2562 lines
67 KiB
C
2562 lines
67 KiB
C
/***********************************************************
|
|
|
|
Copyright 1987, 1988, 1989, 1998 The Open Group
|
|
|
|
Permission to use, copy, modify, distribute, and sell this software and its
|
|
documentation for any purpose is hereby granted without fee, provided that
|
|
the above copyright notice appear in all copies and that both that
|
|
copyright notice and this permission notice appear in supporting
|
|
documentation.
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
|
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of The Open Group shall not be
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from The Open Group.
|
|
|
|
|
|
Copyright 1987, 1988, 1989 by
|
|
Digital Equipment Corporation, Maynard, Massachusetts.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and its
|
|
documentation for any purpose and without fee is hereby granted,
|
|
provided that the above copyright notice appear in all copies and that
|
|
both that copyright notice and this permission notice appear in
|
|
supporting documentation, and that the name of Digital not be
|
|
used in advertising or publicity pertaining to distribution of the
|
|
software without specific, written prior permission.
|
|
|
|
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
|
|
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
|
|
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
|
|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
|
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
|
|
SOFTWARE.
|
|
|
|
******************************************************************/
|
|
|
|
/* The panoramix components contained the following notice */
|
|
/*****************************************************************
|
|
|
|
Copyright (c) 1991, 1997 Digital Equipment Corporation, Maynard, Massachusetts.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software.
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
DIGITAL EQUIPMENT CORPORATION BE LIABLE FOR ANY CLAIM, DAMAGES, INCLUDING,
|
|
BUT NOT LIMITED TO CONSEQUENTIAL OR INCIDENTAL DAMAGES, OR OTHER LIABILITY,
|
|
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
|
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of Digital Equipment Corporation
|
|
shall not be used in advertising or otherwise to promote the sale, use or other
|
|
dealings in this Software without prior written authorization from Digital
|
|
Equipment Corporation.
|
|
|
|
******************************************************************/
|
|
|
|
#ifdef HAVE_DIX_CONFIG_H
|
|
#include <dix-config.h>
|
|
#endif
|
|
|
|
#include "regionstr.h"
|
|
#include <X11/Xprotostr.h>
|
|
#include "gc.h"
|
|
#include "mi.h"
|
|
#include "mispans.h"
|
|
|
|
#if defined (__GNUC__) && !defined (NO_INLINES)
|
|
#define INLINE __inline
|
|
#else
|
|
#define INLINE
|
|
#endif
|
|
|
|
#undef assert
|
|
#ifdef DEBUG
|
|
#define assert(expr) {if (!(expr)) \
|
|
FatalError("Assertion failed file %s, line %d: expr\n", \
|
|
__FILE__, __LINE__); }
|
|
#else
|
|
#define assert(expr)
|
|
#endif
|
|
|
|
#define good(reg) assert(miValidRegion(reg))
|
|
|
|
/*
|
|
* The functions in this file implement the Region abstraction used extensively
|
|
* throughout the X11 sample server. A Region is simply a set of disjoint
|
|
* (non-overlapping) rectangles, plus an "extent" rectangle which is the
|
|
* smallest single rectangle that contains all the non-overlapping rectangles.
|
|
*
|
|
* A Region is implemented as a "y-x-banded" array of rectangles. This array
|
|
* imposes two degrees of order. First, all rectangles are sorted by top side
|
|
* y coordinate first (y1), and then by left side x coordinate (x1).
|
|
*
|
|
* Furthermore, the rectangles are grouped into "bands". Each rectangle in a
|
|
* band has the same top y coordinate (y1), and each has the same bottom y
|
|
* coordinate (y2). Thus all rectangles in a band differ only in their left
|
|
* and right side (x1 and x2). Bands are implicit in the array of rectangles:
|
|
* there is no separate list of band start pointers.
|
|
*
|
|
* The y-x band representation does not minimize rectangles. In particular,
|
|
* if a rectangle vertically crosses a band (the rectangle has scanlines in
|
|
* the y1 to y2 area spanned by the band), then the rectangle may be broken
|
|
* down into two or more smaller rectangles stacked one atop the other.
|
|
*
|
|
* ----------- -----------
|
|
* | | | | band 0
|
|
* | | -------- ----------- --------
|
|
* | | | | in y-x banded | | | | band 1
|
|
* | | | | form is | | | |
|
|
* ----------- | | ----------- --------
|
|
* | | | | band 2
|
|
* -------- --------
|
|
*
|
|
* An added constraint on the rectangles is that they must cover as much
|
|
* horizontal area as possible: no two rectangles within a band are allowed
|
|
* to touch.
|
|
*
|
|
* Whenever possible, bands will be merged together to cover a greater vertical
|
|
* distance (and thus reduce the number of rectangles). Two bands can be merged
|
|
* only if the bottom of one touches the top of the other and they have
|
|
* rectangles in the same places (of the same width, of course).
|
|
*
|
|
* Adam de Boor wrote most of the original region code. Joel McCormack
|
|
* substantially modified or rewrote most of the core arithmetic routines,
|
|
* and added miRegionValidate in order to support several speed improvements
|
|
* to miValidateTree. Bob Scheifler changed the representation to be more
|
|
* compact when empty or a single rectangle, and did a bunch of gratuitous
|
|
* reformatting.
|
|
*/
|
|
|
|
/* true iff two Boxes overlap */
|
|
#define EXTENTCHECK(r1,r2) \
|
|
(!( ((r1)->x2 <= (r2)->x1) || \
|
|
((r1)->x1 >= (r2)->x2) || \
|
|
((r1)->y2 <= (r2)->y1) || \
|
|
((r1)->y1 >= (r2)->y2) ) )
|
|
|
|
/* true iff (x,y) is in Box */
|
|
#define INBOX(r,x,y) \
|
|
( ((r)->x2 > x) && \
|
|
((r)->x1 <= x) && \
|
|
((r)->y2 > y) && \
|
|
((r)->y1 <= y) )
|
|
|
|
/* true iff Box r1 contains Box r2 */
|
|
#define SUBSUMES(r1,r2) \
|
|
( ((r1)->x1 <= (r2)->x1) && \
|
|
((r1)->x2 >= (r2)->x2) && \
|
|
((r1)->y1 <= (r2)->y1) && \
|
|
((r1)->y2 >= (r2)->y2) )
|
|
|
|
#define xallocData(n) (RegDataPtr)xalloc(REGION_SZOF(n))
|
|
#define xfreeData(reg) if ((reg)->data && (reg)->data->size) xfree((reg)->data)
|
|
|
|
#define RECTALLOC_BAIL(pReg,n,bail) \
|
|
if (!(pReg)->data || (((pReg)->data->numRects + (n)) > (pReg)->data->size)) \
|
|
if (!miRectAlloc(pReg, n)) { goto bail; }
|
|
|
|
#define RECTALLOC(pReg,n) \
|
|
if (!(pReg)->data || (((pReg)->data->numRects + (n)) > (pReg)->data->size)) \
|
|
if (!miRectAlloc(pReg, n)) { return FALSE; }
|
|
|
|
#define ADDRECT(pNextRect,nx1,ny1,nx2,ny2) \
|
|
{ \
|
|
pNextRect->x1 = nx1; \
|
|
pNextRect->y1 = ny1; \
|
|
pNextRect->x2 = nx2; \
|
|
pNextRect->y2 = ny2; \
|
|
pNextRect++; \
|
|
}
|
|
|
|
#define NEWRECT(pReg,pNextRect,nx1,ny1,nx2,ny2) \
|
|
{ \
|
|
if (!(pReg)->data || ((pReg)->data->numRects == (pReg)->data->size))\
|
|
{ \
|
|
if (!miRectAlloc(pReg, 1)) \
|
|
return FALSE; \
|
|
pNextRect = REGION_TOP(pReg); \
|
|
} \
|
|
ADDRECT(pNextRect,nx1,ny1,nx2,ny2); \
|
|
pReg->data->numRects++; \
|
|
assert(pReg->data->numRects<=pReg->data->size); \
|
|
}
|
|
|
|
|
|
#define DOWNSIZE(reg,numRects) \
|
|
if (((numRects) < ((reg)->data->size >> 1)) && ((reg)->data->size > 50)) \
|
|
{ \
|
|
RegDataPtr NewData; \
|
|
NewData = (RegDataPtr)xrealloc((reg)->data, REGION_SZOF(numRects)); \
|
|
if (NewData) \
|
|
{ \
|
|
NewData->size = (numRects); \
|
|
(reg)->data = NewData; \
|
|
} \
|
|
}
|
|
|
|
|
|
_X_EXPORT BoxRec miEmptyBox = {0, 0, 0, 0};
|
|
_X_EXPORT RegDataRec miEmptyData = {0, 0};
|
|
|
|
RegDataRec miBrokenData = {0, 0};
|
|
RegionRec miBrokenRegion = { { 0, 0, 0, 0 }, &miBrokenData };
|
|
|
|
#ifdef DEBUG
|
|
int
|
|
miPrintRegion(rgn)
|
|
RegionPtr rgn;
|
|
{
|
|
int num, size;
|
|
register int i;
|
|
BoxPtr rects;
|
|
|
|
num = REGION_NUM_RECTS(rgn);
|
|
size = REGION_SIZE(rgn);
|
|
rects = REGION_RECTS(rgn);
|
|
ErrorF("num: %d size: %d\n", num, size);
|
|
ErrorF("extents: %d %d %d %d\n",
|
|
rgn->extents.x1, rgn->extents.y1, rgn->extents.x2, rgn->extents.y2);
|
|
for (i = 0; i < num; i++)
|
|
ErrorF("%d %d %d %d \n",
|
|
rects[i].x1, rects[i].y1, rects[i].x2, rects[i].y2);
|
|
ErrorF("\n");
|
|
return(num);
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
_X_EXPORT Bool
|
|
miRegionEqual(reg1, reg2)
|
|
RegionPtr reg1;
|
|
RegionPtr reg2;
|
|
{
|
|
int i, num;
|
|
BoxPtr rects1, rects2;
|
|
|
|
if (reg1->extents.x1 != reg2->extents.x1) return FALSE;
|
|
if (reg1->extents.x2 != reg2->extents.x2) return FALSE;
|
|
if (reg1->extents.y1 != reg2->extents.y1) return FALSE;
|
|
if (reg1->extents.y2 != reg2->extents.y2) return FALSE;
|
|
|
|
num = REGION_NUM_RECTS(reg1);
|
|
if (num != REGION_NUM_RECTS(reg2)) return FALSE;
|
|
|
|
rects1 = REGION_RECTS(reg1);
|
|
rects2 = REGION_RECTS(reg2);
|
|
for (i = 0; i != num; i++) {
|
|
if (rects1[i].x1 != rects2[i].x1) return FALSE;
|
|
if (rects1[i].x2 != rects2[i].x2) return FALSE;
|
|
if (rects1[i].y1 != rects2[i].y1) return FALSE;
|
|
if (rects1[i].y2 != rects2[i].y2) return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
Bool
|
|
miValidRegion(reg)
|
|
RegionPtr reg;
|
|
{
|
|
register int i, numRects;
|
|
|
|
if ((reg->extents.x1 > reg->extents.x2) ||
|
|
(reg->extents.y1 > reg->extents.y2))
|
|
return FALSE;
|
|
numRects = REGION_NUM_RECTS(reg);
|
|
if (!numRects)
|
|
return ((reg->extents.x1 == reg->extents.x2) &&
|
|
(reg->extents.y1 == reg->extents.y2) &&
|
|
(reg->data->size || (reg->data == &miEmptyData)));
|
|
else if (numRects == 1)
|
|
return (!reg->data);
|
|
else
|
|
{
|
|
register BoxPtr pboxP, pboxN;
|
|
BoxRec box;
|
|
|
|
pboxP = REGION_RECTS(reg);
|
|
box = *pboxP;
|
|
box.y2 = pboxP[numRects-1].y2;
|
|
pboxN = pboxP + 1;
|
|
for (i = numRects; --i > 0; pboxP++, pboxN++)
|
|
{
|
|
if ((pboxN->x1 >= pboxN->x2) ||
|
|
(pboxN->y1 >= pboxN->y2))
|
|
return FALSE;
|
|
if (pboxN->x1 < box.x1)
|
|
box.x1 = pboxN->x1;
|
|
if (pboxN->x2 > box.x2)
|
|
box.x2 = pboxN->x2;
|
|
if ((pboxN->y1 < pboxP->y1) ||
|
|
((pboxN->y1 == pboxP->y1) &&
|
|
((pboxN->x1 < pboxP->x2) || (pboxN->y2 != pboxP->y2))))
|
|
return FALSE;
|
|
}
|
|
return ((box.x1 == reg->extents.x1) &&
|
|
(box.x2 == reg->extents.x2) &&
|
|
(box.y1 == reg->extents.y1) &&
|
|
(box.y2 == reg->extents.y2));
|
|
}
|
|
}
|
|
|
|
#endif /* DEBUG */
|
|
|
|
|
|
/*****************************************************************
|
|
* RegionCreate(rect, size)
|
|
* This routine does a simple malloc to make a structure of
|
|
* REGION of "size" number of rectangles.
|
|
*****************************************************************/
|
|
|
|
_X_EXPORT RegionPtr
|
|
miRegionCreate(rect, size)
|
|
BoxPtr rect;
|
|
int size;
|
|
{
|
|
register RegionPtr pReg;
|
|
|
|
pReg = (RegionPtr)xalloc(sizeof(RegionRec));
|
|
if (!pReg)
|
|
return &miBrokenRegion;
|
|
if (rect)
|
|
{
|
|
pReg->extents = *rect;
|
|
pReg->data = (RegDataPtr)NULL;
|
|
}
|
|
else
|
|
{
|
|
pReg->extents = miEmptyBox;
|
|
if ((size > 1) && (pReg->data = xallocData(size)))
|
|
{
|
|
pReg->data->size = size;
|
|
pReg->data->numRects = 0;
|
|
}
|
|
else
|
|
pReg->data = &miEmptyData;
|
|
}
|
|
return(pReg);
|
|
}
|
|
|
|
/*****************************************************************
|
|
* RegionInit(pReg, rect, size)
|
|
* Outer region rect is statically allocated.
|
|
*****************************************************************/
|
|
|
|
_X_EXPORT void
|
|
miRegionInit(pReg, rect, size)
|
|
RegionPtr pReg;
|
|
BoxPtr rect;
|
|
int size;
|
|
{
|
|
if (rect)
|
|
{
|
|
pReg->extents = *rect;
|
|
pReg->data = (RegDataPtr)NULL;
|
|
}
|
|
else
|
|
{
|
|
pReg->extents = miEmptyBox;
|
|
if ((size > 1) && (pReg->data = xallocData(size)))
|
|
{
|
|
pReg->data->size = size;
|
|
pReg->data->numRects = 0;
|
|
}
|
|
else
|
|
pReg->data = &miEmptyData;
|
|
}
|
|
}
|
|
|
|
_X_EXPORT void
|
|
miRegionDestroy(pReg)
|
|
RegionPtr pReg;
|
|
{
|
|
good(pReg);
|
|
xfreeData(pReg);
|
|
if (pReg != &miBrokenRegion)
|
|
xfree(pReg);
|
|
}
|
|
|
|
_X_EXPORT void
|
|
miRegionUninit(pReg)
|
|
RegionPtr pReg;
|
|
{
|
|
good(pReg);
|
|
xfreeData(pReg);
|
|
}
|
|
|
|
Bool
|
|
miRegionBreak (pReg)
|
|
RegionPtr pReg;
|
|
{
|
|
xfreeData (pReg);
|
|
pReg->extents = miEmptyBox;
|
|
pReg->data = &miBrokenData;
|
|
return FALSE;
|
|
}
|
|
|
|
_X_EXPORT Bool
|
|
miRectAlloc(
|
|
register RegionPtr pRgn,
|
|
int n)
|
|
{
|
|
RegDataPtr data;
|
|
|
|
if (!pRgn->data)
|
|
{
|
|
n++;
|
|
pRgn->data = xallocData(n);
|
|
if (!pRgn->data)
|
|
return miRegionBreak (pRgn);
|
|
pRgn->data->numRects = 1;
|
|
*REGION_BOXPTR(pRgn) = pRgn->extents;
|
|
}
|
|
else if (!pRgn->data->size)
|
|
{
|
|
pRgn->data = xallocData(n);
|
|
if (!pRgn->data)
|
|
return miRegionBreak (pRgn);
|
|
pRgn->data->numRects = 0;
|
|
}
|
|
else
|
|
{
|
|
if (n == 1)
|
|
{
|
|
n = pRgn->data->numRects;
|
|
if (n > 500) /* XXX pick numbers out of a hat */
|
|
n = 250;
|
|
}
|
|
n += pRgn->data->numRects;
|
|
data = (RegDataPtr)xrealloc(pRgn->data, REGION_SZOF(n));
|
|
if (!data)
|
|
return miRegionBreak (pRgn);
|
|
pRgn->data = data;
|
|
}
|
|
pRgn->data->size = n;
|
|
return TRUE;
|
|
}
|
|
|
|
_X_EXPORT Bool
|
|
miRegionCopy(dst, src)
|
|
register RegionPtr dst;
|
|
register RegionPtr src;
|
|
{
|
|
good(dst);
|
|
good(src);
|
|
if (dst == src)
|
|
return TRUE;
|
|
dst->extents = src->extents;
|
|
if (!src->data || !src->data->size)
|
|
{
|
|
xfreeData(dst);
|
|
dst->data = src->data;
|
|
return TRUE;
|
|
}
|
|
if (!dst->data || (dst->data->size < src->data->numRects))
|
|
{
|
|
xfreeData(dst);
|
|
dst->data = xallocData(src->data->numRects);
|
|
if (!dst->data)
|
|
return miRegionBreak (dst);
|
|
dst->data->size = src->data->numRects;
|
|
}
|
|
dst->data->numRects = src->data->numRects;
|
|
memmove((char *)REGION_BOXPTR(dst),(char *)REGION_BOXPTR(src),
|
|
dst->data->numRects * sizeof(BoxRec));
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*======================================================================
|
|
* Generic Region Operator
|
|
*====================================================================*/
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miCoalesce --
|
|
* Attempt to merge the boxes in the current band with those in the
|
|
* previous one. We are guaranteed that the current band extends to
|
|
* the end of the rects array. Used only by miRegionOp.
|
|
*
|
|
* Results:
|
|
* The new index for the previous band.
|
|
*
|
|
* Side Effects:
|
|
* If coalescing takes place:
|
|
* - rectangles in the previous band will have their y2 fields
|
|
* altered.
|
|
* - pReg->data->numRects will be decreased.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
INLINE static int
|
|
miCoalesce (
|
|
register RegionPtr pReg, /* Region to coalesce */
|
|
int prevStart, /* Index of start of previous band */
|
|
int curStart) /* Index of start of current band */
|
|
{
|
|
register BoxPtr pPrevBox; /* Current box in previous band */
|
|
register BoxPtr pCurBox; /* Current box in current band */
|
|
register int numRects; /* Number rectangles in both bands */
|
|
register int y2; /* Bottom of current band */
|
|
/*
|
|
* Figure out how many rectangles are in the band.
|
|
*/
|
|
numRects = curStart - prevStart;
|
|
assert(numRects == pReg->data->numRects - curStart);
|
|
|
|
if (!numRects) return curStart;
|
|
|
|
/*
|
|
* The bands may only be coalesced if the bottom of the previous
|
|
* matches the top scanline of the current.
|
|
*/
|
|
pPrevBox = REGION_BOX(pReg, prevStart);
|
|
pCurBox = REGION_BOX(pReg, curStart);
|
|
if (pPrevBox->y2 != pCurBox->y1) return curStart;
|
|
|
|
/*
|
|
* Make sure the bands have boxes in the same places. This
|
|
* assumes that boxes have been added in such a way that they
|
|
* cover the most area possible. I.e. two boxes in a band must
|
|
* have some horizontal space between them.
|
|
*/
|
|
y2 = pCurBox->y2;
|
|
|
|
do {
|
|
if ((pPrevBox->x1 != pCurBox->x1) || (pPrevBox->x2 != pCurBox->x2)) {
|
|
return (curStart);
|
|
}
|
|
pPrevBox++;
|
|
pCurBox++;
|
|
numRects--;
|
|
} while (numRects);
|
|
|
|
/*
|
|
* The bands may be merged, so set the bottom y of each box
|
|
* in the previous band to the bottom y of the current band.
|
|
*/
|
|
numRects = curStart - prevStart;
|
|
pReg->data->numRects -= numRects;
|
|
do {
|
|
pPrevBox--;
|
|
pPrevBox->y2 = y2;
|
|
numRects--;
|
|
} while (numRects);
|
|
return prevStart;
|
|
}
|
|
|
|
|
|
/* Quicky macro to avoid trivial reject procedure calls to miCoalesce */
|
|
|
|
#define Coalesce(newReg, prevBand, curBand) \
|
|
if (curBand - prevBand == newReg->data->numRects - curBand) { \
|
|
prevBand = miCoalesce(newReg, prevBand, curBand); \
|
|
} else { \
|
|
prevBand = curBand; \
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miAppendNonO --
|
|
* Handle a non-overlapping band for the union and subtract operations.
|
|
* Just adds the (top/bottom-clipped) rectangles into the region.
|
|
* Doesn't have to check for subsumption or anything.
|
|
*
|
|
* Results:
|
|
* None.
|
|
*
|
|
* Side Effects:
|
|
* pReg->data->numRects is incremented and the rectangles overwritten
|
|
* with the rectangles we're passed.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
|
|
INLINE static Bool
|
|
miAppendNonO (
|
|
register RegionPtr pReg,
|
|
register BoxPtr r,
|
|
BoxPtr rEnd,
|
|
register int y1,
|
|
register int y2)
|
|
{
|
|
register BoxPtr pNextRect;
|
|
register int newRects;
|
|
|
|
newRects = rEnd - r;
|
|
|
|
assert(y1 < y2);
|
|
assert(newRects != 0);
|
|
|
|
/* Make sure we have enough space for all rectangles to be added */
|
|
RECTALLOC(pReg, newRects);
|
|
pNextRect = REGION_TOP(pReg);
|
|
pReg->data->numRects += newRects;
|
|
do {
|
|
assert(r->x1 < r->x2);
|
|
ADDRECT(pNextRect, r->x1, y1, r->x2, y2);
|
|
r++;
|
|
} while (r != rEnd);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#define FindBand(r, rBandEnd, rEnd, ry1) \
|
|
{ \
|
|
ry1 = r->y1; \
|
|
rBandEnd = r+1; \
|
|
while ((rBandEnd != rEnd) && (rBandEnd->y1 == ry1)) { \
|
|
rBandEnd++; \
|
|
} \
|
|
}
|
|
|
|
#define AppendRegions(newReg, r, rEnd) \
|
|
{ \
|
|
int newRects; \
|
|
if ((newRects = rEnd - r)) { \
|
|
RECTALLOC(newReg, newRects); \
|
|
memmove((char *)REGION_TOP(newReg),(char *)r, \
|
|
newRects * sizeof(BoxRec)); \
|
|
newReg->data->numRects += newRects; \
|
|
} \
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miRegionOp --
|
|
* Apply an operation to two regions. Called by miUnion, miInverse,
|
|
* miSubtract, miIntersect.... Both regions MUST have at least one
|
|
* rectangle, and cannot be the same object.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* The new region is overwritten.
|
|
* pOverlap set to TRUE if overlapFunc ever returns TRUE.
|
|
*
|
|
* Notes:
|
|
* The idea behind this function is to view the two regions as sets.
|
|
* Together they cover a rectangle of area that this function divides
|
|
* into horizontal bands where points are covered only by one region
|
|
* or by both. For the first case, the nonOverlapFunc is called with
|
|
* each the band and the band's upper and lower extents. For the
|
|
* second, the overlapFunc is called to process the entire band. It
|
|
* is responsible for clipping the rectangles in the band, though
|
|
* this function provides the boundaries.
|
|
* At the end of each band, the new region is coalesced, if possible,
|
|
* to reduce the number of rectangles in the region.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
|
|
typedef Bool (*OverlapProcPtr)(
|
|
RegionPtr pReg,
|
|
BoxPtr r1,
|
|
BoxPtr r1End,
|
|
BoxPtr r2,
|
|
BoxPtr r2End,
|
|
short y1,
|
|
short y2,
|
|
Bool *pOverlap);
|
|
|
|
static Bool
|
|
miRegionOp(
|
|
RegionPtr newReg, /* Place to store result */
|
|
RegionPtr reg1, /* First region in operation */
|
|
RegionPtr reg2, /* 2d region in operation */
|
|
OverlapProcPtr overlapFunc, /* Function to call for over-
|
|
* lapping bands */
|
|
Bool appendNon1, /* Append non-overlapping bands */
|
|
/* in region 1 ? */
|
|
Bool appendNon2, /* Append non-overlapping bands */
|
|
/* in region 2 ? */
|
|
Bool *pOverlap)
|
|
{
|
|
register BoxPtr r1; /* Pointer into first region */
|
|
register BoxPtr r2; /* Pointer into 2d region */
|
|
BoxPtr r1End; /* End of 1st region */
|
|
BoxPtr r2End; /* End of 2d region */
|
|
short ybot; /* Bottom of intersection */
|
|
short ytop; /* Top of intersection */
|
|
RegDataPtr oldData; /* Old data for newReg */
|
|
int prevBand; /* Index of start of
|
|
* previous band in newReg */
|
|
int curBand; /* Index of start of current
|
|
* band in newReg */
|
|
register BoxPtr r1BandEnd; /* End of current band in r1 */
|
|
register BoxPtr r2BandEnd; /* End of current band in r2 */
|
|
short top; /* Top of non-overlapping band */
|
|
short bot; /* Bottom of non-overlapping band*/
|
|
register int r1y1; /* Temps for r1->y1 and r2->y1 */
|
|
register int r2y1;
|
|
int newSize;
|
|
int numRects;
|
|
|
|
/*
|
|
* Break any region computed from a broken region
|
|
*/
|
|
if (REGION_NAR (reg1) || REGION_NAR(reg2))
|
|
return miRegionBreak (newReg);
|
|
|
|
/*
|
|
* Initialization:
|
|
* set r1, r2, r1End and r2End appropriately, save the rectangles
|
|
* of the destination region until the end in case it's one of
|
|
* the two source regions, then mark the "new" region empty, allocating
|
|
* another array of rectangles for it to use.
|
|
*/
|
|
|
|
r1 = REGION_RECTS(reg1);
|
|
newSize = REGION_NUM_RECTS(reg1);
|
|
r1End = r1 + newSize;
|
|
numRects = REGION_NUM_RECTS(reg2);
|
|
r2 = REGION_RECTS(reg2);
|
|
r2End = r2 + numRects;
|
|
assert(r1 != r1End);
|
|
assert(r2 != r2End);
|
|
|
|
oldData = (RegDataPtr)NULL;
|
|
if (((newReg == reg1) && (newSize > 1)) ||
|
|
((newReg == reg2) && (numRects > 1)))
|
|
{
|
|
oldData = newReg->data;
|
|
newReg->data = &miEmptyData;
|
|
}
|
|
/* guess at new size */
|
|
if (numRects > newSize)
|
|
newSize = numRects;
|
|
newSize <<= 1;
|
|
if (!newReg->data)
|
|
newReg->data = &miEmptyData;
|
|
else if (newReg->data->size)
|
|
newReg->data->numRects = 0;
|
|
if (newSize > newReg->data->size)
|
|
if (!miRectAlloc(newReg, newSize))
|
|
return FALSE;
|
|
|
|
/*
|
|
* Initialize ybot.
|
|
* In the upcoming loop, ybot and ytop serve different functions depending
|
|
* on whether the band being handled is an overlapping or non-overlapping
|
|
* band.
|
|
* In the case of a non-overlapping band (only one of the regions
|
|
* has points in the band), ybot is the bottom of the most recent
|
|
* intersection and thus clips the top of the rectangles in that band.
|
|
* ytop is the top of the next intersection between the two regions and
|
|
* serves to clip the bottom of the rectangles in the current band.
|
|
* For an overlapping band (where the two regions intersect), ytop clips
|
|
* the top of the rectangles of both regions and ybot clips the bottoms.
|
|
*/
|
|
|
|
ybot = min(r1->y1, r2->y1);
|
|
|
|
/*
|
|
* prevBand serves to mark the start of the previous band so rectangles
|
|
* can be coalesced into larger rectangles. qv. miCoalesce, above.
|
|
* In the beginning, there is no previous band, so prevBand == curBand
|
|
* (curBand is set later on, of course, but the first band will always
|
|
* start at index 0). prevBand and curBand must be indices because of
|
|
* the possible expansion, and resultant moving, of the new region's
|
|
* array of rectangles.
|
|
*/
|
|
prevBand = 0;
|
|
|
|
do {
|
|
/*
|
|
* This algorithm proceeds one source-band (as opposed to a
|
|
* destination band, which is determined by where the two regions
|
|
* intersect) at a time. r1BandEnd and r2BandEnd serve to mark the
|
|
* rectangle after the last one in the current band for their
|
|
* respective regions.
|
|
*/
|
|
assert(r1 != r1End);
|
|
assert(r2 != r2End);
|
|
|
|
FindBand(r1, r1BandEnd, r1End, r1y1);
|
|
FindBand(r2, r2BandEnd, r2End, r2y1);
|
|
|
|
/*
|
|
* First handle the band that doesn't intersect, if any.
|
|
*
|
|
* Note that attention is restricted to one band in the
|
|
* non-intersecting region at once, so if a region has n
|
|
* bands between the current position and the next place it overlaps
|
|
* the other, this entire loop will be passed through n times.
|
|
*/
|
|
if (r1y1 < r2y1) {
|
|
if (appendNon1) {
|
|
top = max(r1y1, ybot);
|
|
bot = min(r1->y2, r2y1);
|
|
if (top != bot) {
|
|
curBand = newReg->data->numRects;
|
|
miAppendNonO(newReg, r1, r1BandEnd, top, bot);
|
|
Coalesce(newReg, prevBand, curBand);
|
|
}
|
|
}
|
|
ytop = r2y1;
|
|
} else if (r2y1 < r1y1) {
|
|
if (appendNon2) {
|
|
top = max(r2y1, ybot);
|
|
bot = min(r2->y2, r1y1);
|
|
if (top != bot) {
|
|
curBand = newReg->data->numRects;
|
|
miAppendNonO(newReg, r2, r2BandEnd, top, bot);
|
|
Coalesce(newReg, prevBand, curBand);
|
|
}
|
|
}
|
|
ytop = r1y1;
|
|
} else {
|
|
ytop = r1y1;
|
|
}
|
|
|
|
/*
|
|
* Now see if we've hit an intersecting band. The two bands only
|
|
* intersect if ybot > ytop
|
|
*/
|
|
ybot = min(r1->y2, r2->y2);
|
|
if (ybot > ytop) {
|
|
curBand = newReg->data->numRects;
|
|
(* overlapFunc)(newReg, r1, r1BandEnd, r2, r2BandEnd, ytop, ybot,
|
|
pOverlap);
|
|
Coalesce(newReg, prevBand, curBand);
|
|
}
|
|
|
|
/*
|
|
* If we've finished with a band (y2 == ybot) we skip forward
|
|
* in the region to the next band.
|
|
*/
|
|
if (r1->y2 == ybot) r1 = r1BandEnd;
|
|
if (r2->y2 == ybot) r2 = r2BandEnd;
|
|
|
|
} while (r1 != r1End && r2 != r2End);
|
|
|
|
/*
|
|
* Deal with whichever region (if any) still has rectangles left.
|
|
*
|
|
* We only need to worry about banding and coalescing for the very first
|
|
* band left. After that, we can just group all remaining boxes,
|
|
* regardless of how many bands, into one final append to the list.
|
|
*/
|
|
|
|
if ((r1 != r1End) && appendNon1) {
|
|
/* Do first nonOverlap1Func call, which may be able to coalesce */
|
|
FindBand(r1, r1BandEnd, r1End, r1y1);
|
|
curBand = newReg->data->numRects;
|
|
miAppendNonO(newReg, r1, r1BandEnd, max(r1y1, ybot), r1->y2);
|
|
Coalesce(newReg, prevBand, curBand);
|
|
/* Just append the rest of the boxes */
|
|
AppendRegions(newReg, r1BandEnd, r1End);
|
|
|
|
} else if ((r2 != r2End) && appendNon2) {
|
|
/* Do first nonOverlap2Func call, which may be able to coalesce */
|
|
FindBand(r2, r2BandEnd, r2End, r2y1);
|
|
curBand = newReg->data->numRects;
|
|
miAppendNonO(newReg, r2, r2BandEnd, max(r2y1, ybot), r2->y2);
|
|
Coalesce(newReg, prevBand, curBand);
|
|
/* Append rest of boxes */
|
|
AppendRegions(newReg, r2BandEnd, r2End);
|
|
}
|
|
|
|
if (oldData)
|
|
xfree(oldData);
|
|
|
|
if (!(numRects = newReg->data->numRects))
|
|
{
|
|
xfreeData(newReg);
|
|
newReg->data = &miEmptyData;
|
|
}
|
|
else if (numRects == 1)
|
|
{
|
|
newReg->extents = *REGION_BOXPTR(newReg);
|
|
xfreeData(newReg);
|
|
newReg->data = (RegDataPtr)NULL;
|
|
}
|
|
else
|
|
{
|
|
DOWNSIZE(newReg, numRects);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miSetExtents --
|
|
* Reset the extents of a region to what they should be. Called by
|
|
* miSubtract and miIntersect as they can't figure it out along the
|
|
* way or do so easily, as miUnion can.
|
|
*
|
|
* Results:
|
|
* None.
|
|
*
|
|
* Side Effects:
|
|
* The region's 'extents' structure is overwritten.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
miSetExtents (pReg)
|
|
register RegionPtr pReg;
|
|
{
|
|
register BoxPtr pBox, pBoxEnd;
|
|
|
|
if (!pReg->data)
|
|
return;
|
|
if (!pReg->data->size)
|
|
{
|
|
pReg->extents.x2 = pReg->extents.x1;
|
|
pReg->extents.y2 = pReg->extents.y1;
|
|
return;
|
|
}
|
|
|
|
pBox = REGION_BOXPTR(pReg);
|
|
pBoxEnd = REGION_END(pReg);
|
|
|
|
/*
|
|
* Since pBox is the first rectangle in the region, it must have the
|
|
* smallest y1 and since pBoxEnd is the last rectangle in the region,
|
|
* it must have the largest y2, because of banding. Initialize x1 and
|
|
* x2 from pBox and pBoxEnd, resp., as good things to initialize them
|
|
* to...
|
|
*/
|
|
pReg->extents.x1 = pBox->x1;
|
|
pReg->extents.y1 = pBox->y1;
|
|
pReg->extents.x2 = pBoxEnd->x2;
|
|
pReg->extents.y2 = pBoxEnd->y2;
|
|
|
|
assert(pReg->extents.y1 < pReg->extents.y2);
|
|
while (pBox <= pBoxEnd) {
|
|
if (pBox->x1 < pReg->extents.x1)
|
|
pReg->extents.x1 = pBox->x1;
|
|
if (pBox->x2 > pReg->extents.x2)
|
|
pReg->extents.x2 = pBox->x2;
|
|
pBox++;
|
|
};
|
|
|
|
assert(pReg->extents.x1 < pReg->extents.x2);
|
|
}
|
|
|
|
/*======================================================================
|
|
* Region Intersection
|
|
*====================================================================*/
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miIntersectO --
|
|
* Handle an overlapping band for miIntersect.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* Rectangles may be added to the region.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
/*ARGSUSED*/
|
|
static Bool
|
|
miIntersectO (
|
|
register RegionPtr pReg,
|
|
register BoxPtr r1,
|
|
BoxPtr r1End,
|
|
register BoxPtr r2,
|
|
BoxPtr r2End,
|
|
short y1,
|
|
short y2,
|
|
Bool *pOverlap)
|
|
{
|
|
register int x1;
|
|
register int x2;
|
|
register BoxPtr pNextRect;
|
|
|
|
pNextRect = REGION_TOP(pReg);
|
|
|
|
assert(y1 < y2);
|
|
assert(r1 != r1End && r2 != r2End);
|
|
|
|
do {
|
|
x1 = max(r1->x1, r2->x1);
|
|
x2 = min(r1->x2, r2->x2);
|
|
|
|
/*
|
|
* If there's any overlap between the two rectangles, add that
|
|
* overlap to the new region.
|
|
*/
|
|
if (x1 < x2)
|
|
NEWRECT(pReg, pNextRect, x1, y1, x2, y2);
|
|
|
|
/*
|
|
* Advance the pointer(s) with the leftmost right side, since the next
|
|
* rectangle on that list may still overlap the other region's
|
|
* current rectangle.
|
|
*/
|
|
if (r1->x2 == x2) {
|
|
r1++;
|
|
}
|
|
if (r2->x2 == x2) {
|
|
r2++;
|
|
}
|
|
} while ((r1 != r1End) && (r2 != r2End));
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
_X_EXPORT Bool
|
|
miIntersect(newReg, reg1, reg2)
|
|
register RegionPtr newReg; /* destination Region */
|
|
register RegionPtr reg1;
|
|
register RegionPtr reg2; /* source regions */
|
|
{
|
|
good(reg1);
|
|
good(reg2);
|
|
good(newReg);
|
|
/* check for trivial reject */
|
|
if (REGION_NIL(reg1) || REGION_NIL(reg2) ||
|
|
!EXTENTCHECK(®1->extents, ®2->extents))
|
|
{
|
|
/* Covers about 20% of all cases */
|
|
xfreeData(newReg);
|
|
newReg->extents.x2 = newReg->extents.x1;
|
|
newReg->extents.y2 = newReg->extents.y1;
|
|
if (REGION_NAR(reg1) || REGION_NAR(reg2))
|
|
{
|
|
newReg->data = &miBrokenData;
|
|
return FALSE;
|
|
}
|
|
else
|
|
newReg->data = &miEmptyData;
|
|
}
|
|
else if (!reg1->data && !reg2->data)
|
|
{
|
|
/* Covers about 80% of cases that aren't trivially rejected */
|
|
newReg->extents.x1 = max(reg1->extents.x1, reg2->extents.x1);
|
|
newReg->extents.y1 = max(reg1->extents.y1, reg2->extents.y1);
|
|
newReg->extents.x2 = min(reg1->extents.x2, reg2->extents.x2);
|
|
newReg->extents.y2 = min(reg1->extents.y2, reg2->extents.y2);
|
|
xfreeData(newReg);
|
|
newReg->data = (RegDataPtr)NULL;
|
|
}
|
|
else if (!reg2->data && SUBSUMES(®2->extents, ®1->extents))
|
|
{
|
|
return miRegionCopy(newReg, reg1);
|
|
}
|
|
else if (!reg1->data && SUBSUMES(®1->extents, ®2->extents))
|
|
{
|
|
return miRegionCopy(newReg, reg2);
|
|
}
|
|
else if (reg1 == reg2)
|
|
{
|
|
return miRegionCopy(newReg, reg1);
|
|
}
|
|
else
|
|
{
|
|
/* General purpose intersection */
|
|
Bool overlap; /* result ignored */
|
|
if (!miRegionOp(newReg, reg1, reg2, miIntersectO, FALSE, FALSE,
|
|
&overlap))
|
|
return FALSE;
|
|
miSetExtents(newReg);
|
|
}
|
|
|
|
good(newReg);
|
|
return(TRUE);
|
|
}
|
|
|
|
#define MERGERECT(r) \
|
|
{ \
|
|
if (r->x1 <= x2) { \
|
|
/* Merge with current rectangle */ \
|
|
if (r->x1 < x2) *pOverlap = TRUE; \
|
|
if (x2 < r->x2) x2 = r->x2; \
|
|
} else { \
|
|
/* Add current rectangle, start new one */ \
|
|
NEWRECT(pReg, pNextRect, x1, y1, x2, y2); \
|
|
x1 = r->x1; \
|
|
x2 = r->x2; \
|
|
} \
|
|
r++; \
|
|
}
|
|
|
|
/*======================================================================
|
|
* Region Union
|
|
*====================================================================*/
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miUnionO --
|
|
* Handle an overlapping band for the union operation. Picks the
|
|
* left-most rectangle each time and merges it into the region.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* pReg is overwritten.
|
|
* pOverlap is set to TRUE if any boxes overlap.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static Bool
|
|
miUnionO (
|
|
register RegionPtr pReg,
|
|
register BoxPtr r1,
|
|
BoxPtr r1End,
|
|
register BoxPtr r2,
|
|
BoxPtr r2End,
|
|
short y1,
|
|
short y2,
|
|
Bool *pOverlap)
|
|
{
|
|
register BoxPtr pNextRect;
|
|
register int x1; /* left and right side of current union */
|
|
register int x2;
|
|
|
|
assert (y1 < y2);
|
|
assert(r1 != r1End && r2 != r2End);
|
|
|
|
pNextRect = REGION_TOP(pReg);
|
|
|
|
/* Start off current rectangle */
|
|
if (r1->x1 < r2->x1)
|
|
{
|
|
x1 = r1->x1;
|
|
x2 = r1->x2;
|
|
r1++;
|
|
}
|
|
else
|
|
{
|
|
x1 = r2->x1;
|
|
x2 = r2->x2;
|
|
r2++;
|
|
}
|
|
while (r1 != r1End && r2 != r2End)
|
|
{
|
|
if (r1->x1 < r2->x1) MERGERECT(r1) else MERGERECT(r2);
|
|
}
|
|
|
|
/* Finish off whoever (if any) is left */
|
|
if (r1 != r1End)
|
|
{
|
|
do
|
|
{
|
|
MERGERECT(r1);
|
|
} while (r1 != r1End);
|
|
}
|
|
else if (r2 != r2End)
|
|
{
|
|
do
|
|
{
|
|
MERGERECT(r2);
|
|
} while (r2 != r2End);
|
|
}
|
|
|
|
/* Add current rectangle */
|
|
NEWRECT(pReg, pNextRect, x1, y1, x2, y2);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
_X_EXPORT Bool
|
|
miUnion(newReg, reg1, reg2)
|
|
RegionPtr newReg; /* destination Region */
|
|
register RegionPtr reg1;
|
|
register RegionPtr reg2; /* source regions */
|
|
{
|
|
Bool overlap; /* result ignored */
|
|
|
|
/* Return TRUE if some overlap between reg1, reg2 */
|
|
good(reg1);
|
|
good(reg2);
|
|
good(newReg);
|
|
/* checks all the simple cases */
|
|
|
|
/*
|
|
* Region 1 and 2 are the same
|
|
*/
|
|
if (reg1 == reg2)
|
|
{
|
|
return miRegionCopy(newReg, reg1);
|
|
}
|
|
|
|
/*
|
|
* Region 1 is empty
|
|
*/
|
|
if (REGION_NIL(reg1))
|
|
{
|
|
if (REGION_NAR(reg1))
|
|
return miRegionBreak (newReg);
|
|
if (newReg != reg2)
|
|
return miRegionCopy(newReg, reg2);
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Region 2 is empty
|
|
*/
|
|
if (REGION_NIL(reg2))
|
|
{
|
|
if (REGION_NAR(reg2))
|
|
return miRegionBreak (newReg);
|
|
if (newReg != reg1)
|
|
return miRegionCopy(newReg, reg1);
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Region 1 completely subsumes region 2
|
|
*/
|
|
if (!reg1->data && SUBSUMES(®1->extents, ®2->extents))
|
|
{
|
|
if (newReg != reg1)
|
|
return miRegionCopy(newReg, reg1);
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Region 2 completely subsumes region 1
|
|
*/
|
|
if (!reg2->data && SUBSUMES(®2->extents, ®1->extents))
|
|
{
|
|
if (newReg != reg2)
|
|
return miRegionCopy(newReg, reg2);
|
|
return TRUE;
|
|
}
|
|
|
|
if (!miRegionOp(newReg, reg1, reg2, miUnionO, TRUE, TRUE, &overlap))
|
|
return FALSE;
|
|
|
|
newReg->extents.x1 = min(reg1->extents.x1, reg2->extents.x1);
|
|
newReg->extents.y1 = min(reg1->extents.y1, reg2->extents.y1);
|
|
newReg->extents.x2 = max(reg1->extents.x2, reg2->extents.x2);
|
|
newReg->extents.y2 = max(reg1->extents.y2, reg2->extents.y2);
|
|
good(newReg);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*======================================================================
|
|
* Batch Rectangle Union
|
|
*====================================================================*/
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miRegionAppend --
|
|
*
|
|
* "Append" the rgn rectangles onto the end of dstrgn, maintaining
|
|
* knowledge of YX-banding when it's easy. Otherwise, dstrgn just
|
|
* becomes a non-y-x-banded random collection of rectangles, and not
|
|
* yet a true region. After a sequence of appends, the caller must
|
|
* call miRegionValidate to ensure that a valid region is constructed.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* dstrgn is modified if rgn has rectangles.
|
|
*
|
|
*/
|
|
_X_EXPORT Bool
|
|
miRegionAppend(dstrgn, rgn)
|
|
register RegionPtr dstrgn;
|
|
register RegionPtr rgn;
|
|
{
|
|
int numRects, dnumRects, size;
|
|
BoxPtr new, old;
|
|
Bool prepend;
|
|
|
|
if (REGION_NAR(rgn))
|
|
return miRegionBreak (dstrgn);
|
|
|
|
if (!rgn->data && (dstrgn->data == &miEmptyData))
|
|
{
|
|
dstrgn->extents = rgn->extents;
|
|
dstrgn->data = (RegDataPtr)NULL;
|
|
return TRUE;
|
|
}
|
|
|
|
numRects = REGION_NUM_RECTS(rgn);
|
|
if (!numRects)
|
|
return TRUE;
|
|
prepend = FALSE;
|
|
size = numRects;
|
|
dnumRects = REGION_NUM_RECTS(dstrgn);
|
|
if (!dnumRects && (size < 200))
|
|
size = 200; /* XXX pick numbers out of a hat */
|
|
RECTALLOC(dstrgn, size);
|
|
old = REGION_RECTS(rgn);
|
|
if (!dnumRects)
|
|
dstrgn->extents = rgn->extents;
|
|
else if (dstrgn->extents.x2 > dstrgn->extents.x1)
|
|
{
|
|
register BoxPtr first, last;
|
|
|
|
first = old;
|
|
last = REGION_BOXPTR(dstrgn) + (dnumRects - 1);
|
|
if ((first->y1 > last->y2) ||
|
|
((first->y1 == last->y1) && (first->y2 == last->y2) &&
|
|
(first->x1 > last->x2)))
|
|
{
|
|
if (rgn->extents.x1 < dstrgn->extents.x1)
|
|
dstrgn->extents.x1 = rgn->extents.x1;
|
|
if (rgn->extents.x2 > dstrgn->extents.x2)
|
|
dstrgn->extents.x2 = rgn->extents.x2;
|
|
dstrgn->extents.y2 = rgn->extents.y2;
|
|
}
|
|
else
|
|
{
|
|
first = REGION_BOXPTR(dstrgn);
|
|
last = old + (numRects - 1);
|
|
if ((first->y1 > last->y2) ||
|
|
((first->y1 == last->y1) && (first->y2 == last->y2) &&
|
|
(first->x1 > last->x2)))
|
|
{
|
|
prepend = TRUE;
|
|
if (rgn->extents.x1 < dstrgn->extents.x1)
|
|
dstrgn->extents.x1 = rgn->extents.x1;
|
|
if (rgn->extents.x2 > dstrgn->extents.x2)
|
|
dstrgn->extents.x2 = rgn->extents.x2;
|
|
dstrgn->extents.y1 = rgn->extents.y1;
|
|
}
|
|
else
|
|
dstrgn->extents.x2 = dstrgn->extents.x1;
|
|
}
|
|
}
|
|
if (prepend)
|
|
{
|
|
new = REGION_BOX(dstrgn, numRects);
|
|
if (dnumRects == 1)
|
|
*new = *REGION_BOXPTR(dstrgn);
|
|
else
|
|
memmove((char *)new,(char *)REGION_BOXPTR(dstrgn),
|
|
dnumRects * sizeof(BoxRec));
|
|
new = REGION_BOXPTR(dstrgn);
|
|
}
|
|
else
|
|
new = REGION_BOXPTR(dstrgn) + dnumRects;
|
|
if (numRects == 1)
|
|
*new = *old;
|
|
else
|
|
memmove((char *)new, (char *)old, numRects * sizeof(BoxRec));
|
|
dstrgn->data->numRects += numRects;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
#define ExchangeRects(a, b) \
|
|
{ \
|
|
BoxRec t; \
|
|
t = rects[a]; \
|
|
rects[a] = rects[b]; \
|
|
rects[b] = t; \
|
|
}
|
|
|
|
static void
|
|
QuickSortRects(
|
|
register BoxRec rects[],
|
|
register int numRects)
|
|
{
|
|
register int y1;
|
|
register int x1;
|
|
register int i, j;
|
|
register BoxPtr r;
|
|
|
|
/* Always called with numRects > 1 */
|
|
|
|
do
|
|
{
|
|
if (numRects == 2)
|
|
{
|
|
if (rects[0].y1 > rects[1].y1 ||
|
|
(rects[0].y1 == rects[1].y1 && rects[0].x1 > rects[1].x1))
|
|
ExchangeRects(0, 1);
|
|
return;
|
|
}
|
|
|
|
/* Choose partition element, stick in location 0 */
|
|
ExchangeRects(0, numRects >> 1);
|
|
y1 = rects[0].y1;
|
|
x1 = rects[0].x1;
|
|
|
|
/* Partition array */
|
|
i = 0;
|
|
j = numRects;
|
|
do
|
|
{
|
|
r = &(rects[i]);
|
|
do
|
|
{
|
|
r++;
|
|
i++;
|
|
} while (i != numRects &&
|
|
(r->y1 < y1 || (r->y1 == y1 && r->x1 < x1)));
|
|
r = &(rects[j]);
|
|
do
|
|
{
|
|
r--;
|
|
j--;
|
|
} while (y1 < r->y1 || (y1 == r->y1 && x1 < r->x1));
|
|
if (i < j)
|
|
ExchangeRects(i, j);
|
|
} while (i < j);
|
|
|
|
/* Move partition element back to middle */
|
|
ExchangeRects(0, j);
|
|
|
|
/* Recurse */
|
|
if (numRects-j-1 > 1)
|
|
QuickSortRects(&rects[j+1], numRects-j-1);
|
|
numRects = j;
|
|
} while (numRects > 1);
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miRegionValidate --
|
|
*
|
|
* Take a ``region'' which is a non-y-x-banded random collection of
|
|
* rectangles, and compute a nice region which is the union of all the
|
|
* rectangles.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* The passed-in ``region'' may be modified.
|
|
* pOverlap set to TRUE if any retangles overlapped, else FALSE;
|
|
*
|
|
* Strategy:
|
|
* Step 1. Sort the rectangles into ascending order with primary key y1
|
|
* and secondary key x1.
|
|
*
|
|
* Step 2. Split the rectangles into the minimum number of proper y-x
|
|
* banded regions. This may require horizontally merging
|
|
* rectangles, and vertically coalescing bands. With any luck,
|
|
* this step in an identity tranformation (ala the Box widget),
|
|
* or a coalescing into 1 box (ala Menus).
|
|
*
|
|
* Step 3. Merge the separate regions down to a single region by calling
|
|
* miUnion. Maximize the work each miUnion call does by using
|
|
* a binary merge.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
|
|
_X_EXPORT Bool
|
|
miRegionValidate(badreg, pOverlap)
|
|
RegionPtr badreg;
|
|
Bool *pOverlap;
|
|
{
|
|
/* Descriptor for regions under construction in Step 2. */
|
|
typedef struct {
|
|
RegionRec reg;
|
|
int prevBand;
|
|
int curBand;
|
|
} RegionInfo;
|
|
|
|
int numRects; /* Original numRects for badreg */
|
|
RegionInfo *ri; /* Array of current regions */
|
|
int numRI; /* Number of entries used in ri */
|
|
int sizeRI; /* Number of entries available in ri */
|
|
int i; /* Index into rects */
|
|
register int j; /* Index into ri */
|
|
register RegionInfo *rit; /* &ri[j] */
|
|
register RegionPtr reg; /* ri[j].reg */
|
|
register BoxPtr box; /* Current box in rects */
|
|
register BoxPtr riBox; /* Last box in ri[j].reg */
|
|
register RegionPtr hreg; /* ri[j_half].reg */
|
|
Bool ret = TRUE;
|
|
|
|
*pOverlap = FALSE;
|
|
if (!badreg->data)
|
|
{
|
|
good(badreg);
|
|
return TRUE;
|
|
}
|
|
numRects = badreg->data->numRects;
|
|
if (!numRects)
|
|
{
|
|
if (REGION_NAR(badreg))
|
|
return FALSE;
|
|
good(badreg);
|
|
return TRUE;
|
|
}
|
|
if (badreg->extents.x1 < badreg->extents.x2)
|
|
{
|
|
if ((numRects) == 1)
|
|
{
|
|
xfreeData(badreg);
|
|
badreg->data = (RegDataPtr) NULL;
|
|
}
|
|
else
|
|
{
|
|
DOWNSIZE(badreg, numRects);
|
|
}
|
|
good(badreg);
|
|
return TRUE;
|
|
}
|
|
|
|
/* Step 1: Sort the rects array into ascending (y1, x1) order */
|
|
QuickSortRects(REGION_BOXPTR(badreg), numRects);
|
|
|
|
/* Step 2: Scatter the sorted array into the minimum number of regions */
|
|
|
|
/* Set up the first region to be the first rectangle in badreg */
|
|
/* Note that step 2 code will never overflow the ri[0].reg rects array */
|
|
ri = (RegionInfo *) xalloc(4 * sizeof(RegionInfo));
|
|
if (!ri)
|
|
return miRegionBreak (badreg);
|
|
sizeRI = 4;
|
|
numRI = 1;
|
|
ri[0].prevBand = 0;
|
|
ri[0].curBand = 0;
|
|
ri[0].reg = *badreg;
|
|
box = REGION_BOXPTR(&ri[0].reg);
|
|
ri[0].reg.extents = *box;
|
|
ri[0].reg.data->numRects = 1;
|
|
|
|
/* Now scatter rectangles into the minimum set of valid regions. If the
|
|
next rectangle to be added to a region would force an existing rectangle
|
|
in the region to be split up in order to maintain y-x banding, just
|
|
forget it. Try the next region. If it doesn't fit cleanly into any
|
|
region, make a new one. */
|
|
|
|
for (i = numRects; --i > 0;)
|
|
{
|
|
box++;
|
|
/* Look for a region to append box to */
|
|
for (j = numRI, rit = ri; --j >= 0; rit++)
|
|
{
|
|
reg = &rit->reg;
|
|
riBox = REGION_END(reg);
|
|
|
|
if (box->y1 == riBox->y1 && box->y2 == riBox->y2)
|
|
{
|
|
/* box is in same band as riBox. Merge or append it */
|
|
if (box->x1 <= riBox->x2)
|
|
{
|
|
/* Merge it with riBox */
|
|
if (box->x1 < riBox->x2) *pOverlap = TRUE;
|
|
if (box->x2 > riBox->x2) riBox->x2 = box->x2;
|
|
}
|
|
else
|
|
{
|
|
RECTALLOC_BAIL(reg, 1, bail);
|
|
*REGION_TOP(reg) = *box;
|
|
reg->data->numRects++;
|
|
}
|
|
goto NextRect; /* So sue me */
|
|
}
|
|
else if (box->y1 >= riBox->y2)
|
|
{
|
|
/* Put box into new band */
|
|
if (reg->extents.x2 < riBox->x2) reg->extents.x2 = riBox->x2;
|
|
if (reg->extents.x1 > box->x1) reg->extents.x1 = box->x1;
|
|
Coalesce(reg, rit->prevBand, rit->curBand);
|
|
rit->curBand = reg->data->numRects;
|
|
RECTALLOC_BAIL(reg, 1, bail);
|
|
*REGION_TOP(reg) = *box;
|
|
reg->data->numRects++;
|
|
goto NextRect;
|
|
}
|
|
/* Well, this region was inappropriate. Try the next one. */
|
|
} /* for j */
|
|
|
|
/* Uh-oh. No regions were appropriate. Create a new one. */
|
|
if (sizeRI == numRI)
|
|
{
|
|
/* Oops, allocate space for new region information */
|
|
sizeRI <<= 1;
|
|
rit = (RegionInfo *) xrealloc(ri, sizeRI * sizeof(RegionInfo));
|
|
if (!rit)
|
|
goto bail;
|
|
ri = rit;
|
|
rit = &ri[numRI];
|
|
}
|
|
numRI++;
|
|
rit->prevBand = 0;
|
|
rit->curBand = 0;
|
|
rit->reg.extents = *box;
|
|
rit->reg.data = (RegDataPtr)NULL;
|
|
if (!miRectAlloc(&rit->reg, (i+numRI) / numRI)) /* MUST force allocation */
|
|
goto bail;
|
|
NextRect: ;
|
|
} /* for i */
|
|
|
|
/* Make a final pass over each region in order to Coalesce and set
|
|
extents.x2 and extents.y2 */
|
|
|
|
for (j = numRI, rit = ri; --j >= 0; rit++)
|
|
{
|
|
reg = &rit->reg;
|
|
riBox = REGION_END(reg);
|
|
reg->extents.y2 = riBox->y2;
|
|
if (reg->extents.x2 < riBox->x2) reg->extents.x2 = riBox->x2;
|
|
Coalesce(reg, rit->prevBand, rit->curBand);
|
|
if (reg->data->numRects == 1) /* keep unions happy below */
|
|
{
|
|
xfreeData(reg);
|
|
reg->data = (RegDataPtr)NULL;
|
|
}
|
|
}
|
|
|
|
/* Step 3: Union all regions into a single region */
|
|
while (numRI > 1)
|
|
{
|
|
int half = numRI/2;
|
|
for (j = numRI & 1; j < (half + (numRI & 1)); j++)
|
|
{
|
|
reg = &ri[j].reg;
|
|
hreg = &ri[j+half].reg;
|
|
if (!miRegionOp(reg, reg, hreg, miUnionO, TRUE, TRUE, pOverlap))
|
|
ret = FALSE;
|
|
if (hreg->extents.x1 < reg->extents.x1)
|
|
reg->extents.x1 = hreg->extents.x1;
|
|
if (hreg->extents.y1 < reg->extents.y1)
|
|
reg->extents.y1 = hreg->extents.y1;
|
|
if (hreg->extents.x2 > reg->extents.x2)
|
|
reg->extents.x2 = hreg->extents.x2;
|
|
if (hreg->extents.y2 > reg->extents.y2)
|
|
reg->extents.y2 = hreg->extents.y2;
|
|
xfreeData(hreg);
|
|
}
|
|
numRI -= half;
|
|
}
|
|
*badreg = ri[0].reg;
|
|
xfree(ri);
|
|
good(badreg);
|
|
return ret;
|
|
bail:
|
|
for (i = 0; i < numRI; i++)
|
|
xfreeData(&ri[i].reg);
|
|
xfree (ri);
|
|
return miRegionBreak (badreg);
|
|
}
|
|
|
|
_X_EXPORT RegionPtr
|
|
miRectsToRegion(nrects, prect, ctype)
|
|
int nrects;
|
|
register xRectangle *prect;
|
|
int ctype;
|
|
{
|
|
register RegionPtr pRgn;
|
|
register RegDataPtr pData;
|
|
register BoxPtr pBox;
|
|
register int i;
|
|
int x1, y1, x2, y2;
|
|
|
|
pRgn = miRegionCreate(NullBox, 0);
|
|
if (REGION_NAR (pRgn))
|
|
return pRgn;
|
|
if (!nrects)
|
|
return pRgn;
|
|
if (nrects == 1)
|
|
{
|
|
x1 = prect->x;
|
|
y1 = prect->y;
|
|
if ((x2 = x1 + (int) prect->width) > MAXSHORT)
|
|
x2 = MAXSHORT;
|
|
if ((y2 = y1 + (int) prect->height) > MAXSHORT)
|
|
y2 = MAXSHORT;
|
|
if (x1 != x2 && y1 != y2)
|
|
{
|
|
pRgn->extents.x1 = x1;
|
|
pRgn->extents.y1 = y1;
|
|
pRgn->extents.x2 = x2;
|
|
pRgn->extents.y2 = y2;
|
|
pRgn->data = (RegDataPtr)NULL;
|
|
}
|
|
return pRgn;
|
|
}
|
|
pData = xallocData(nrects);
|
|
if (!pData)
|
|
{
|
|
miRegionBreak (pRgn);
|
|
return pRgn;
|
|
}
|
|
pBox = (BoxPtr) (pData + 1);
|
|
for (i = nrects; --i >= 0; prect++)
|
|
{
|
|
x1 = prect->x;
|
|
y1 = prect->y;
|
|
if ((x2 = x1 + (int) prect->width) > MAXSHORT)
|
|
x2 = MAXSHORT;
|
|
if ((y2 = y1 + (int) prect->height) > MAXSHORT)
|
|
y2 = MAXSHORT;
|
|
if (x1 != x2 && y1 != y2)
|
|
{
|
|
pBox->x1 = x1;
|
|
pBox->y1 = y1;
|
|
pBox->x2 = x2;
|
|
pBox->y2 = y2;
|
|
pBox++;
|
|
}
|
|
}
|
|
if (pBox != (BoxPtr) (pData + 1))
|
|
{
|
|
pData->size = nrects;
|
|
pData->numRects = pBox - (BoxPtr) (pData + 1);
|
|
pRgn->data = pData;
|
|
if (ctype != CT_YXBANDED)
|
|
{
|
|
Bool overlap; /* result ignored */
|
|
pRgn->extents.x1 = pRgn->extents.x2 = 0;
|
|
miRegionValidate(pRgn, &overlap);
|
|
}
|
|
else
|
|
miSetExtents(pRgn);
|
|
good(pRgn);
|
|
}
|
|
else
|
|
{
|
|
xfree (pData);
|
|
}
|
|
return pRgn;
|
|
}
|
|
|
|
/*======================================================================
|
|
* Region Subtraction
|
|
*====================================================================*/
|
|
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miSubtractO --
|
|
* Overlapping band subtraction. x1 is the left-most point not yet
|
|
* checked.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* pReg may have rectangles added to it.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
/*ARGSUSED*/
|
|
static Bool
|
|
miSubtractO (
|
|
register RegionPtr pReg,
|
|
register BoxPtr r1,
|
|
BoxPtr r1End,
|
|
register BoxPtr r2,
|
|
BoxPtr r2End,
|
|
register short y1,
|
|
short y2,
|
|
Bool *pOverlap)
|
|
{
|
|
register BoxPtr pNextRect;
|
|
register int x1;
|
|
|
|
x1 = r1->x1;
|
|
|
|
assert(y1<y2);
|
|
assert(r1 != r1End && r2 != r2End);
|
|
|
|
pNextRect = REGION_TOP(pReg);
|
|
|
|
do
|
|
{
|
|
if (r2->x2 <= x1)
|
|
{
|
|
/*
|
|
* Subtrahend entirely to left of minuend: go to next subtrahend.
|
|
*/
|
|
r2++;
|
|
}
|
|
else if (r2->x1 <= x1)
|
|
{
|
|
/*
|
|
* Subtrahend preceeds minuend: nuke left edge of minuend.
|
|
*/
|
|
x1 = r2->x2;
|
|
if (x1 >= r1->x2)
|
|
{
|
|
/*
|
|
* Minuend completely covered: advance to next minuend and
|
|
* reset left fence to edge of new minuend.
|
|
*/
|
|
r1++;
|
|
if (r1 != r1End)
|
|
x1 = r1->x1;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Subtrahend now used up since it doesn't extend beyond
|
|
* minuend
|
|
*/
|
|
r2++;
|
|
}
|
|
}
|
|
else if (r2->x1 < r1->x2)
|
|
{
|
|
/*
|
|
* Left part of subtrahend covers part of minuend: add uncovered
|
|
* part of minuend to region and skip to next subtrahend.
|
|
*/
|
|
assert(x1<r2->x1);
|
|
NEWRECT(pReg, pNextRect, x1, y1, r2->x1, y2);
|
|
|
|
x1 = r2->x2;
|
|
if (x1 >= r1->x2)
|
|
{
|
|
/*
|
|
* Minuend used up: advance to new...
|
|
*/
|
|
r1++;
|
|
if (r1 != r1End)
|
|
x1 = r1->x1;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Subtrahend used up
|
|
*/
|
|
r2++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Minuend used up: add any remaining piece before advancing.
|
|
*/
|
|
if (r1->x2 > x1)
|
|
NEWRECT(pReg, pNextRect, x1, y1, r1->x2, y2);
|
|
r1++;
|
|
if (r1 != r1End)
|
|
x1 = r1->x1;
|
|
}
|
|
} while ((r1 != r1End) && (r2 != r2End));
|
|
|
|
|
|
/*
|
|
* Add remaining minuend rectangles to region.
|
|
*/
|
|
while (r1 != r1End)
|
|
{
|
|
assert(x1<r1->x2);
|
|
NEWRECT(pReg, pNextRect, x1, y1, r1->x2, y2);
|
|
r1++;
|
|
if (r1 != r1End)
|
|
x1 = r1->x1;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miSubtract --
|
|
* Subtract regS from regM and leave the result in regD.
|
|
* S stands for subtrahend, M for minuend and D for difference.
|
|
*
|
|
* Results:
|
|
* TRUE if successful.
|
|
*
|
|
* Side Effects:
|
|
* regD is overwritten.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
_X_EXPORT Bool
|
|
miSubtract(regD, regM, regS)
|
|
register RegionPtr regD;
|
|
register RegionPtr regM;
|
|
register RegionPtr regS;
|
|
{
|
|
Bool overlap; /* result ignored */
|
|
|
|
good(regM);
|
|
good(regS);
|
|
good(regD);
|
|
/* check for trivial rejects */
|
|
if (REGION_NIL(regM) || REGION_NIL(regS) ||
|
|
!EXTENTCHECK(®M->extents, ®S->extents))
|
|
{
|
|
if (REGION_NAR (regS))
|
|
return miRegionBreak (regD);
|
|
return miRegionCopy(regD, regM);
|
|
}
|
|
else if (regM == regS)
|
|
{
|
|
xfreeData(regD);
|
|
regD->extents.x2 = regD->extents.x1;
|
|
regD->extents.y2 = regD->extents.y1;
|
|
regD->data = &miEmptyData;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Add those rectangles in region 1 that aren't in region 2,
|
|
do yucky substraction for overlaps, and
|
|
just throw away rectangles in region 2 that aren't in region 1 */
|
|
if (!miRegionOp(regD, regM, regS, miSubtractO, TRUE, FALSE, &overlap))
|
|
return FALSE;
|
|
|
|
/*
|
|
* Can't alter RegD's extents before we call miRegionOp because
|
|
* it might be one of the source regions and miRegionOp depends
|
|
* on the extents of those regions being unaltered. Besides, this
|
|
* way there's no checking against rectangles that will be nuked
|
|
* due to coalescing, so we have to examine fewer rectangles.
|
|
*/
|
|
miSetExtents(regD);
|
|
good(regD);
|
|
return TRUE;
|
|
}
|
|
|
|
/*======================================================================
|
|
* Region Inversion
|
|
*====================================================================*/
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* miInverse --
|
|
* Take a region and a box and return a region that is everything
|
|
* in the box but not in the region. The careful reader will note
|
|
* that this is the same as subtracting the region from the box...
|
|
*
|
|
* Results:
|
|
* TRUE.
|
|
*
|
|
* Side Effects:
|
|
* newReg is overwritten.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
_X_EXPORT Bool
|
|
miInverse(newReg, reg1, invRect)
|
|
RegionPtr newReg; /* Destination region */
|
|
RegionPtr reg1; /* Region to invert */
|
|
BoxPtr invRect; /* Bounding box for inversion */
|
|
{
|
|
RegionRec invReg; /* Quick and dirty region made from the
|
|
* bounding box */
|
|
Bool overlap; /* result ignored */
|
|
|
|
good(reg1);
|
|
good(newReg);
|
|
/* check for trivial rejects */
|
|
if (REGION_NIL(reg1) || !EXTENTCHECK(invRect, ®1->extents))
|
|
{
|
|
if (REGION_NAR(reg1))
|
|
return miRegionBreak (newReg);
|
|
newReg->extents = *invRect;
|
|
xfreeData(newReg);
|
|
newReg->data = (RegDataPtr)NULL;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Add those rectangles in region 1 that aren't in region 2,
|
|
do yucky substraction for overlaps, and
|
|
just throw away rectangles in region 2 that aren't in region 1 */
|
|
invReg.extents = *invRect;
|
|
invReg.data = (RegDataPtr)NULL;
|
|
if (!miRegionOp(newReg, &invReg, reg1, miSubtractO, TRUE, FALSE, &overlap))
|
|
return FALSE;
|
|
|
|
/*
|
|
* Can't alter newReg's extents before we call miRegionOp because
|
|
* it might be one of the source regions and miRegionOp depends
|
|
* on the extents of those regions being unaltered. Besides, this
|
|
* way there's no checking against rectangles that will be nuked
|
|
* due to coalescing, so we have to examine fewer rectangles.
|
|
*/
|
|
miSetExtents(newReg);
|
|
good(newReg);
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* RectIn(region, rect)
|
|
* This routine takes a pointer to a region and a pointer to a box
|
|
* and determines if the box is outside/inside/partly inside the region.
|
|
*
|
|
* The idea is to travel through the list of rectangles trying to cover the
|
|
* passed box with them. Anytime a piece of the rectangle isn't covered
|
|
* by a band of rectangles, partOut is set TRUE. Any time a rectangle in
|
|
* the region covers part of the box, partIn is set TRUE. The process ends
|
|
* when either the box has been completely covered (we reached a band that
|
|
* doesn't overlap the box, partIn is TRUE and partOut is false), the
|
|
* box has been partially covered (partIn == partOut == TRUE -- because of
|
|
* the banding, the first time this is true we know the box is only
|
|
* partially in the region) or is outside the region (we reached a band
|
|
* that doesn't overlap the box at all and partIn is false)
|
|
*/
|
|
|
|
_X_EXPORT int
|
|
miRectIn(region, prect)
|
|
register RegionPtr region;
|
|
register BoxPtr prect;
|
|
{
|
|
register int x;
|
|
register int y;
|
|
register BoxPtr pbox;
|
|
register BoxPtr pboxEnd;
|
|
int partIn, partOut;
|
|
int numRects;
|
|
|
|
good(region);
|
|
numRects = REGION_NUM_RECTS(region);
|
|
/* useful optimization */
|
|
if (!numRects || !EXTENTCHECK(®ion->extents, prect))
|
|
return(rgnOUT);
|
|
|
|
if (numRects == 1)
|
|
{
|
|
/* We know that it must be rgnIN or rgnPART */
|
|
if (SUBSUMES(®ion->extents, prect))
|
|
return(rgnIN);
|
|
else
|
|
return(rgnPART);
|
|
}
|
|
|
|
partOut = FALSE;
|
|
partIn = FALSE;
|
|
|
|
/* (x,y) starts at upper left of rect, moving to the right and down */
|
|
x = prect->x1;
|
|
y = prect->y1;
|
|
|
|
/* can stop when both partOut and partIn are TRUE, or we reach prect->y2 */
|
|
for (pbox = REGION_BOXPTR(region), pboxEnd = pbox + numRects;
|
|
pbox != pboxEnd;
|
|
pbox++)
|
|
{
|
|
|
|
if (pbox->y2 <= y)
|
|
continue; /* getting up to speed or skipping remainder of band */
|
|
|
|
if (pbox->y1 > y)
|
|
{
|
|
partOut = TRUE; /* missed part of rectangle above */
|
|
if (partIn || (pbox->y1 >= prect->y2))
|
|
break;
|
|
y = pbox->y1; /* x guaranteed to be == prect->x1 */
|
|
}
|
|
|
|
if (pbox->x2 <= x)
|
|
continue; /* not far enough over yet */
|
|
|
|
if (pbox->x1 > x)
|
|
{
|
|
partOut = TRUE; /* missed part of rectangle to left */
|
|
if (partIn)
|
|
break;
|
|
}
|
|
|
|
if (pbox->x1 < prect->x2)
|
|
{
|
|
partIn = TRUE; /* definitely overlap */
|
|
if (partOut)
|
|
break;
|
|
}
|
|
|
|
if (pbox->x2 >= prect->x2)
|
|
{
|
|
y = pbox->y2; /* finished with this band */
|
|
if (y >= prect->y2)
|
|
break;
|
|
x = prect->x1; /* reset x out to left again */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Because boxes in a band are maximal width, if the first box
|
|
* to overlap the rectangle doesn't completely cover it in that
|
|
* band, the rectangle must be partially out, since some of it
|
|
* will be uncovered in that band. partIn will have been set true
|
|
* by now...
|
|
*/
|
|
partOut = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(partIn ? ((y < prect->y2) ? rgnPART : rgnIN) : rgnOUT);
|
|
}
|
|
|
|
/* TranslateRegion(pReg, x, y)
|
|
translates in place
|
|
*/
|
|
|
|
_X_EXPORT void
|
|
miTranslateRegion(pReg, x, y)
|
|
register RegionPtr pReg;
|
|
register int x;
|
|
register int y;
|
|
{
|
|
int x1, x2, y1, y2;
|
|
register int nbox;
|
|
register BoxPtr pbox;
|
|
|
|
good(pReg);
|
|
pReg->extents.x1 = x1 = pReg->extents.x1 + x;
|
|
pReg->extents.y1 = y1 = pReg->extents.y1 + y;
|
|
pReg->extents.x2 = x2 = pReg->extents.x2 + x;
|
|
pReg->extents.y2 = y2 = pReg->extents.y2 + y;
|
|
if (((x1 - MINSHORT)|(y1 - MINSHORT)|(MAXSHORT - x2)|(MAXSHORT - y2)) >= 0)
|
|
{
|
|
if (pReg->data && (nbox = pReg->data->numRects))
|
|
{
|
|
for (pbox = REGION_BOXPTR(pReg); nbox--; pbox++)
|
|
{
|
|
pbox->x1 += x;
|
|
pbox->y1 += y;
|
|
pbox->x2 += x;
|
|
pbox->y2 += y;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if (((x2 - MINSHORT)|(y2 - MINSHORT)|(MAXSHORT - x1)|(MAXSHORT - y1)) <= 0)
|
|
{
|
|
pReg->extents.x2 = pReg->extents.x1;
|
|
pReg->extents.y2 = pReg->extents.y1;
|
|
xfreeData(pReg);
|
|
pReg->data = &miEmptyData;
|
|
return;
|
|
}
|
|
if (x1 < MINSHORT)
|
|
pReg->extents.x1 = MINSHORT;
|
|
else if (x2 > MAXSHORT)
|
|
pReg->extents.x2 = MAXSHORT;
|
|
if (y1 < MINSHORT)
|
|
pReg->extents.y1 = MINSHORT;
|
|
else if (y2 > MAXSHORT)
|
|
pReg->extents.y2 = MAXSHORT;
|
|
if (pReg->data && (nbox = pReg->data->numRects))
|
|
{
|
|
register BoxPtr pboxout;
|
|
|
|
for (pboxout = pbox = REGION_BOXPTR(pReg); nbox--; pbox++)
|
|
{
|
|
pboxout->x1 = x1 = pbox->x1 + x;
|
|
pboxout->y1 = y1 = pbox->y1 + y;
|
|
pboxout->x2 = x2 = pbox->x2 + x;
|
|
pboxout->y2 = y2 = pbox->y2 + y;
|
|
if (((x2 - MINSHORT)|(y2 - MINSHORT)|
|
|
(MAXSHORT - x1)|(MAXSHORT - y1)) <= 0)
|
|
{
|
|
pReg->data->numRects--;
|
|
continue;
|
|
}
|
|
if (x1 < MINSHORT)
|
|
pboxout->x1 = MINSHORT;
|
|
else if (x2 > MAXSHORT)
|
|
pboxout->x2 = MAXSHORT;
|
|
if (y1 < MINSHORT)
|
|
pboxout->y1 = MINSHORT;
|
|
else if (y2 > MAXSHORT)
|
|
pboxout->y2 = MAXSHORT;
|
|
pboxout++;
|
|
}
|
|
if (pboxout != pbox)
|
|
{
|
|
if (pReg->data->numRects == 1)
|
|
{
|
|
pReg->extents = *REGION_BOXPTR(pReg);
|
|
xfreeData(pReg);
|
|
pReg->data = (RegDataPtr)NULL;
|
|
}
|
|
else
|
|
miSetExtents(pReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
Bool
|
|
miRegionDataCopy(
|
|
register RegionPtr dst,
|
|
register RegionPtr src)
|
|
{
|
|
good(dst);
|
|
good(src);
|
|
if (dst->data)
|
|
return TRUE;
|
|
if (dst == src)
|
|
return TRUE;
|
|
if (!src->data || !src->data->size)
|
|
{
|
|
xfreeData(dst);
|
|
dst->data = (RegDataPtr)NULL;
|
|
return TRUE;
|
|
}
|
|
if (!dst->data || (dst->data->size < src->data->numRects))
|
|
{
|
|
xfreeData(dst);
|
|
dst->data = xallocData(src->data->numRects);
|
|
if (!dst->data)
|
|
return miRegionBreak (dst);
|
|
}
|
|
dst->data->size = src->data->size;
|
|
dst->data->numRects = src->data->numRects;
|
|
return TRUE;
|
|
}
|
|
|
|
_X_EXPORT void
|
|
miRegionReset(pReg, pBox)
|
|
RegionPtr pReg;
|
|
BoxPtr pBox;
|
|
{
|
|
good(pReg);
|
|
assert(pBox->x1<=pBox->x2);
|
|
assert(pBox->y1<=pBox->y2);
|
|
pReg->extents = *pBox;
|
|
xfreeData(pReg);
|
|
pReg->data = (RegDataPtr)NULL;
|
|
}
|
|
|
|
_X_EXPORT Bool
|
|
miPointInRegion(pReg, x, y, box)
|
|
register RegionPtr pReg;
|
|
register int x, y;
|
|
BoxPtr box; /* "return" value */
|
|
{
|
|
register BoxPtr pbox, pboxEnd;
|
|
int numRects;
|
|
|
|
good(pReg);
|
|
numRects = REGION_NUM_RECTS(pReg);
|
|
if (!numRects || !INBOX(&pReg->extents, x, y))
|
|
return(FALSE);
|
|
if (numRects == 1)
|
|
{
|
|
*box = pReg->extents;
|
|
return(TRUE);
|
|
}
|
|
for (pbox = REGION_BOXPTR(pReg), pboxEnd = pbox + numRects;
|
|
pbox != pboxEnd;
|
|
pbox++)
|
|
{
|
|
if (y >= pbox->y2)
|
|
continue; /* not there yet */
|
|
if ((y < pbox->y1) || (x < pbox->x1))
|
|
break; /* missed it */
|
|
if (x >= pbox->x2)
|
|
continue; /* not there yet */
|
|
*box = *pbox;
|
|
return(TRUE);
|
|
}
|
|
return(FALSE);
|
|
}
|
|
|
|
_X_EXPORT Bool
|
|
miRegionNotEmpty(pReg)
|
|
RegionPtr pReg;
|
|
{
|
|
good(pReg);
|
|
return(!REGION_NIL(pReg));
|
|
}
|
|
|
|
Bool
|
|
miRegionBroken(RegionPtr pReg)
|
|
{
|
|
good(pReg);
|
|
return (REGION_NAR(pReg));
|
|
}
|
|
|
|
_X_EXPORT void
|
|
miRegionEmpty(pReg)
|
|
RegionPtr pReg;
|
|
{
|
|
good(pReg);
|
|
xfreeData(pReg);
|
|
pReg->extents.x2 = pReg->extents.x1;
|
|
pReg->extents.y2 = pReg->extents.y1;
|
|
pReg->data = &miEmptyData;
|
|
}
|
|
|
|
_X_EXPORT BoxPtr
|
|
miRegionExtents(pReg)
|
|
RegionPtr pReg;
|
|
{
|
|
good(pReg);
|
|
return(&pReg->extents);
|
|
}
|
|
|
|
#define ExchangeSpans(a, b) \
|
|
{ \
|
|
DDXPointRec tpt; \
|
|
register int tw; \
|
|
\
|
|
tpt = spans[a]; spans[a] = spans[b]; spans[b] = tpt; \
|
|
tw = widths[a]; widths[a] = widths[b]; widths[b] = tw; \
|
|
}
|
|
|
|
/* ||| I should apply the merge sort code to rectangle sorting above, and see
|
|
if mapping time can be improved. But right now I've been at work 12 hours,
|
|
so forget it.
|
|
*/
|
|
|
|
static void QuickSortSpans(
|
|
register DDXPointRec spans[],
|
|
register int widths[],
|
|
register int numSpans)
|
|
{
|
|
register int y;
|
|
register int i, j, m;
|
|
register DDXPointPtr r;
|
|
|
|
/* Always called with numSpans > 1 */
|
|
/* Sorts only by y, doesn't bother to sort by x */
|
|
|
|
do
|
|
{
|
|
if (numSpans < 9)
|
|
{
|
|
/* Do insertion sort */
|
|
register int yprev;
|
|
|
|
yprev = spans[0].y;
|
|
i = 1;
|
|
do
|
|
{ /* while i != numSpans */
|
|
y = spans[i].y;
|
|
if (yprev > y)
|
|
{
|
|
/* spans[i] is out of order. Move into proper location. */
|
|
DDXPointRec tpt;
|
|
int tw, k;
|
|
|
|
for (j = 0; y >= spans[j].y; j++) {}
|
|
tpt = spans[i];
|
|
tw = widths[i];
|
|
for (k = i; k != j; k--)
|
|
{
|
|
spans[k] = spans[k-1];
|
|
widths[k] = widths[k-1];
|
|
}
|
|
spans[j] = tpt;
|
|
widths[j] = tw;
|
|
y = spans[i].y;
|
|
} /* if out of order */
|
|
yprev = y;
|
|
i++;
|
|
} while (i != numSpans);
|
|
return;
|
|
}
|
|
|
|
/* Choose partition element, stick in location 0 */
|
|
m = numSpans / 2;
|
|
if (spans[m].y > spans[0].y) ExchangeSpans(m, 0);
|
|
if (spans[m].y > spans[numSpans-1].y) ExchangeSpans(m, numSpans-1);
|
|
if (spans[m].y > spans[0].y) ExchangeSpans(m, 0);
|
|
y = spans[0].y;
|
|
|
|
/* Partition array */
|
|
i = 0;
|
|
j = numSpans;
|
|
do
|
|
{
|
|
r = &(spans[i]);
|
|
do
|
|
{
|
|
r++;
|
|
i++;
|
|
} while (i != numSpans && r->y < y);
|
|
r = &(spans[j]);
|
|
do
|
|
{
|
|
r--;
|
|
j--;
|
|
} while (y < r->y);
|
|
if (i < j)
|
|
ExchangeSpans(i, j);
|
|
} while (i < j);
|
|
|
|
/* Move partition element back to middle */
|
|
ExchangeSpans(0, j);
|
|
|
|
/* Recurse */
|
|
if (numSpans-j-1 > 1)
|
|
QuickSortSpans(&spans[j+1], &widths[j+1], numSpans-j-1);
|
|
numSpans = j;
|
|
} while (numSpans > 1);
|
|
}
|
|
|
|
#define NextBand() \
|
|
{ \
|
|
clipy1 = pboxBandStart->y1; \
|
|
clipy2 = pboxBandStart->y2; \
|
|
pboxBandEnd = pboxBandStart + 1; \
|
|
while (pboxBandEnd != pboxLast && pboxBandEnd->y1 == clipy1) { \
|
|
pboxBandEnd++; \
|
|
} \
|
|
for (; ppt != pptLast && ppt->y < clipy1; ppt++, pwidth++) {} \
|
|
}
|
|
|
|
/*
|
|
Clip a list of scanlines to a region. The caller has allocated the
|
|
space. FSorted is non-zero if the scanline origins are in ascending
|
|
order.
|
|
returns the number of new, clipped scanlines.
|
|
*/
|
|
|
|
_X_EXPORT int
|
|
miClipSpans(
|
|
RegionPtr prgnDst,
|
|
register DDXPointPtr ppt,
|
|
register int *pwidth,
|
|
int nspans,
|
|
register DDXPointPtr pptNew,
|
|
int *pwidthNew,
|
|
int fSorted)
|
|
{
|
|
register DDXPointPtr pptLast;
|
|
int *pwidthNewStart; /* the vengeance of Xerox! */
|
|
register int y, x1, x2;
|
|
register int numRects;
|
|
|
|
good(prgnDst);
|
|
pptLast = ppt + nspans;
|
|
pwidthNewStart = pwidthNew;
|
|
|
|
if (!prgnDst->data)
|
|
{
|
|
/* Do special fast code with clip boundaries in registers(?) */
|
|
/* It doesn't pay much to make use of fSorted in this case,
|
|
so we lump everything together. */
|
|
|
|
register int clipx1, clipx2, clipy1, clipy2;
|
|
|
|
clipx1 = prgnDst->extents.x1;
|
|
clipy1 = prgnDst->extents.y1;
|
|
clipx2 = prgnDst->extents.x2;
|
|
clipy2 = prgnDst->extents.y2;
|
|
|
|
for (; ppt != pptLast; ppt++, pwidth++)
|
|
{
|
|
y = ppt->y;
|
|
x1 = ppt->x;
|
|
if (clipy1 <= y && y < clipy2)
|
|
{
|
|
x2 = x1 + *pwidth;
|
|
if (x1 < clipx1) x1 = clipx1;
|
|
if (x2 > clipx2) x2 = clipx2;
|
|
if (x1 < x2)
|
|
{
|
|
/* part of span in clip rectangle */
|
|
pptNew->x = x1;
|
|
pptNew->y = y;
|
|
*pwidthNew = x2 - x1;
|
|
pptNew++;
|
|
pwidthNew++;
|
|
}
|
|
}
|
|
} /* end for */
|
|
|
|
}
|
|
else if ((numRects = prgnDst->data->numRects))
|
|
{
|
|
/* Have to clip against many boxes */
|
|
BoxPtr pboxBandStart, pboxBandEnd;
|
|
register BoxPtr pbox;
|
|
register BoxPtr pboxLast;
|
|
register int clipy1, clipy2;
|
|
|
|
/* In this case, taking advantage of sorted spans gains more than
|
|
the sorting costs. */
|
|
if ((! fSorted) && (nspans > 1))
|
|
QuickSortSpans(ppt, pwidth, nspans);
|
|
|
|
pboxBandStart = REGION_BOXPTR(prgnDst);
|
|
pboxLast = pboxBandStart + numRects;
|
|
|
|
NextBand();
|
|
|
|
for (; ppt != pptLast; )
|
|
{
|
|
y = ppt->y;
|
|
if (y < clipy2)
|
|
{
|
|
/* span is in the current band */
|
|
pbox = pboxBandStart;
|
|
x1 = ppt->x;
|
|
x2 = x1 + *pwidth;
|
|
do
|
|
{ /* For each box in band */
|
|
register int newx1, newx2;
|
|
|
|
newx1 = x1;
|
|
newx2 = x2;
|
|
if (newx1 < pbox->x1) newx1 = pbox->x1;
|
|
if (newx2 > pbox->x2) newx2 = pbox->x2;
|
|
if (newx1 < newx2)
|
|
{
|
|
/* Part of span in clip rectangle */
|
|
pptNew->x = newx1;
|
|
pptNew->y = y;
|
|
*pwidthNew = newx2 - newx1;
|
|
pptNew++;
|
|
pwidthNew++;
|
|
}
|
|
pbox++;
|
|
} while (pbox != pboxBandEnd);
|
|
ppt++;
|
|
pwidth++;
|
|
}
|
|
else
|
|
{
|
|
/* Move to next band, adjust ppt as needed */
|
|
pboxBandStart = pboxBandEnd;
|
|
if (pboxBandStart == pboxLast)
|
|
break; /* We're completely done */
|
|
NextBand();
|
|
}
|
|
}
|
|
}
|
|
return (pwidthNew - pwidthNewStart);
|
|
}
|
|
|
|
/* find the band in a region with the most rectangles */
|
|
_X_EXPORT int
|
|
miFindMaxBand(prgn)
|
|
RegionPtr prgn;
|
|
{
|
|
register int nbox;
|
|
register BoxPtr pbox;
|
|
register int nThisBand;
|
|
register int nMaxBand = 0;
|
|
short yThisBand;
|
|
|
|
good(prgn);
|
|
nbox = REGION_NUM_RECTS(prgn);
|
|
pbox = REGION_RECTS(prgn);
|
|
|
|
while(nbox > 0)
|
|
{
|
|
yThisBand = pbox->y1;
|
|
nThisBand = 0;
|
|
while((nbox > 0) && (pbox->y1 == yThisBand))
|
|
{
|
|
nbox--;
|
|
pbox++;
|
|
nThisBand++;
|
|
}
|
|
if (nThisBand > nMaxBand)
|
|
nMaxBand = nThisBand;
|
|
}
|
|
return (nMaxBand);
|
|
}
|