Update to xserver 1.19.5.
Tested by bru@, jsg@ and others
2017-12-08 15:01:59 +00:00

1229 lines
31 KiB
C

/*
* Copyright © 2008 Daniel Stone
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Daniel Stone <daniel@fooishbar.org>
*/
#ifdef HAVE_DIX_CONFIG_H
#include "dix-config.h"
#endif
#include "exevents.h"
#include "exglobals.h"
#include "misc.h"
#include "input.h"
#include "inputstr.h"
#include "xace.h"
#include "xkbsrv.h"
#include "xkbstr.h"
#include "inpututils.h"
#include "eventstr.h"
#include "scrnintstr.h"
#include "optionstr.h"
/* Check if a button map change is okay with the device.
* Returns -1 for BadValue, as it collides with MappingBusy. */
static int
check_butmap_change(DeviceIntPtr dev, CARD8 *map, int len, CARD32 *errval_out,
ClientPtr client)
{
int i, ret;
if (!dev || !dev->button) {
client->errorValue = (dev) ? dev->id : 0;
return BadDevice;
}
ret = XaceHook(XACE_DEVICE_ACCESS, client, dev, DixManageAccess);
if (ret != Success) {
client->errorValue = dev->id;
return ret;
}
for (i = 0; i < len; i++) {
if (dev->button->map[i + 1] != map[i] &&
button_is_down(dev, i + 1, BUTTON_PROCESSED))
return MappingBusy;
}
return Success;
}
static void
do_butmap_change(DeviceIntPtr dev, CARD8 *map, int len, ClientPtr client)
{
int i;
xEvent core_mn = { .u.u.type = MappingNotify };
deviceMappingNotify xi_mn;
/* The map in ButtonClassRec refers to button numbers, whereas the
* protocol is zero-indexed. Sigh. */
memcpy(&(dev->button->map[1]), map, len);
core_mn.u.mappingNotify.request = MappingPointer;
/* 0 is the server client. */
for (i = 1; i < currentMaxClients; i++) {
/* Don't send irrelevant events to naïve clients. */
if (!clients[i] || clients[i]->clientState != ClientStateRunning)
continue;
if (!XIShouldNotify(clients[i], dev))
continue;
WriteEventsToClient(clients[i], 1, &core_mn);
}
xi_mn = (deviceMappingNotify) {
.type = DeviceMappingNotify,
.request = MappingPointer,
.deviceid = dev->id,
.time = GetTimeInMillis()
};
SendEventToAllWindows(dev, DeviceMappingNotifyMask, (xEvent *) &xi_mn, 1);
}
/*
* Does what it says on the box, both for core and Xi.
*
* Faithfully reports any errors encountered while trying to apply the map
* to the requested device, faithfully ignores any errors encountered while
* trying to apply the map to its master/slaves.
*/
int
ApplyPointerMapping(DeviceIntPtr dev, CARD8 *map, int len, ClientPtr client)
{
int ret;
/* If we can't perform the change on the requested device, bail out. */
ret = check_butmap_change(dev, map, len, &client->errorValue, client);
if (ret != Success)
return ret;
do_butmap_change(dev, map, len, client);
return Success;
}
/* Check if a modifier map change is okay with the device.
* Returns -1 for BadValue, as it collides with MappingBusy; this particular
* caveat can be removed with LegalModifier, as we have no other reason to
* set MappingFailed. Sigh. */
static int
check_modmap_change(ClientPtr client, DeviceIntPtr dev, KeyCode *modmap)
{
int ret, i;
XkbDescPtr xkb;
ret = XaceHook(XACE_DEVICE_ACCESS, client, dev, DixManageAccess);
if (ret != Success)
return ret;
if (!dev->key)
return BadMatch;
xkb = dev->key->xkbInfo->desc;
for (i = 0; i < MAP_LENGTH; i++) {
if (!modmap[i])
continue;
/* Check that all the new modifiers fall within the advertised
* keycode range. */
if (i < xkb->min_key_code || i > xkb->max_key_code) {
client->errorValue = i;
return -1;
}
/* Make sure the mapping is okay with the DDX. */
if (!LegalModifier(i, dev)) {
client->errorValue = i;
return MappingFailed;
}
/* None of the new modifiers may be down while we change the
* map. */
if (key_is_down(dev, i, KEY_POSTED | KEY_PROCESSED)) {
client->errorValue = i;
return MappingBusy;
}
}
/* None of the old modifiers may be down while we change the map,
* either. */
for (i = xkb->min_key_code; i < xkb->max_key_code; i++) {
if (!xkb->map->modmap[i])
continue;
if (key_is_down(dev, i, KEY_POSTED | KEY_PROCESSED)) {
client->errorValue = i;
return MappingBusy;
}
}
return Success;
}
static int
check_modmap_change_slave(ClientPtr client, DeviceIntPtr master,
DeviceIntPtr slave, CARD8 *modmap)
{
XkbDescPtr master_xkb, slave_xkb;
int i, j;
if (!slave->key || !master->key)
return 0;
master_xkb = master->key->xkbInfo->desc;
slave_xkb = slave->key->xkbInfo->desc;
/* Ignore devices with a clearly different keymap. */
if (slave_xkb->min_key_code != master_xkb->min_key_code ||
slave_xkb->max_key_code != master_xkb->max_key_code)
return 0;
for (i = 0; i < MAP_LENGTH; i++) {
if (!modmap[i])
continue;
/* If we have different symbols for any modifier on an
* extended keyboard, ignore the whole remap request. */
for (j = 0;
j < XkbKeyNumSyms(slave_xkb, i) &&
j < XkbKeyNumSyms(master_xkb, i); j++)
if (XkbKeySymsPtr(slave_xkb, i)[j] !=
XkbKeySymsPtr(master_xkb, i)[j])
return 0;
}
if (check_modmap_change(client, slave, modmap) != Success)
return 0;
return 1;
}
/* Actually change the modifier map, and send notifications. Cannot fail. */
static void
do_modmap_change(ClientPtr client, DeviceIntPtr dev, CARD8 *modmap)
{
XkbApplyMappingChange(dev, NULL, 0, 0, modmap, serverClient);
}
/* Rebuild modmap (key -> mod) from map (mod -> key). */
static int
build_modmap_from_modkeymap(CARD8 *modmap, KeyCode *modkeymap,
int max_keys_per_mod)
{
int i, len = max_keys_per_mod * 8;
memset(modmap, 0, MAP_LENGTH);
for (i = 0; i < len; i++) {
if (!modkeymap[i])
continue;
#if MAP_LENGTH < 256
if (modkeymap[i] >= MAP_LENGTH)
return BadValue;
#endif
if (modmap[modkeymap[i]])
return BadValue;
modmap[modkeymap[i]] = 1 << (i / max_keys_per_mod);
}
return Success;
}
int
change_modmap(ClientPtr client, DeviceIntPtr dev, KeyCode *modkeymap,
int max_keys_per_mod)
{
int ret;
CARD8 modmap[MAP_LENGTH];
DeviceIntPtr tmp;
ret = build_modmap_from_modkeymap(modmap, modkeymap, max_keys_per_mod);
if (ret != Success)
return ret;
/* If we can't perform the change on the requested device, bail out. */
ret = check_modmap_change(client, dev, modmap);
if (ret != Success)
return ret;
do_modmap_change(client, dev, modmap);
/* Change any attached masters/slaves. */
if (IsMaster(dev)) {
for (tmp = inputInfo.devices; tmp; tmp = tmp->next) {
if (!IsMaster(tmp) && GetMaster(tmp, MASTER_KEYBOARD) == dev)
if (check_modmap_change_slave(client, dev, tmp, modmap))
do_modmap_change(client, tmp, modmap);
}
}
else if (!IsFloating(dev) &&
GetMaster(dev, MASTER_KEYBOARD)->lastSlave == dev) {
/* If this fails, expect the results to be weird. */
if (check_modmap_change(client, dev->master, modmap))
do_modmap_change(client, dev->master, modmap);
}
return Success;
}
int
generate_modkeymap(ClientPtr client, DeviceIntPtr dev,
KeyCode **modkeymap_out, int *max_keys_per_mod_out)
{
CARD8 keys_per_mod[8];
int max_keys_per_mod;
KeyCode *modkeymap = NULL;
int i, j, ret;
ret = XaceHook(XACE_DEVICE_ACCESS, client, dev, DixGetAttrAccess);
if (ret != Success)
return ret;
if (!dev->key)
return BadMatch;
/* Count the number of keys per modifier to determine how wide we
* should make the map. */
max_keys_per_mod = 0;
for (i = 0; i < 8; i++)
keys_per_mod[i] = 0;
for (i = 8; i < MAP_LENGTH; i++) {
for (j = 0; j < 8; j++) {
if (dev->key->xkbInfo->desc->map->modmap[i] & (1 << j)) {
if (++keys_per_mod[j] > max_keys_per_mod)
max_keys_per_mod = keys_per_mod[j];
}
}
}
if (max_keys_per_mod != 0) {
modkeymap = calloc(max_keys_per_mod * 8, sizeof(KeyCode));
if (!modkeymap)
return BadAlloc;
for (i = 0; i < 8; i++)
keys_per_mod[i] = 0;
for (i = 8; i < MAP_LENGTH; i++) {
for (j = 0; j < 8; j++) {
if (dev->key->xkbInfo->desc->map->modmap[i] & (1 << j)) {
modkeymap[(j * max_keys_per_mod) + keys_per_mod[j]] = i;
keys_per_mod[j]++;
}
}
}
}
*max_keys_per_mod_out = max_keys_per_mod;
*modkeymap_out = modkeymap;
return Success;
}
/**
* Duplicate the InputAttributes in the most obvious way.
* No special memory handling is used to give drivers the maximum
* flexibility with the data. Drivers should be able to call realloc on the
* product string if needed and perform similar operations.
*/
InputAttributes *
DuplicateInputAttributes(InputAttributes * attrs)
{
InputAttributes *new_attr;
int ntags = 0;
char **tags, **new_tags;
if (!attrs)
return NULL;
if (!(new_attr = calloc(1, sizeof(InputAttributes))))
goto unwind;
if (attrs->product && !(new_attr->product = strdup(attrs->product)))
goto unwind;
if (attrs->vendor && !(new_attr->vendor = strdup(attrs->vendor)))
goto unwind;
if (attrs->device && !(new_attr->device = strdup(attrs->device)))
goto unwind;
if (attrs->pnp_id && !(new_attr->pnp_id = strdup(attrs->pnp_id)))
goto unwind;
if (attrs->usb_id && !(new_attr->usb_id = strdup(attrs->usb_id)))
goto unwind;
new_attr->flags = attrs->flags;
if ((tags = attrs->tags)) {
while (*tags++)
ntags++;
new_attr->tags = calloc(ntags + 1, sizeof(char *));
if (!new_attr->tags)
goto unwind;
tags = attrs->tags;
new_tags = new_attr->tags;
while (*tags) {
*new_tags = strdup(*tags);
if (!*new_tags)
goto unwind;
tags++;
new_tags++;
}
}
return new_attr;
unwind:
FreeInputAttributes(new_attr);
return NULL;
}
void
FreeInputAttributes(InputAttributes * attrs)
{
char **tags;
if (!attrs)
return;
free(attrs->product);
free(attrs->vendor);
free(attrs->device);
free(attrs->pnp_id);
free(attrs->usb_id);
if ((tags = attrs->tags))
while (*tags)
free(*tags++);
free(attrs->tags);
free(attrs);
}
/**
* Alloc a valuator mask large enough for num_valuators.
*/
ValuatorMask *
valuator_mask_new(int num_valuators)
{
/* alloc a fixed size mask for now and ignore num_valuators. in the
* flying-car future, when we can dynamically alloc the masks and are
* not constrained by signals, we can start using num_valuators */
ValuatorMask *mask = calloc(1, sizeof(ValuatorMask));
if (mask == NULL)
return NULL;
mask->last_bit = -1;
return mask;
}
void
valuator_mask_free(ValuatorMask **mask)
{
free(*mask);
*mask = NULL;
}
/**
* Sets a range of valuators between first_valuator and num_valuators with
* the data in the valuators array. All other values are set to 0.
*/
void
valuator_mask_set_range(ValuatorMask *mask, int first_valuator,
int num_valuators, const int *valuators)
{
int i;
valuator_mask_zero(mask);
for (i = first_valuator;
i < min(first_valuator + num_valuators, MAX_VALUATORS); i++)
valuator_mask_set(mask, i, valuators[i - first_valuator]);
}
/**
* Reset mask to zero.
*/
void
valuator_mask_zero(ValuatorMask *mask)
{
memset(mask, 0, sizeof(*mask));
mask->last_bit = -1;
}
/**
* Returns the current size of the mask (i.e. the highest number of
* valuators currently set + 1).
*/
int
valuator_mask_size(const ValuatorMask *mask)
{
return mask->last_bit + 1;
}
/**
* Returns the number of valuators set in the given mask.
*/
int
valuator_mask_num_valuators(const ValuatorMask *mask)
{
return CountBits(mask->mask, min(mask->last_bit + 1, MAX_VALUATORS));
}
/**
* Return true if the valuator is set in the mask, or false otherwise.
*/
int
valuator_mask_isset(const ValuatorMask *mask, int valuator)
{
return mask->last_bit >= valuator && BitIsOn(mask->mask, valuator);
}
static inline void
_valuator_mask_set_double(ValuatorMask *mask, int valuator, double data)
{
mask->last_bit = max(valuator, mask->last_bit);
SetBit(mask->mask, valuator);
mask->valuators[valuator] = data;
}
/**
* Set the valuator to the given floating-point data.
*/
void
valuator_mask_set_double(ValuatorMask *mask, int valuator, double data)
{
BUG_WARN_MSG(mask->has_unaccelerated,
"Do not mix valuator types, zero mask first\n");
_valuator_mask_set_double(mask, valuator, data);
}
/**
* Set the valuator to the given integer data.
*/
void
valuator_mask_set(ValuatorMask *mask, int valuator, int data)
{
valuator_mask_set_double(mask, valuator, data);
}
/**
* Return the requested valuator value as a double. If the mask bit is not
* set for the given valuator, the returned value is undefined.
*/
double
valuator_mask_get_double(const ValuatorMask *mask, int valuator)
{
return mask->valuators[valuator];
}
/**
* Return the requested valuator value as an integer, rounding towards zero.
* If the mask bit is not set for the given valuator, the returned value is
* undefined.
*/
int
valuator_mask_get(const ValuatorMask *mask, int valuator)
{
return trunc(valuator_mask_get_double(mask, valuator));
}
/**
* Set value to the requested valuator. If the mask bit is set for this
* valuator, value contains the requested valuator value and TRUE is
* returned.
* If the mask bit is not set for this valuator, value is unchanged and
* FALSE is returned.
*/
Bool
valuator_mask_fetch_double(const ValuatorMask *mask, int valuator,
double *value)
{
if (valuator_mask_isset(mask, valuator)) {
*value = valuator_mask_get_double(mask, valuator);
return TRUE;
}
else
return FALSE;
}
/**
* Set value to the requested valuator. If the mask bit is set for this
* valuator, value contains the requested valuator value and TRUE is
* returned.
* If the mask bit is not set for this valuator, value is unchanged and
* FALSE is returned.
*/
Bool
valuator_mask_fetch(const ValuatorMask *mask, int valuator, int *value)
{
if (valuator_mask_isset(mask, valuator)) {
*value = valuator_mask_get(mask, valuator);
return TRUE;
}
else
return FALSE;
}
/**
* Remove the valuator from the mask.
*/
void
valuator_mask_unset(ValuatorMask *mask, int valuator)
{
if (mask->last_bit >= valuator) {
int i, lastbit = -1;
ClearBit(mask->mask, valuator);
mask->valuators[valuator] = 0.0;
mask->unaccelerated[valuator] = 0.0;
for (i = 0; i <= mask->last_bit; i++)
if (valuator_mask_isset(mask, i))
lastbit = max(lastbit, i);
mask->last_bit = lastbit;
if (mask->last_bit == -1)
mask->has_unaccelerated = FALSE;
}
}
void
valuator_mask_copy(ValuatorMask *dest, const ValuatorMask *src)
{
if (src)
memcpy(dest, src, sizeof(*dest));
else
valuator_mask_zero(dest);
}
Bool
valuator_mask_has_unaccelerated(const ValuatorMask *mask)
{
return mask->has_unaccelerated;
}
void
valuator_mask_drop_unaccelerated(ValuatorMask *mask)
{
memset(mask->unaccelerated, 0, sizeof(mask->unaccelerated));
mask->has_unaccelerated = FALSE;
}
void
valuator_mask_set_absolute_unaccelerated(ValuatorMask *mask,
int valuator,
int absolute,
double unaccel)
{
BUG_WARN_MSG(mask->last_bit != -1 && !mask->has_unaccelerated,
"Do not mix valuator types, zero mask first\n");
_valuator_mask_set_double(mask, valuator, absolute);
mask->has_unaccelerated = TRUE;
mask->unaccelerated[valuator] = unaccel;
}
/**
* Set both accelerated and unaccelerated value for this mask.
*/
void
valuator_mask_set_unaccelerated(ValuatorMask *mask,
int valuator,
double accel,
double unaccel)
{
BUG_WARN_MSG(mask->last_bit != -1 && !mask->has_unaccelerated,
"Do not mix valuator types, zero mask first\n");
_valuator_mask_set_double(mask, valuator, accel);
mask->has_unaccelerated = TRUE;
mask->unaccelerated[valuator] = unaccel;
}
double
valuator_mask_get_accelerated(const ValuatorMask *mask,
int valuator)
{
return valuator_mask_get_double(mask, valuator);
}
double
valuator_mask_get_unaccelerated(const ValuatorMask *mask,
int valuator)
{
return mask->unaccelerated[valuator];
}
Bool
valuator_mask_fetch_unaccelerated(const ValuatorMask *mask,
int valuator,
double *accel,
double *unaccel)
{
if (valuator_mask_isset(mask, valuator)) {
if (accel)
*accel = valuator_mask_get_accelerated(mask, valuator);
if (unaccel)
*unaccel = valuator_mask_get_unaccelerated(mask, valuator);
return TRUE;
}
else
return FALSE;
}
int
CountBits(const uint8_t * mask, int len)
{
int i;
int ret = 0;
for (i = 0; i < len; i++)
if (BitIsOn(mask, i))
ret++;
return ret;
}
/**
* Verifies sanity of the event. If the event is not an internal event,
* memdumps the first 32 bytes of event to the log, a backtrace, then kill
* the server.
*/
void
verify_internal_event(const InternalEvent *ev)
{
if (ev && ev->any.header != ET_Internal) {
int i;
const unsigned char *data = (const unsigned char *) ev;
ErrorF("dix: invalid event type %d\n", ev->any.header);
for (i = 0; i < sizeof(xEvent); i++, data++) {
ErrorF("%02hhx ", *data);
if ((i % 8) == 7)
ErrorF("\n");
}
xorg_backtrace();
FatalError("Wrong event type %d. Aborting server\n", ev->any.header);
}
}
/**
* Initializes the given event to zero (or default values), for the given
* device.
*/
void
init_device_event(DeviceEvent *event, DeviceIntPtr dev, Time ms,
enum DeviceEventSource source_type)
{
memset(event, 0, sizeof(DeviceEvent));
event->header = ET_Internal;
event->length = sizeof(DeviceEvent);
event->time = ms;
event->deviceid = dev->id;
event->sourceid = dev->id;
event->source_type = source_type;
}
int
event_get_corestate(DeviceIntPtr mouse, DeviceIntPtr kbd)
{
int corestate;
/* core state needs to be assembled BEFORE the device is updated. */
corestate = (kbd &&
kbd->key) ? XkbStateFieldFromRec(&kbd->key->xkbInfo->
state) : 0;
corestate |= (mouse && mouse->button) ? (mouse->button->state) : 0;
corestate |= (mouse && mouse->touch) ? (mouse->touch->state) : 0;
return corestate;
}
void
event_set_state(DeviceIntPtr mouse, DeviceIntPtr kbd, DeviceEvent *event)
{
int i;
for (i = 0; mouse && mouse->button && i < mouse->button->numButtons; i++)
if (BitIsOn(mouse->button->down, i))
SetBit(event->buttons, mouse->button->map[i]);
if (mouse && mouse->touch && mouse->touch->buttonsDown > 0)
SetBit(event->buttons, mouse->button->map[1]);
if (kbd && kbd->key) {
XkbStatePtr state;
/* we need the state before the event happens */
if (event->type == ET_KeyPress || event->type == ET_KeyRelease)
state = &kbd->key->xkbInfo->prev_state;
else
state = &kbd->key->xkbInfo->state;
event->mods.base = state->base_mods;
event->mods.latched = state->latched_mods;
event->mods.locked = state->locked_mods;
event->mods.effective = state->mods;
event->group.base = state->base_group;
event->group.latched = state->latched_group;
event->group.locked = state->locked_group;
event->group.effective = state->group;
}
}
/**
* Return the event filter mask for the given device and the given core or
* XI1 protocol type.
*/
Mask
event_get_filter_from_type(DeviceIntPtr dev, int evtype)
{
return event_filters[dev ? dev->id : 0][evtype];
}
/**
* Return the event filter mask for the given device and the given core or
* XI2 protocol type.
*/
Mask
event_get_filter_from_xi2type(int evtype)
{
return (1 << (evtype % 8));
}
Bool
point_on_screen(ScreenPtr pScreen, int x, int y)
{
return x >= pScreen->x && x < pScreen->x + pScreen->width &&
y >= pScreen->y && y < pScreen->y + pScreen->height;
}
/**
* Update desktop dimensions on the screenInfo struct.
*/
void
update_desktop_dimensions(void)
{
int i;
int x1 = INT_MAX, y1 = INT_MAX; /* top-left */
int x2 = INT_MIN, y2 = INT_MIN; /* bottom-right */
for (i = 0; i < screenInfo.numScreens; i++) {
ScreenPtr screen = screenInfo.screens[i];
x1 = min(x1, screen->x);
y1 = min(y1, screen->y);
x2 = max(x2, screen->x + screen->width);
y2 = max(y2, screen->y + screen->height);
}
screenInfo.x = x1;
screenInfo.y = y1;
screenInfo.width = x2 - x1;
screenInfo.height = y2 - y1;
}
/*
* Delete the element with the key from the list, freeing all memory
* associated with the element..
*/
static void
input_option_free(InputOption *o)
{
free(o->opt_name);
free(o->opt_val);
free(o->opt_comment);
free(o);
}
/*
* Create a new InputOption with the key/value pair provided.
* If a list is provided, the new options is added to the list and the list
* is returned.
*
* If a new option is added to a list that already contains that option, the
* previous option is overwritten.
*
* @param list The list to add to.
* @param key Option key, will be copied.
* @param value Option value, will be copied.
*
* @return If list is not NULL, the list with the new option added. If list
* is NULL, a new option list with one element. On failure, NULL is
* returned.
*/
InputOption *
input_option_new(InputOption *list, const char *key, const char *value)
{
InputOption *opt = NULL;
if (!key)
return NULL;
if (list) {
nt_list_for_each_entry(opt, list, list.next) {
if (strcmp(input_option_get_key(opt), key) == 0) {
input_option_set_value(opt, value);
return list;
}
}
}
opt = calloc(1, sizeof(InputOption));
if (!opt)
return NULL;
nt_list_init(opt, list.next);
input_option_set_key(opt, key);
input_option_set_value(opt, value);
if (list) {
nt_list_append(opt, list, InputOption, list.next);
return list;
}
else
return opt;
}
InputOption *
input_option_free_element(InputOption *list, const char *key)
{
InputOption *element;
nt_list_for_each_entry(element, list, list.next) {
if (strcmp(input_option_get_key(element), key) == 0) {
nt_list_del(element, list, InputOption, list.next);
input_option_free(element);
break;
}
}
return list;
}
/**
* Free the list pointed at by opt.
*/
void
input_option_free_list(InputOption **opt)
{
InputOption *element, *tmp;
nt_list_for_each_entry_safe(element, tmp, *opt, list.next) {
nt_list_del(element, *opt, InputOption, list.next);
input_option_free(element);
}
*opt = NULL;
}
/**
* Find the InputOption with the given option name.
*
* @return The InputOption or NULL if not present.
*/
InputOption *
input_option_find(InputOption *list, const char *key)
{
InputOption *element;
nt_list_for_each_entry(element, list, list.next) {
if (strcmp(input_option_get_key(element), key) == 0)
return element;
}
return NULL;
}
const char *
input_option_get_key(const InputOption *opt)
{
return opt->opt_name;
}
const char *
input_option_get_value(const InputOption *opt)
{
return opt->opt_val;
}
void
input_option_set_key(InputOption *opt, const char *key)
{
free(opt->opt_name);
if (key)
opt->opt_name = strdup(key);
}
void
input_option_set_value(InputOption *opt, const char *value)
{
free(opt->opt_val);
if (value)
opt->opt_val = strdup(value);
}
/* FP1616/FP3232 conversion functions.
* Fixed point types are encoded as signed integral and unsigned frac. So any
* negative number -n.m is encoded as floor(n) + (1 - 0.m).
*/
double
fp1616_to_double(FP1616 in)
{
return pixman_fixed_to_double(in);
}
double
fp3232_to_double(FP3232 in)
{
double ret;
ret = (double) in.integral;
ret += (double) in.frac * (1.0 / (1ULL << 32)); /* Optimized: ldexp((double)in.frac, -32); */
return ret;
}
FP1616
double_to_fp1616(double in)
{
return pixman_double_to_fixed(in);
}
FP3232
double_to_fp3232(double in)
{
FP3232 ret;
int32_t integral;
double tmp;
uint32_t frac_d;
tmp = floor(in);
integral = (int32_t) tmp;
tmp = (in - integral) * (1ULL << 32); /* Optimized: ldexp(in - integral, 32) */
frac_d = (uint32_t) tmp;
ret.integral = integral;
ret.frac = frac_d;
return ret;
}
/**
* DO NOT USE THIS FUNCTION. It only exists for the test cases. Use
* xi2mask_new() instead to get the standard sized masks.
*
* @param nmasks The number of masks (== number of devices)
* @param size The size of the masks in bytes
* @return The new mask or NULL on allocation error.
*/
XI2Mask *
xi2mask_new_with_size(size_t nmasks, size_t size)
{
int i;
int alloc_size;
unsigned char *cursor;
XI2Mask *mask;
alloc_size = sizeof(struct _XI2Mask)
+ nmasks * sizeof(unsigned char *)
+ nmasks * size;
mask = calloc(1, alloc_size);
if (!mask)
return NULL;
mask->nmasks = nmasks;
mask->mask_size = size;
mask->masks = (unsigned char **)(mask + 1);
cursor = (unsigned char *)(mask + 1) + nmasks * sizeof(unsigned char *);
for (i = 0; i < nmasks; i++) {
mask->masks[i] = cursor;
cursor += size;
}
return mask;
}
/**
* Create a new XI2 mask of the standard size, i.e. for all devices + fake
* devices and for the highest supported XI2 event type.
*
* @return The new mask or NULL on allocation error.
*/
XI2Mask *
xi2mask_new(void)
{
return xi2mask_new_with_size(EMASKSIZE, XI2MASKSIZE);
}
/**
* Frees memory associated with mask and resets mask to NULL.
*/
void
xi2mask_free(XI2Mask **mask)
{
if (!(*mask))
return;
free((*mask));
*mask = NULL;
}
/**
* Test if the bit for event type is set for this device only.
*
* @return TRUE if the bit is set, FALSE otherwise
*/
Bool
xi2mask_isset_for_device(XI2Mask *mask, const DeviceIntPtr dev, int event_type)
{
BUG_WARN(dev->id < 0);
BUG_WARN(dev->id >= mask->nmasks);
BUG_WARN(bits_to_bytes(event_type + 1) > mask->mask_size);
return BitIsOn(mask->masks[dev->id], event_type);
}
/**
* Test if the bit for event type is set for this device, or the
* XIAllDevices/XIAllMasterDevices (if applicable) is set.
*
* @return TRUE if the bit is set, FALSE otherwise
*/
Bool
xi2mask_isset(XI2Mask *mask, const DeviceIntPtr dev, int event_type)
{
int set = 0;
if (xi2mask_isset_for_device(mask, inputInfo.all_devices, event_type))
set = 1;
else if (xi2mask_isset_for_device(mask, dev, event_type))
set = 1;
else if (IsMaster(dev) && xi2mask_isset_for_device(mask, inputInfo.all_master_devices, event_type))
set = 1;
return set;
}
/**
* Set the mask bit for this event type for this device.
*/
void
xi2mask_set(XI2Mask *mask, int deviceid, int event_type)
{
BUG_WARN(deviceid < 0);
BUG_WARN(deviceid >= mask->nmasks);
BUG_WARN(bits_to_bytes(event_type + 1) > mask->mask_size);
SetBit(mask->masks[deviceid], event_type);
}
/**
* Zero out the xi2mask, for the deviceid given. If the deviceid is < 0, all
* masks are zeroed.
*/
void
xi2mask_zero(XI2Mask *mask, int deviceid)
{
int i;
BUG_WARN(deviceid > 0 && deviceid >= mask->nmasks);
if (deviceid >= 0)
memset(mask->masks[deviceid], 0, mask->mask_size);
else
for (i = 0; i < mask->nmasks; i++)
memset(mask->masks[i], 0, mask->mask_size);
}
/**
* Merge source into dest, i.e. dest |= source.
* If the masks are of different size, only the overlapping section is merged.
*/
void
xi2mask_merge(XI2Mask *dest, const XI2Mask *source)
{
int i, j;
for (i = 0; i < min(dest->nmasks, source->nmasks); i++)
for (j = 0; j < min(dest->mask_size, source->mask_size); j++)
dest->masks[i][j] |= source->masks[i][j];
}
/**
* @return The number of masks in mask
*/
size_t
xi2mask_num_masks(const XI2Mask *mask)
{
return mask->nmasks;
}
/**
* @return The size of each mask in bytes
*/
size_t
xi2mask_mask_size(const XI2Mask *mask)
{
return mask->mask_size;
}
/**
* Set the mask for the given deviceid to the source mask.
* If the mask given is larger than the target memory, only the overlapping
* parts are copied.
*/
void
xi2mask_set_one_mask(XI2Mask *xi2mask, int deviceid, const unsigned char *mask,
size_t mask_size)
{
BUG_WARN(deviceid < 0);
BUG_WARN(deviceid >= xi2mask->nmasks);
memcpy(xi2mask->masks[deviceid], mask, min(xi2mask->mask_size, mask_size));
}
/**
* Get a reference to the XI2mask for this particular device.
*/
const unsigned char *
xi2mask_get_one_mask(const XI2Mask *mask, int deviceid)
{
BUG_WARN(deviceid < 0);
BUG_WARN(deviceid >= mask->nmasks);
return mask->masks[deviceid];
}