xenocara/lib/libdrm/libdrm/xf86drm.c
matthieu e3881499cc - remove stuff that we don't want from drmOpenDevice()
- prepare for privilege separation support.
ok oga@.
2008-02-12 21:27:14 +00:00

3253 lines
75 KiB
C

/**
* \file xf86drm.c
* User-level interface to DRM device
*
* \author Rickard E. (Rik) Faith <faith@valinux.com>
* \author Kevin E. Martin <martin@valinux.com>
*/
/*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/stat.h>
#define stat_t struct stat
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <stdarg.h>
#include "drm.h"
/* Not all systems have MAP_FAILED defined */
#ifndef MAP_FAILED
#define MAP_FAILED ((void *)-1)
#endif
#include "xf86drm.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#define DRM_MAJOR 145
#endif
#ifdef __NetBSD__
#define DRM_MAJOR 34
#endif
# ifdef __OpenBSD__
# define DRM_MAJOR 88
# endif
#ifndef DRM_MAJOR
#define DRM_MAJOR 226 /* Linux */
#endif
#ifndef DRM_MAX_MINOR
#define DRM_MAX_MINOR 16
#endif
/*
* This definition needs to be changed on some systems if dev_t is a structure.
* If there is a header file we can get it from, there would be best.
*/
#ifndef makedev
#define makedev(x,y) ((dev_t)(((x) << 8) | (y)))
#endif
#define DRM_MSG_VERBOSITY 3
static drmServerInfoPtr drm_server_info;
void drmSetServerInfo(drmServerInfoPtr info)
{
drm_server_info = info;
}
/**
* Output a message to stderr.
*
* \param format printf() like format string.
*
* \internal
* This function is a wrapper around vfprintf().
*/
static int drmDebugPrint(const char *format, va_list ap)
{
return vfprintf(stderr, format, ap);
}
static int (*drm_debug_print)(const char *format, va_list ap) = drmDebugPrint;
static void
drmMsg(const char *format, ...)
{
va_list ap;
const char *env;
if (((env = getenv("LIBGL_DEBUG")) && strstr(env, "verbose")) || drm_server_info)
{
va_start(ap, format);
if (drm_server_info) {
drm_server_info->debug_print(format,ap);
} else {
drm_debug_print(format, ap);
}
va_end(ap);
}
}
void
drmSetDebugMsgFunction(int (*debug_msg_ptr)(const char *format, va_list ap))
{
drm_debug_print = debug_msg_ptr;
}
static void *drmHashTable = NULL; /* Context switch callbacks */
void *drmGetHashTable(void)
{
return drmHashTable;
}
void *drmMalloc(int size)
{
void *pt;
if ((pt = malloc(size))) memset(pt, 0, size);
return pt;
}
void drmFree(void *pt)
{
if (pt) free(pt);
}
/* drmStrdup can't use strdup(3), since it doesn't call _DRM_MALLOC... */
static char *drmStrdup(const char *s)
{
char *retval;
if (!s)
return NULL;
retval = malloc(strlen(s)+1);
if (!retval)
return NULL;
strcpy(retval, s);
return retval;
}
static unsigned long drmGetKeyFromFd(int fd)
{
stat_t st;
st.st_rdev = 0;
fstat(fd, &st);
return st.st_rdev;
}
drmHashEntry *drmGetEntry(int fd)
{
unsigned long key = drmGetKeyFromFd(fd);
void *value;
drmHashEntry *entry;
if (!drmHashTable) drmHashTable = drmHashCreate();
if (drmHashLookup(drmHashTable, key, &value)) {
entry = drmMalloc(sizeof(*entry));
entry->fd = fd;
entry->f = NULL;
entry->tagTable = drmHashCreate();
drmHashInsert(drmHashTable, key, entry);
} else {
entry = value;
}
return entry;
}
/**
* Compare two busid strings
*
* \param first
* \param second
*
* \return 1 if matched.
*
* \internal
* This function compares two bus ID strings. It understands the older
* PCI:b:d:f format and the newer pci:oooo:bb:dd.f format. In the format, o is
* domain, b is bus, d is device, f is function.
*/
static int drmMatchBusID(const char *id1, const char *id2)
{
/* First, check if the IDs are exactly the same */
if (strcasecmp(id1, id2) == 0)
return 1;
/* Try to match old/new-style PCI bus IDs. */
if (strncasecmp(id1, "pci", 3) == 0) {
int o1, b1, d1, f1;
int o2, b2, d2, f2;
int ret;
ret = sscanf(id1, "pci:%04x:%02x:%02x.%d", &o1, &b1, &d1, &f1);
if (ret != 4) {
o1 = 0;
ret = sscanf(id1, "PCI:%d:%d:%d", &b1, &d1, &f1);
if (ret != 3)
return 0;
}
ret = sscanf(id2, "pci:%04x:%02x:%02x.%d", &o2, &b2, &d2, &f2);
if (ret != 4) {
o2 = 0;
ret = sscanf(id2, "PCI:%d:%d:%d", &b2, &d2, &f2);
if (ret != 3)
return 0;
}
if ((o1 != o2) || (b1 != b2) || (d1 != d2) || (f1 != f2))
return 0;
else
return 1;
}
return 0;
}
/**
* Open the DRM device, creating it if necessary.
*
* \param dev major and minor numbers of the device.
* \param minor minor number of the device.
*
* \return a file descriptor on success, or a negative value on error.
*
* \internal
* Assembles the device name from \p minor and opens it, creating the device
* special file node with the major and minor numbers specified by \p dev and
* parent directory if necessary and was called by root.
*/
static int drmOpenDevice(long dev, int minor)
{
char buf[64];
int fd;
snprintf(buf, sizeof(buf), DRM_DEV_NAME, DRM_DIR_NAME, minor);
drmMsg("drmOpenDevice: node name is %s\n", buf);
#ifndef X_PRIVSEP
fd = open(buf, O_RDWR, 0);
#else
fd = priv_open_device(buf);
#endif
drmMsg("drmOpenDevice: open result is %d, (%s)\n",
fd, fd < 0 ? strerror(errno) : "OK");
if (fd >= 0) return fd;
drmMsg("drmOpenDevice: Open failed\n");
remove(buf);
return -errno;
}
/**
* Open the DRM device
*
* \param minor device minor number.
* \param create allow to create the device if set.
*
* \return a file descriptor on success, or a negative value on error.
*
* \internal
* Calls drmOpenDevice() if \p create is set, otherwise assembles the device
* name from \p minor and opens it.
*/
static int drmOpenMinor(int minor, int create)
{
int fd;
char buf[64];
if (create) return drmOpenDevice(makedev(DRM_MAJOR, minor), minor);
snprintf(buf, sizeof(buf), DRM_DEV_NAME, DRM_DIR_NAME, minor);
#ifndef X_PRIVSEP
fd = open(buf, O_RDWR, 0);
#else
fd = priv_open_device(buf);
#endif
if (fd >= 0) return fd;
return -errno;
}
/**
* Determine whether the DRM kernel driver has been loaded.
*
* \return 1 if the DRM driver is loaded, 0 otherwise.
*
* \internal
* Determine the presence of the kernel driver by attempting to open the 0
* minor and get version information. For backward compatibility with older
* Linux implementations, /proc/dri is also checked.
*/
int drmAvailable(void)
{
drmVersionPtr version;
int retval = 0;
int fd;
if ((fd = drmOpenMinor(0, 1)) < 0) {
#ifdef __linux__
/* Try proc for backward Linux compatibility */
if (!access("/proc/dri/0", R_OK)) return 1;
#endif
drmMsg("drmAvailable: no\n");
return 0;
}
if ((version = drmGetVersion(fd))) {
retval = 1;
drmFreeVersion(version);
}
close(fd);
drmMsg("drmAvailable: %d\n", retval);
return retval;
}
/**
* Open the device by bus ID.
*
* \param busid bus ID.
*
* \return a file descriptor on success, or a negative value on error.
*
* \internal
* This function attempts to open every possible minor (up to DRM_MAX_MINOR),
* comparing the device bus ID with the one supplied.
*
* \sa drmOpenMinor() and drmGetBusid().
*/
static int drmOpenByBusid(const char *busid)
{
int i;
int fd;
const char *buf;
drmSetVersion sv;
drmMsg("drmOpenByBusid: Searching for BusID %s\n", busid);
for (i = 0; i < DRM_MAX_MINOR; i++) {
fd = drmOpenMinor(i, 1);
drmMsg("drmOpenByBusid: drmOpenMinor returns %d\n", fd);
if (fd >= 0) {
sv.drm_di_major = 1;
sv.drm_di_minor = 1;
sv.drm_dd_major = -1; /* Don't care */
sv.drm_dd_minor = -1; /* Don't care */
drmSetInterfaceVersion(fd, &sv);
buf = drmGetBusid(fd);
drmMsg("drmOpenByBusid: drmGetBusid reports %s\n", buf);
if (buf && drmMatchBusID(buf, busid)) {
drmFreeBusid(buf);
return fd;
}
if (buf) drmFreeBusid(buf);
close(fd);
}
}
return -1;
}
/**
* Open the device by name.
*
* \param name driver name.
*
* \return a file descriptor on success, or a negative value on error.
*
* \internal
* This function opens the first minor number that matches the driver name and
* isn't already in use. If it's in use it then it will already have a bus ID
* assigned.
*
* \sa drmOpenMinor(), drmGetVersion() and drmGetBusid().
*/
static int drmOpenByName(const char *name)
{
int i;
int fd;
drmVersionPtr version;
char * id;
if (!drmAvailable()) {
if (!drm_server_info)
return -1;
else {
/* try to load the kernel module now */
if (!drm_server_info->load_module(name)) {
drmMsg("[drm] failed to load kernel module \"%s\"\n",
name);
return -1;
}
}
}
/*
* Open the first minor number that matches the driver name and isn't
* already in use. If it's in use it will have a busid assigned already.
*/
for (i = 0; i < DRM_MAX_MINOR; i++) {
if ((fd = drmOpenMinor(i, 1)) >= 0) {
if ((version = drmGetVersion(fd))) {
if (!strcmp(version->name, name)) {
drmFreeVersion(version);
id = drmGetBusid(fd);
drmMsg("drmGetBusid returned '%s'\n", id ? id : "NULL");
if (!id || !*id) {
if (id)
drmFreeBusid(id);
return fd;
} else {
drmFreeBusid(id);
}
} else {
drmFreeVersion(version);
}
}
close(fd);
}
}
#ifdef __linux__
/* Backward-compatibility /proc support */
for (i = 0; i < 8; i++) {
char proc_name[64], buf[512];
char *driver, *pt, *devstring;
int retcode;
sprintf(proc_name, "/proc/dri/%d/name", i);
if ((fd = open(proc_name, 0, 0)) >= 0) {
retcode = read(fd, buf, sizeof(buf)-1);
close(fd);
if (retcode) {
buf[retcode-1] = '\0';
for (driver = pt = buf; *pt && *pt != ' '; ++pt)
;
if (*pt) { /* Device is next */
*pt = '\0';
if (!strcmp(driver, name)) { /* Match */
for (devstring = ++pt; *pt && *pt != ' '; ++pt)
;
if (*pt) { /* Found busid */
return drmOpenByBusid(++pt);
} else { /* No busid */
return drmOpenDevice(strtol(devstring, NULL, 0),i);
}
}
}
}
}
}
#endif
return -1;
}
/**
* Open the DRM device.
*
* Looks up the specified name and bus ID, and opens the device found. The
* entry in /dev/dri is created if necessary and if called by root.
*
* \param name driver name. Not referenced if bus ID is supplied.
* \param busid bus ID. Zero if not known.
*
* \return a file descriptor on success, or a negative value on error.
*
* \internal
* It calls drmOpenByBusid() if \p busid is specified or drmOpenByName()
* otherwise.
*/
int drmOpen(const char *name, const char *busid)
{
if (!drmAvailable() && name != NULL && drm_server_info) {
/* try to load the kernel */
if (!drm_server_info->load_module(name)) {
drmMsg("[drm] failed to load kernel module \"%s\"\n",
name);
return -1;
}
}
if (busid) {
int fd;
fd = drmOpenByBusid(busid);
if (fd >= 0)
return fd;
}
if (name)
return drmOpenByName(name);
return -1;
}
/**
* Free the version information returned by drmGetVersion().
*
* \param v pointer to the version information.
*
* \internal
* It frees the memory pointed by \p %v as well as all the non-null strings
* pointers in it.
*/
void drmFreeVersion(drmVersionPtr v)
{
if (!v) return;
if (v->name) drmFree(v->name);
if (v->date) drmFree(v->date);
if (v->desc) drmFree(v->desc);
drmFree(v);
}
/**
* Free the non-public version information returned by the kernel.
*
* \param v pointer to the version information.
*
* \internal
* Used by drmGetVersion() to free the memory pointed by \p %v as well as all
* the non-null strings pointers in it.
*/
static void drmFreeKernelVersion(drm_version_t *v)
{
if (!v) return;
if (v->name) drmFree(v->name);
if (v->date) drmFree(v->date);
if (v->desc) drmFree(v->desc);
drmFree(v);
}
/**
* Copy version information.
*
* \param d destination pointer.
* \param s source pointer.
*
* \internal
* Used by drmGetVersion() to translate the information returned by the ioctl
* interface in a private structure into the public structure counterpart.
*/
static void drmCopyVersion(drmVersionPtr d, const drm_version_t *s)
{
d->version_major = s->version_major;
d->version_minor = s->version_minor;
d->version_patchlevel = s->version_patchlevel;
d->name_len = s->name_len;
d->name = drmStrdup(s->name);
d->date_len = s->date_len;
d->date = drmStrdup(s->date);
d->desc_len = s->desc_len;
d->desc = drmStrdup(s->desc);
}
/**
* Query the driver version information.
*
* \param fd file descriptor.
*
* \return pointer to a drmVersion structure which should be freed with
* drmFreeVersion().
*
* \note Similar information is available via /proc/dri.
*
* \internal
* It gets the version information via successive DRM_IOCTL_VERSION ioctls,
* first with zeros to get the string lengths, and then the actually strings.
* It also null-terminates them since they might not be already.
*/
drmVersionPtr drmGetVersion(int fd)
{
drmVersionPtr retval;
drm_version_t *version = drmMalloc(sizeof(*version));
version->name_len = 0;
version->name = NULL;
version->date_len = 0;
version->date = NULL;
version->desc_len = 0;
version->desc = NULL;
if (ioctl(fd, DRM_IOCTL_VERSION, version)) {
drmFreeKernelVersion(version);
return NULL;
}
if (version->name_len)
version->name = drmMalloc(version->name_len + 1);
if (version->date_len)
version->date = drmMalloc(version->date_len + 1);
if (version->desc_len)
version->desc = drmMalloc(version->desc_len + 1);
if (ioctl(fd, DRM_IOCTL_VERSION, version)) {
drmMsg("DRM_IOCTL_VERSION: %s\n", strerror(errno));
drmFreeKernelVersion(version);
return NULL;
}
/* The results might not be null-terminated strings, so terminate them. */
if (version->name_len) version->name[version->name_len] = '\0';
if (version->date_len) version->date[version->date_len] = '\0';
if (version->desc_len) version->desc[version->desc_len] = '\0';
retval = drmMalloc(sizeof(*retval));
drmCopyVersion(retval, version);
drmFreeKernelVersion(version);
return retval;
}
/**
* Get version information for the DRM user space library.
*
* This version number is driver independent.
*
* \param fd file descriptor.
*
* \return version information.
*
* \internal
* This function allocates and fills a drm_version structure with a hard coded
* version number.
*/
drmVersionPtr drmGetLibVersion(int fd)
{
drm_version_t *version = drmMalloc(sizeof(*version));
/* Version history:
* NOTE THIS MUST NOT GO ABOVE VERSION 1.X due to drivers needing it
* revision 1.0.x = original DRM interface with no drmGetLibVersion
* entry point and many drm<Device> extensions
* revision 1.1.x = added drmCommand entry points for device extensions
* added drmGetLibVersion to identify libdrm.a version
* revision 1.2.x = added drmSetInterfaceVersion
* modified drmOpen to handle both busid and name
* revision 1.3.x = added server + memory manager
*/
version->version_major = 1;
version->version_minor = 3;
version->version_patchlevel = 0;
return (drmVersionPtr)version;
}
/**
* Free the bus ID information.
*
* \param busid bus ID information string as given by drmGetBusid().
*
* \internal
* This function is just frees the memory pointed by \p busid.
*/
void drmFreeBusid(const char *busid)
{
drmFree((void *)busid);
}
/**
* Get the bus ID of the device.
*
* \param fd file descriptor.
*
* \return bus ID string.
*
* \internal
* This function gets the bus ID via successive DRM_IOCTL_GET_UNIQUE ioctls to
* get the string length and data, passing the arguments in a drm_unique
* structure.
*/
char *drmGetBusid(int fd)
{
drm_unique_t u;
u.unique_len = 0;
u.unique = NULL;
if (ioctl(fd, DRM_IOCTL_GET_UNIQUE, &u)) return NULL;
u.unique = drmMalloc(u.unique_len + 1);
if (ioctl(fd, DRM_IOCTL_GET_UNIQUE, &u)) return NULL;
u.unique[u.unique_len] = '\0';
return u.unique;
}
/**
* Set the bus ID of the device.
*
* \param fd file descriptor.
* \param busid bus ID string.
*
* \return zero on success, negative on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_SET_UNIQUE ioctl, passing
* the arguments in a drm_unique structure.
*/
int drmSetBusid(int fd, const char *busid)
{
drm_unique_t u;
u.unique = (char *)busid;
u.unique_len = strlen(busid);
if (ioctl(fd, DRM_IOCTL_SET_UNIQUE, &u)) {
return -errno;
}
return 0;
}
int drmGetMagic(int fd, drm_magic_t * magic)
{
drm_auth_t auth;
*magic = 0;
if (ioctl(fd, DRM_IOCTL_GET_MAGIC, &auth)) return -errno;
*magic = auth.magic;
return 0;
}
int drmAuthMagic(int fd, drm_magic_t magic)
{
drm_auth_t auth;
auth.magic = magic;
if (ioctl(fd, DRM_IOCTL_AUTH_MAGIC, &auth)) return -errno;
return 0;
}
/**
* Specifies a range of memory that is available for mapping by a
* non-root process.
*
* \param fd file descriptor.
* \param offset usually the physical address. The actual meaning depends of
* the \p type parameter. See below.
* \param size of the memory in bytes.
* \param type type of the memory to be mapped.
* \param flags combination of several flags to modify the function actions.
* \param handle will be set to a value that may be used as the offset
* parameter for mmap().
*
* \return zero on success or a negative value on error.
*
* \par Mapping the frame buffer
* For the frame buffer
* - \p offset will be the physical address of the start of the frame buffer,
* - \p size will be the size of the frame buffer in bytes, and
* - \p type will be DRM_FRAME_BUFFER.
*
* \par
* The area mapped will be uncached. If MTRR support is available in the
* kernel, the frame buffer area will be set to write combining.
*
* \par Mapping the MMIO register area
* For the MMIO register area,
* - \p offset will be the physical address of the start of the register area,
* - \p size will be the size of the register area bytes, and
* - \p type will be DRM_REGISTERS.
* \par
* The area mapped will be uncached.
*
* \par Mapping the SAREA
* For the SAREA,
* - \p offset will be ignored and should be set to zero,
* - \p size will be the desired size of the SAREA in bytes,
* - \p type will be DRM_SHM.
*
* \par
* A shared memory area of the requested size will be created and locked in
* kernel memory. This area may be mapped into client-space by using the handle
* returned.
*
* \note May only be called by root.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_ADD_MAP ioctl, passing
* the arguments in a drm_map structure.
*/
int drmAddMap(int fd, drm_handle_t offset, drmSize size, drmMapType type,
drmMapFlags flags, drm_handle_t *handle)
{
drm_map_t map;
map.offset = offset;
map.size = size;
map.handle = 0;
map.type = type;
map.flags = flags;
if (ioctl(fd, DRM_IOCTL_ADD_MAP, &map)) return -errno;
if (handle) *handle = (drm_handle_t)map.handle;
return 0;
}
int drmRmMap(int fd, drm_handle_t handle)
{
drm_map_t map;
map.handle = (void *)handle;
if(ioctl(fd, DRM_IOCTL_RM_MAP, &map)) return -errno;
return 0;
}
/**
* Make buffers available for DMA transfers.
*
* \param fd file descriptor.
* \param count number of buffers.
* \param size size of each buffer.
* \param flags buffer allocation flags.
* \param agp_offset offset in the AGP aperture
*
* \return number of buffers allocated, negative on error.
*
* \internal
* This function is a wrapper around DRM_IOCTL_ADD_BUFS ioctl.
*
* \sa drm_buf_desc.
*/
int drmAddBufs(int fd, int count, int size, drmBufDescFlags flags,
int agp_offset)
{
drm_buf_desc_t request;
request.count = count;
request.size = size;
request.low_mark = 0;
request.high_mark = 0;
request.flags = flags;
request.agp_start = agp_offset;
if (ioctl(fd, DRM_IOCTL_ADD_BUFS, &request)) return -errno;
return request.count;
}
int drmMarkBufs(int fd, double low, double high)
{
drm_buf_info_t info;
int i;
info.count = 0;
info.list = NULL;
if (ioctl(fd, DRM_IOCTL_INFO_BUFS, &info)) return -EINVAL;
if (!info.count) return -EINVAL;
if (!(info.list = drmMalloc(info.count * sizeof(*info.list))))
return -ENOMEM;
if (ioctl(fd, DRM_IOCTL_INFO_BUFS, &info)) {
int retval = -errno;
drmFree(info.list);
return retval;
}
for (i = 0; i < info.count; i++) {
info.list[i].low_mark = low * info.list[i].count;
info.list[i].high_mark = high * info.list[i].count;
if (ioctl(fd, DRM_IOCTL_MARK_BUFS, &info.list[i])) {
int retval = -errno;
drmFree(info.list);
return retval;
}
}
drmFree(info.list);
return 0;
}
/**
* Free buffers.
*
* \param fd file descriptor.
* \param count number of buffers to free.
* \param list list of buffers to be freed.
*
* \return zero on success, or a negative value on failure.
*
* \note This function is primarily used for debugging.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_FREE_BUFS ioctl, passing
* the arguments in a drm_buf_free structure.
*/
int drmFreeBufs(int fd, int count, int *list)
{
drm_buf_free_t request;
request.count = count;
request.list = list;
if (ioctl(fd, DRM_IOCTL_FREE_BUFS, &request)) return -errno;
return 0;
}
/**
* Close the device.
*
* \param fd file descriptor.
*
* \internal
* This function closes the file descriptor.
*/
int drmClose(int fd)
{
unsigned long key = drmGetKeyFromFd(fd);
drmHashEntry *entry = drmGetEntry(fd);
drmHashDestroy(entry->tagTable);
entry->fd = 0;
entry->f = NULL;
entry->tagTable = NULL;
drmHashDelete(drmHashTable, key);
drmFree(entry);
return close(fd);
}
/**
* Map a region of memory.
*
* \param fd file descriptor.
* \param handle handle returned by drmAddMap().
* \param size size in bytes. Must match the size used by drmAddMap().
* \param address will contain the user-space virtual address where the mapping
* begins.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper for mmap().
*/
int drmMap(int fd, drm_handle_t handle, drmSize size, drmAddressPtr address)
{
static unsigned long pagesize_mask = 0;
if (fd < 0) return -EINVAL;
if (!pagesize_mask)
pagesize_mask = getpagesize() - 1;
size = (size + pagesize_mask) & ~pagesize_mask;
*address = mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, handle);
if (*address == MAP_FAILED) return -errno;
return 0;
}
/**
* Unmap mappings obtained with drmMap().
*
* \param address address as given by drmMap().
* \param size size in bytes. Must match the size used by drmMap().
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper for munmap().
*/
int drmUnmap(drmAddress address, drmSize size)
{
return munmap(address, size);
}
drmBufInfoPtr drmGetBufInfo(int fd)
{
drm_buf_info_t info;
drmBufInfoPtr retval;
int i;
info.count = 0;
info.list = NULL;
if (ioctl(fd, DRM_IOCTL_INFO_BUFS, &info)) return NULL;
if (info.count) {
if (!(info.list = drmMalloc(info.count * sizeof(*info.list))))
return NULL;
if (ioctl(fd, DRM_IOCTL_INFO_BUFS, &info)) {
drmFree(info.list);
return NULL;
}
retval = drmMalloc(sizeof(*retval));
retval->count = info.count;
retval->list = drmMalloc(info.count * sizeof(*retval->list));
for (i = 0; i < info.count; i++) {
retval->list[i].count = info.list[i].count;
retval->list[i].size = info.list[i].size;
retval->list[i].low_mark = info.list[i].low_mark;
retval->list[i].high_mark = info.list[i].high_mark;
}
drmFree(info.list);
return retval;
}
return NULL;
}
/**
* Map all DMA buffers into client-virtual space.
*
* \param fd file descriptor.
*
* \return a pointer to a ::drmBufMap structure.
*
* \note The client may not use these buffers until obtaining buffer indices
* with drmDMA().
*
* \internal
* This function calls the DRM_IOCTL_MAP_BUFS ioctl and copies the returned
* information about the buffers in a drm_buf_map structure into the
* client-visible data structures.
*/
drmBufMapPtr drmMapBufs(int fd)
{
drm_buf_map_t bufs;
drmBufMapPtr retval;
int i;
bufs.count = 0;
bufs.list = NULL;
bufs.virtual = NULL;
if (ioctl(fd, DRM_IOCTL_MAP_BUFS, &bufs)) return NULL;
if (!bufs.count) return NULL;
if (!(bufs.list = drmMalloc(bufs.count * sizeof(*bufs.list))))
return NULL;
if (ioctl(fd, DRM_IOCTL_MAP_BUFS, &bufs)) {
drmFree(bufs.list);
return NULL;
}
retval = drmMalloc(sizeof(*retval));
retval->count = bufs.count;
retval->list = drmMalloc(bufs.count * sizeof(*retval->list));
for (i = 0; i < bufs.count; i++) {
retval->list[i].idx = bufs.list[i].idx;
retval->list[i].total = bufs.list[i].total;
retval->list[i].used = 0;
retval->list[i].address = bufs.list[i].address;
}
drmFree(bufs.list);
return retval;
}
/**
* Unmap buffers allocated with drmMapBufs().
*
* \return zero on success, or negative value on failure.
*
* \internal
* Calls munmap() for every buffer stored in \p bufs and frees the
* memory allocated by drmMapBufs().
*/
int drmUnmapBufs(drmBufMapPtr bufs)
{
int i;
for (i = 0; i < bufs->count; i++) {
munmap(bufs->list[i].address, bufs->list[i].total);
}
drmFree(bufs->list);
drmFree(bufs);
return 0;
}
#define DRM_DMA_RETRY 16
/**
* Reserve DMA buffers.
*
* \param fd file descriptor.
* \param request
*
* \return zero on success, or a negative value on failure.
*
* \internal
* Assemble the arguments into a drm_dma structure and keeps issuing the
* DRM_IOCTL_DMA ioctl until success or until maximum number of retries.
*/
int drmDMA(int fd, drmDMAReqPtr request)
{
drm_dma_t dma;
int ret, i = 0;
dma.context = request->context;
dma.send_count = request->send_count;
dma.send_indices = request->send_list;
dma.send_sizes = request->send_sizes;
dma.flags = request->flags;
dma.request_count = request->request_count;
dma.request_size = request->request_size;
dma.request_indices = request->request_list;
dma.request_sizes = request->request_sizes;
dma.granted_count = 0;
do {
ret = ioctl( fd, DRM_IOCTL_DMA, &dma );
} while ( ret && errno == EAGAIN && i++ < DRM_DMA_RETRY );
if ( ret == 0 ) {
request->granted_count = dma.granted_count;
return 0;
} else {
return -errno;
}
}
/**
* Obtain heavyweight hardware lock.
*
* \param fd file descriptor.
* \param context context.
* \param flags flags that determine the sate of the hardware when the function
* returns.
*
* \return always zero.
*
* \internal
* This function translates the arguments into a drm_lock structure and issue
* the DRM_IOCTL_LOCK ioctl until the lock is successfully acquired.
*/
int drmGetLock(int fd, drm_context_t context, drmLockFlags flags)
{
drm_lock_t lock;
lock.context = context;
lock.flags = 0;
if (flags & DRM_LOCK_READY) lock.flags |= _DRM_LOCK_READY;
if (flags & DRM_LOCK_QUIESCENT) lock.flags |= _DRM_LOCK_QUIESCENT;
if (flags & DRM_LOCK_FLUSH) lock.flags |= _DRM_LOCK_FLUSH;
if (flags & DRM_LOCK_FLUSH_ALL) lock.flags |= _DRM_LOCK_FLUSH_ALL;
if (flags & DRM_HALT_ALL_QUEUES) lock.flags |= _DRM_HALT_ALL_QUEUES;
if (flags & DRM_HALT_CUR_QUEUES) lock.flags |= _DRM_HALT_CUR_QUEUES;
while (ioctl(fd, DRM_IOCTL_LOCK, &lock))
;
return 0;
}
/**
* Release the hardware lock.
*
* \param fd file descriptor.
* \param context context.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_UNLOCK ioctl, passing the
* argument in a drm_lock structure.
*/
int drmUnlock(int fd, drm_context_t context)
{
drm_lock_t lock;
lock.context = context;
lock.flags = 0;
return ioctl(fd, DRM_IOCTL_UNLOCK, &lock);
}
drm_context_t *drmGetReservedContextList(int fd, int *count)
{
drm_ctx_res_t res;
drm_ctx_t *list;
drm_context_t * retval;
int i;
res.count = 0;
res.contexts = NULL;
if (ioctl(fd, DRM_IOCTL_RES_CTX, &res)) return NULL;
if (!res.count) return NULL;
if (!(list = drmMalloc(res.count * sizeof(*list)))) return NULL;
if (!(retval = drmMalloc(res.count * sizeof(*retval)))) {
drmFree(list);
return NULL;
}
res.contexts = list;
if (ioctl(fd, DRM_IOCTL_RES_CTX, &res)) return NULL;
for (i = 0; i < res.count; i++) retval[i] = list[i].handle;
drmFree(list);
*count = res.count;
return retval;
}
void drmFreeReservedContextList(drm_context_t *pt)
{
drmFree(pt);
}
/**
* Create context.
*
* Used by the X server during GLXContext initialization. This causes
* per-context kernel-level resources to be allocated.
*
* \param fd file descriptor.
* \param handle is set on success. To be used by the client when requesting DMA
* dispatch with drmDMA().
*
* \return zero on success, or a negative value on failure.
*
* \note May only be called by root.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_ADD_CTX ioctl, passing the
* argument in a drm_ctx structure.
*/
int drmCreateContext(int fd, drm_context_t *handle)
{
drm_ctx_t ctx;
ctx.flags = 0; /* Modified with functions below */
if (ioctl(fd, DRM_IOCTL_ADD_CTX, &ctx)) return -errno;
*handle = ctx.handle;
return 0;
}
int drmSwitchToContext(int fd, drm_context_t context)
{
drm_ctx_t ctx;
ctx.handle = context;
if (ioctl(fd, DRM_IOCTL_SWITCH_CTX, &ctx)) return -errno;
return 0;
}
int drmSetContextFlags(int fd, drm_context_t context, drm_context_tFlags flags)
{
drm_ctx_t ctx;
/*
* Context preserving means that no context switches are done between DMA
* buffers from one context and the next. This is suitable for use in the
* X server (which promises to maintain hardware context), or in the
* client-side library when buffers are swapped on behalf of two threads.
*/
ctx.handle = context;
ctx.flags = 0;
if (flags & DRM_CONTEXT_PRESERVED) ctx.flags |= _DRM_CONTEXT_PRESERVED;
if (flags & DRM_CONTEXT_2DONLY) ctx.flags |= _DRM_CONTEXT_2DONLY;
if (ioctl(fd, DRM_IOCTL_MOD_CTX, &ctx)) return -errno;
return 0;
}
int drmGetContextFlags(int fd, drm_context_t context,
drm_context_tFlagsPtr flags)
{
drm_ctx_t ctx;
ctx.handle = context;
if (ioctl(fd, DRM_IOCTL_GET_CTX, &ctx)) return -errno;
*flags = 0;
if (ctx.flags & _DRM_CONTEXT_PRESERVED) *flags |= DRM_CONTEXT_PRESERVED;
if (ctx.flags & _DRM_CONTEXT_2DONLY) *flags |= DRM_CONTEXT_2DONLY;
return 0;
}
/**
* Destroy context.
*
* Free any kernel-level resources allocated with drmCreateContext() associated
* with the context.
*
* \param fd file descriptor.
* \param handle handle given by drmCreateContext().
*
* \return zero on success, or a negative value on failure.
*
* \note May only be called by root.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_RM_CTX ioctl, passing the
* argument in a drm_ctx structure.
*/
int drmDestroyContext(int fd, drm_context_t handle)
{
drm_ctx_t ctx;
ctx.handle = handle;
if (ioctl(fd, DRM_IOCTL_RM_CTX, &ctx)) return -errno;
return 0;
}
int drmCreateDrawable(int fd, drm_drawable_t *handle)
{
drm_draw_t draw;
if (ioctl(fd, DRM_IOCTL_ADD_DRAW, &draw)) return -errno;
*handle = draw.handle;
return 0;
}
int drmDestroyDrawable(int fd, drm_drawable_t handle)
{
drm_draw_t draw;
draw.handle = handle;
if (ioctl(fd, DRM_IOCTL_RM_DRAW, &draw)) return -errno;
return 0;
}
int drmUpdateDrawableInfo(int fd, drm_drawable_t handle,
drm_drawable_info_type_t type, unsigned int num,
void *data)
{
drm_update_draw_t update;
update.handle = handle;
update.type = type;
update.num = num;
update.data = (unsigned long long)(unsigned long)data;
if (ioctl(fd, DRM_IOCTL_UPDATE_DRAW, &update)) return -errno;
return 0;
}
/**
* Acquire the AGP device.
*
* Must be called before any of the other AGP related calls.
*
* \param fd file descriptor.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_ACQUIRE ioctl.
*/
int drmAgpAcquire(int fd)
{
if (ioctl(fd, DRM_IOCTL_AGP_ACQUIRE, NULL)) return -errno;
return 0;
}
/**
* Release the AGP device.
*
* \param fd file descriptor.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_RELEASE ioctl.
*/
int drmAgpRelease(int fd)
{
if (ioctl(fd, DRM_IOCTL_AGP_RELEASE, NULL)) return -errno;
return 0;
}
/**
* Set the AGP mode.
*
* \param fd file descriptor.
* \param mode AGP mode.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_ENABLE ioctl, passing the
* argument in a drm_agp_mode structure.
*/
int drmAgpEnable(int fd, unsigned long mode)
{
drm_agp_mode_t m;
m.mode = mode;
if (ioctl(fd, DRM_IOCTL_AGP_ENABLE, &m)) return -errno;
return 0;
}
/**
* Allocate a chunk of AGP memory.
*
* \param fd file descriptor.
* \param size requested memory size in bytes. Will be rounded to page boundary.
* \param type type of memory to allocate.
* \param address if not zero, will be set to the physical address of the
* allocated memory.
* \param handle on success will be set to a handle of the allocated memory.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_ALLOC ioctl, passing the
* arguments in a drm_agp_buffer structure.
*/
int drmAgpAlloc(int fd, unsigned long size, unsigned long type,
unsigned long *address, drm_handle_t *handle)
{
drm_agp_buffer_t b;
*handle = DRM_AGP_NO_HANDLE;
b.size = size;
b.handle = 0;
b.type = type;
if (ioctl(fd, DRM_IOCTL_AGP_ALLOC, &b)) return -errno;
if (address != 0UL) *address = b.physical;
*handle = b.handle;
return 0;
}
/**
* Free a chunk of AGP memory.
*
* \param fd file descriptor.
* \param handle handle to the allocated memory, as given by drmAgpAllocate().
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_FREE ioctl, passing the
* argument in a drm_agp_buffer structure.
*/
int drmAgpFree(int fd, drm_handle_t handle)
{
drm_agp_buffer_t b;
b.size = 0;
b.handle = handle;
if (ioctl(fd, DRM_IOCTL_AGP_FREE, &b)) return -errno;
return 0;
}
/**
* Bind a chunk of AGP memory.
*
* \param fd file descriptor.
* \param handle handle to the allocated memory, as given by drmAgpAllocate().
* \param offset offset in bytes. It will round to page boundary.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_BIND ioctl, passing the
* argument in a drm_agp_binding structure.
*/
int drmAgpBind(int fd, drm_handle_t handle, unsigned long offset)
{
drm_agp_binding_t b;
b.handle = handle;
b.offset = offset;
if (ioctl(fd, DRM_IOCTL_AGP_BIND, &b)) return -errno;
return 0;
}
/**
* Unbind a chunk of AGP memory.
*
* \param fd file descriptor.
* \param handle handle to the allocated memory, as given by drmAgpAllocate().
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_UNBIND ioctl, passing
* the argument in a drm_agp_binding structure.
*/
int drmAgpUnbind(int fd, drm_handle_t handle)
{
drm_agp_binding_t b;
b.handle = handle;
b.offset = 0;
if (ioctl(fd, DRM_IOCTL_AGP_UNBIND, &b)) return -errno;
return 0;
}
/**
* Get AGP driver major version number.
*
* \param fd file descriptor.
*
* \return major version number on success, or a negative value on failure..
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
int drmAgpVersionMajor(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return -errno;
return i.agp_version_major;
}
/**
* Get AGP driver minor version number.
*
* \param fd file descriptor.
*
* \return minor version number on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
int drmAgpVersionMinor(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return -errno;
return i.agp_version_minor;
}
/**
* Get AGP mode.
*
* \param fd file descriptor.
*
* \return mode on success, or zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned long drmAgpGetMode(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.mode;
}
/**
* Get AGP aperture base.
*
* \param fd file descriptor.
*
* \return aperture base on success, zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned long drmAgpBase(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.aperture_base;
}
/**
* Get AGP aperture size.
*
* \param fd file descriptor.
*
* \return aperture size on success, zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned long drmAgpSize(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.aperture_size;
}
/**
* Get used AGP memory.
*
* \param fd file descriptor.
*
* \return memory used on success, or zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned long drmAgpMemoryUsed(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.memory_used;
}
/**
* Get available AGP memory.
*
* \param fd file descriptor.
*
* \return memory available on success, or zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned long drmAgpMemoryAvail(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.memory_allowed;
}
/**
* Get hardware vendor ID.
*
* \param fd file descriptor.
*
* \return vendor ID on success, or zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned int drmAgpVendorId(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.id_vendor;
}
/**
* Get hardware device ID.
*
* \param fd file descriptor.
*
* \return zero on success, or zero on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the
* necessary information in a drm_agp_info structure.
*/
unsigned int drmAgpDeviceId(int fd)
{
drm_agp_info_t i;
if (ioctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0;
return i.id_device;
}
int drmScatterGatherAlloc(int fd, unsigned long size, drm_handle_t *handle)
{
drm_scatter_gather_t sg;
*handle = 0;
sg.size = size;
sg.handle = 0;
if (ioctl(fd, DRM_IOCTL_SG_ALLOC, &sg)) return -errno;
*handle = sg.handle;
return 0;
}
int drmScatterGatherFree(int fd, drm_handle_t handle)
{
drm_scatter_gather_t sg;
sg.size = 0;
sg.handle = handle;
if (ioctl(fd, DRM_IOCTL_SG_FREE, &sg)) return -errno;
return 0;
}
/**
* Wait for VBLANK.
*
* \param fd file descriptor.
* \param vbl pointer to a drmVBlank structure.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_WAIT_VBLANK ioctl.
*/
int drmWaitVBlank(int fd, drmVBlankPtr vbl)
{
int ret;
do {
ret = ioctl(fd, DRM_IOCTL_WAIT_VBLANK, vbl);
vbl->request.type &= ~DRM_VBLANK_RELATIVE;
} while (ret && errno == EINTR);
return ret;
}
int drmError(int err, const char *label)
{
switch (err) {
case DRM_ERR_NO_DEVICE: fprintf(stderr, "%s: no device\n", label); break;
case DRM_ERR_NO_ACCESS: fprintf(stderr, "%s: no access\n", label); break;
case DRM_ERR_NOT_ROOT: fprintf(stderr, "%s: not root\n", label); break;
case DRM_ERR_INVALID: fprintf(stderr, "%s: invalid args\n", label);break;
default:
if (err < 0) err = -err;
fprintf( stderr, "%s: error %d (%s)\n", label, err, strerror(err) );
break;
}
return 1;
}
/**
* Install IRQ handler.
*
* \param fd file descriptor.
* \param irq IRQ number.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_CONTROL ioctl, passing the
* argument in a drm_control structure.
*/
int drmCtlInstHandler(int fd, int irq)
{
drm_control_t ctl;
ctl.func = DRM_INST_HANDLER;
ctl.irq = irq;
if (ioctl(fd, DRM_IOCTL_CONTROL, &ctl)) return -errno;
return 0;
}
/**
* Uninstall IRQ handler.
*
* \param fd file descriptor.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_CONTROL ioctl, passing the
* argument in a drm_control structure.
*/
int drmCtlUninstHandler(int fd)
{
drm_control_t ctl;
ctl.func = DRM_UNINST_HANDLER;
ctl.irq = 0;
if (ioctl(fd, DRM_IOCTL_CONTROL, &ctl)) return -errno;
return 0;
}
int drmFinish(int fd, int context, drmLockFlags flags)
{
drm_lock_t lock;
lock.context = context;
lock.flags = 0;
if (flags & DRM_LOCK_READY) lock.flags |= _DRM_LOCK_READY;
if (flags & DRM_LOCK_QUIESCENT) lock.flags |= _DRM_LOCK_QUIESCENT;
if (flags & DRM_LOCK_FLUSH) lock.flags |= _DRM_LOCK_FLUSH;
if (flags & DRM_LOCK_FLUSH_ALL) lock.flags |= _DRM_LOCK_FLUSH_ALL;
if (flags & DRM_HALT_ALL_QUEUES) lock.flags |= _DRM_HALT_ALL_QUEUES;
if (flags & DRM_HALT_CUR_QUEUES) lock.flags |= _DRM_HALT_CUR_QUEUES;
if (ioctl(fd, DRM_IOCTL_FINISH, &lock)) return -errno;
return 0;
}
/**
* Get IRQ from bus ID.
*
* \param fd file descriptor.
* \param busnum bus number.
* \param devnum device number.
* \param funcnum function number.
*
* \return IRQ number on success, or a negative value on failure.
*
* \internal
* This function is a wrapper around the DRM_IOCTL_IRQ_BUSID ioctl, passing the
* arguments in a drm_irq_busid structure.
*/
int drmGetInterruptFromBusID(int fd, int busnum, int devnum, int funcnum)
{
drm_irq_busid_t p;
p.busnum = busnum;
p.devnum = devnum;
p.funcnum = funcnum;
if (ioctl(fd, DRM_IOCTL_IRQ_BUSID, &p)) return -errno;
return p.irq;
}
int drmAddContextTag(int fd, drm_context_t context, void *tag)
{
drmHashEntry *entry = drmGetEntry(fd);
if (drmHashInsert(entry->tagTable, context, tag)) {
drmHashDelete(entry->tagTable, context);
drmHashInsert(entry->tagTable, context, tag);
}
return 0;
}
int drmDelContextTag(int fd, drm_context_t context)
{
drmHashEntry *entry = drmGetEntry(fd);
return drmHashDelete(entry->tagTable, context);
}
void *drmGetContextTag(int fd, drm_context_t context)
{
drmHashEntry *entry = drmGetEntry(fd);
void *value;
if (drmHashLookup(entry->tagTable, context, &value)) return NULL;
return value;
}
int drmAddContextPrivateMapping(int fd, drm_context_t ctx_id,
drm_handle_t handle)
{
drm_ctx_priv_map_t map;
map.ctx_id = ctx_id;
map.handle = (void *)handle;
if (ioctl(fd, DRM_IOCTL_SET_SAREA_CTX, &map)) return -errno;
return 0;
}
int drmGetContextPrivateMapping(int fd, drm_context_t ctx_id,
drm_handle_t *handle)
{
drm_ctx_priv_map_t map;
map.ctx_id = ctx_id;
if (ioctl(fd, DRM_IOCTL_GET_SAREA_CTX, &map)) return -errno;
if (handle) *handle = (drm_handle_t)map.handle;
return 0;
}
int drmGetMap(int fd, int idx, drm_handle_t *offset, drmSize *size,
drmMapType *type, drmMapFlags *flags, drm_handle_t *handle,
int *mtrr)
{
drm_map_t map;
map.offset = idx;
if (ioctl(fd, DRM_IOCTL_GET_MAP, &map)) return -errno;
*offset = map.offset;
*size = map.size;
*type = map.type;
*flags = map.flags;
*handle = (unsigned long)map.handle;
*mtrr = map.mtrr;
return 0;
}
int drmGetClient(int fd, int idx, int *auth, int *pid, int *uid,
unsigned long *magic, unsigned long *iocs)
{
drm_client_t client;
client.idx = idx;
if (ioctl(fd, DRM_IOCTL_GET_CLIENT, &client)) return -errno;
*auth = client.auth;
*pid = client.pid;
*uid = client.uid;
*magic = client.magic;
*iocs = client.iocs;
return 0;
}
int drmGetStats(int fd, drmStatsT *stats)
{
drm_stats_t s;
int i;
if (ioctl(fd, DRM_IOCTL_GET_STATS, &s)) return -errno;
stats->count = 0;
memset(stats, 0, sizeof(*stats));
if (s.count > sizeof(stats->data)/sizeof(stats->data[0]))
return -1;
#define SET_VALUE \
stats->data[i].long_format = "%-20.20s"; \
stats->data[i].rate_format = "%8.8s"; \
stats->data[i].isvalue = 1; \
stats->data[i].verbose = 0
#define SET_COUNT \
stats->data[i].long_format = "%-20.20s"; \
stats->data[i].rate_format = "%5.5s"; \
stats->data[i].isvalue = 0; \
stats->data[i].mult_names = "kgm"; \
stats->data[i].mult = 1000; \
stats->data[i].verbose = 0
#define SET_BYTE \
stats->data[i].long_format = "%-20.20s"; \
stats->data[i].rate_format = "%5.5s"; \
stats->data[i].isvalue = 0; \
stats->data[i].mult_names = "KGM"; \
stats->data[i].mult = 1024; \
stats->data[i].verbose = 0
stats->count = s.count;
for (i = 0; i < s.count; i++) {
stats->data[i].value = s.data[i].value;
switch (s.data[i].type) {
case _DRM_STAT_LOCK:
stats->data[i].long_name = "Lock";
stats->data[i].rate_name = "Lock";
SET_VALUE;
break;
case _DRM_STAT_OPENS:
stats->data[i].long_name = "Opens";
stats->data[i].rate_name = "O";
SET_COUNT;
stats->data[i].verbose = 1;
break;
case _DRM_STAT_CLOSES:
stats->data[i].long_name = "Closes";
stats->data[i].rate_name = "Lock";
SET_COUNT;
stats->data[i].verbose = 1;
break;
case _DRM_STAT_IOCTLS:
stats->data[i].long_name = "Ioctls";
stats->data[i].rate_name = "Ioc/s";
SET_COUNT;
break;
case _DRM_STAT_LOCKS:
stats->data[i].long_name = "Locks";
stats->data[i].rate_name = "Lck/s";
SET_COUNT;
break;
case _DRM_STAT_UNLOCKS:
stats->data[i].long_name = "Unlocks";
stats->data[i].rate_name = "Unl/s";
SET_COUNT;
break;
case _DRM_STAT_IRQ:
stats->data[i].long_name = "IRQs";
stats->data[i].rate_name = "IRQ/s";
SET_COUNT;
break;
case _DRM_STAT_PRIMARY:
stats->data[i].long_name = "Primary Bytes";
stats->data[i].rate_name = "PB/s";
SET_BYTE;
break;
case _DRM_STAT_SECONDARY:
stats->data[i].long_name = "Secondary Bytes";
stats->data[i].rate_name = "SB/s";
SET_BYTE;
break;
case _DRM_STAT_DMA:
stats->data[i].long_name = "DMA";
stats->data[i].rate_name = "DMA/s";
SET_COUNT;
break;
case _DRM_STAT_SPECIAL:
stats->data[i].long_name = "Special DMA";
stats->data[i].rate_name = "dma/s";
SET_COUNT;
break;
case _DRM_STAT_MISSED:
stats->data[i].long_name = "Miss";
stats->data[i].rate_name = "Ms/s";
SET_COUNT;
break;
case _DRM_STAT_VALUE:
stats->data[i].long_name = "Value";
stats->data[i].rate_name = "Value";
SET_VALUE;
break;
case _DRM_STAT_BYTE:
stats->data[i].long_name = "Bytes";
stats->data[i].rate_name = "B/s";
SET_BYTE;
break;
case _DRM_STAT_COUNT:
default:
stats->data[i].long_name = "Count";
stats->data[i].rate_name = "Cnt/s";
SET_COUNT;
break;
}
}
return 0;
}
/**
* Issue a set-version ioctl.
*
* \param fd file descriptor.
* \param drmCommandIndex command index
* \param data source pointer of the data to be read and written.
* \param size size of the data to be read and written.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* It issues a read-write ioctl given by
* \code DRM_COMMAND_BASE + drmCommandIndex \endcode.
*/
int drmSetInterfaceVersion(int fd, drmSetVersion *version)
{
int retcode = 0;
drm_set_version_t sv;
sv.drm_di_major = version->drm_di_major;
sv.drm_di_minor = version->drm_di_minor;
sv.drm_dd_major = version->drm_dd_major;
sv.drm_dd_minor = version->drm_dd_minor;
if (ioctl(fd, DRM_IOCTL_SET_VERSION, &sv)) {
retcode = -errno;
}
version->drm_di_major = sv.drm_di_major;
version->drm_di_minor = sv.drm_di_minor;
version->drm_dd_major = sv.drm_dd_major;
version->drm_dd_minor = sv.drm_dd_minor;
return retcode;
}
/**
* Send a device-specific command.
*
* \param fd file descriptor.
* \param drmCommandIndex command index
*
* \return zero on success, or a negative value on failure.
*
* \internal
* It issues a ioctl given by
* \code DRM_COMMAND_BASE + drmCommandIndex \endcode.
*/
int drmCommandNone(int fd, unsigned long drmCommandIndex)
{
void *data = NULL; /* dummy */
unsigned long request;
request = DRM_IO( DRM_COMMAND_BASE + drmCommandIndex);
if (ioctl(fd, request, data)) {
return -errno;
}
return 0;
}
/**
* Send a device-specific read command.
*
* \param fd file descriptor.
* \param drmCommandIndex command index
* \param data destination pointer of the data to be read.
* \param size size of the data to be read.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* It issues a read ioctl given by
* \code DRM_COMMAND_BASE + drmCommandIndex \endcode.
*/
int drmCommandRead(int fd, unsigned long drmCommandIndex, void *data,
unsigned long size)
{
unsigned long request;
request = DRM_IOC( DRM_IOC_READ, DRM_IOCTL_BASE,
DRM_COMMAND_BASE + drmCommandIndex, size);
if (ioctl(fd, request, data)) {
return -errno;
}
return 0;
}
/**
* Send a device-specific write command.
*
* \param fd file descriptor.
* \param drmCommandIndex command index
* \param data source pointer of the data to be written.
* \param size size of the data to be written.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* It issues a write ioctl given by
* \code DRM_COMMAND_BASE + drmCommandIndex \endcode.
*/
int drmCommandWrite(int fd, unsigned long drmCommandIndex, void *data,
unsigned long size)
{
unsigned long request;
request = DRM_IOC( DRM_IOC_WRITE, DRM_IOCTL_BASE,
DRM_COMMAND_BASE + drmCommandIndex, size);
if (ioctl(fd, request, data)) {
return -errno;
}
return 0;
}
/**
* Send a device-specific read-write command.
*
* \param fd file descriptor.
* \param drmCommandIndex command index
* \param data source pointer of the data to be read and written.
* \param size size of the data to be read and written.
*
* \return zero on success, or a negative value on failure.
*
* \internal
* It issues a read-write ioctl given by
* \code DRM_COMMAND_BASE + drmCommandIndex \endcode.
*/
int drmCommandWriteRead(int fd, unsigned long drmCommandIndex, void *data,
unsigned long size)
{
unsigned long request;
request = DRM_IOC( DRM_IOC_READ|DRM_IOC_WRITE, DRM_IOCTL_BASE,
DRM_COMMAND_BASE + drmCommandIndex, size);
if (ioctl(fd, request, data)) {
return -errno;
}
return 0;
}
/*
* Valid flags are
* DRM_FENCE_FLAG_EMIT
* DRM_FENCE_FLAG_SHAREABLE
* DRM_FENCE_MASK_DRIVER
*/
int drmFenceCreate(int fd, unsigned flags, int class,unsigned type,
drmFence *fence)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.type = type;
arg.class = class;
arg.op = drm_fence_create;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
fence->handle = arg.handle;
fence->class = arg.class;
fence->type = arg.type;
fence->flags = arg.flags;
fence->signaled = 0;
return 0;
}
/*
* Valid flags are
* DRM_FENCE_FLAG_SHAREABLE
* DRM_FENCE_MASK_DRIVER
*/
int drmFenceBuffers(int fd, unsigned flags, drmFence *fence)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.flags = flags;
arg.op = drm_fence_buffers;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
fence->handle = arg.handle;
fence->class = arg.class;
fence->type = arg.type;
fence->flags = arg.flags;
fence->signaled = 0;
return 0;
}
int drmFenceDestroy(int fd, const drmFence *fence)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.handle = fence->handle;
arg.op = drm_fence_destroy;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
return 0;
}
int drmFenceReference(int fd, unsigned handle, drmFence *fence)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.handle = handle;
arg.op = drm_fence_reference;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
fence->handle = arg.handle;
fence->class = arg.class;
fence->type = arg.type;
fence->flags = arg.flags;
fence->signaled = arg.signaled;
return 0;
}
int drmFenceUnreference(int fd, const drmFence *fence)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.handle = fence->handle;
arg.op = drm_fence_unreference;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
return 0;
}
int drmFenceFlush(int fd, drmFence *fence, unsigned flush_type)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.handle = fence->handle;
arg.type = flush_type;
arg.op = drm_fence_flush;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
fence->class = arg.class;
fence->type = arg.type;
fence->signaled = arg.signaled;
return 0;
}
int drmFenceUpdate(int fd, drmFence *fence)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.handle = fence->handle;
arg.op = drm_fence_signaled;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
fence->class = arg.class;
fence->type = arg.type;
fence->signaled = arg.signaled;
return 0;
}
int drmFenceSignaled(int fd, drmFence *fence, unsigned fenceType,
int *signaled)
{
int
ret;
if ((fence->flags & DRM_FENCE_FLAG_SHAREABLE) ||
((fenceType & fence->signaled) != fenceType)) {
ret = drmFenceFlush(fd, fence, fenceType);
if (ret)
return ret;
}
*signaled = ((fenceType & fence->signaled) == fenceType);
return 0;
}
/*
* Valid flags are
* DRM_FENCE_FLAG_SHAREABLE
* DRM_FENCE_MASK_DRIVER
*/
int drmFenceEmit(int fd, unsigned flags, drmFence *fence, unsigned emit_type)
{
drm_fence_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.flags = flags;
arg.handle = fence->handle;
arg.type = emit_type;
arg.op = drm_fence_emit;
if (ioctl(fd, DRM_IOCTL_FENCE, &arg))
return -errno;
fence->class = arg.class;
fence->type = arg.type;
fence->signaled = arg.signaled;
return 0;
}
/*
* Valid flags are
* DRM_FENCE_FLAG_WAIT_LAZY
* DRM_FENCE_FLAG_WAIT_IGNORE_SIGNALS
*/
int drmFenceWait(int fd, unsigned flags, drmFence *fence, unsigned flush_type)
{
drm_fence_arg_t arg;
int ret;
if (flush_type == 0) {
flush_type = fence->type;
}
if (!(fence->flags & DRM_FENCE_FLAG_SHAREABLE)) {
if ((flush_type & fence->signaled) == flush_type) {
return 0;
}
}
memset(&arg, 0, sizeof(arg));
arg.handle = fence->handle;
arg.type = flush_type;
arg.flags = flags;
arg.op = drm_fence_wait;
do {
ret = ioctl(fd, DRM_IOCTL_FENCE, &arg);
} while (ret != 0 && errno == EAGAIN);
if (ret)
return -errno;
fence->class = arg.class;
fence->type = arg.type;
fence->signaled = arg.signaled;
return 0;
}
static int drmAdjustListNodes(drmBOList *list)
{
drmBONode *node;
drmMMListHead *l;
int ret = 0;
while(list->numCurrent < list->numTarget) {
node = (drmBONode *) malloc(sizeof(*node));
if (!node) {
ret = -ENOMEM;
break;
}
list->numCurrent++;
DRMLISTADD(&node->head, &list->free);
}
while(list->numCurrent > list->numTarget) {
l = list->free.next;
if (l == &list->free)
break;
DRMLISTDEL(l);
node = DRMLISTENTRY(drmBONode, l, head);
free(node);
list->numCurrent--;
}
return ret;
}
void drmBOFreeList(drmBOList *list)
{
drmBONode *node;
drmMMListHead *l;
l = list->list.next;
while(l != &list->list) {
DRMLISTDEL(l);
node = DRMLISTENTRY(drmBONode, l, head);
free(node);
l = list->free.next;
list->numCurrent--;
list->numOnList--;
}
l = list->free.next;
while(l != &list->free) {
DRMLISTDEL(l);
node = DRMLISTENTRY(drmBONode, l, head);
free(node);
l = list->free.next;
list->numCurrent--;
}
}
int drmBOResetList(drmBOList *list) {
drmMMListHead *l;
int ret;
ret = drmAdjustListNodes(list);
if (ret)
return ret;
l = list->list.next;
while(l != &list->list) {
DRMLISTDEL(l);
DRMLISTADD(l, &list->free);
list->numOnList--;
l = list->list.next;
}
return drmAdjustListNodes(list);
}
static drmBONode *drmAddListItem(drmBOList *list, drmBO *item,
unsigned long arg0,
unsigned long arg1)
{
drmBONode *node;
drmMMListHead *l;
l = list->free.next;
if (l == &list->free) {
node = (drmBONode *) malloc(sizeof(*node));
if (!node) {
return NULL;
}
list->numCurrent++;
} else {
DRMLISTDEL(l);
node = DRMLISTENTRY(drmBONode, l, head);
}
node->buf = item;
node->arg0 = arg0;
node->arg1 = arg1;
DRMLISTADD(&node->head, &list->list);
list->numOnList++;
return node;
}
void *drmBOListIterator(drmBOList *list)
{
void *ret = list->list.next;
if (ret == &list->list)
return NULL;
return ret;
}
void *drmBOListNext(drmBOList *list, void *iterator)
{
void *ret;
drmMMListHead *l = (drmMMListHead *) iterator;
ret = l->next;
if (ret == &list->list)
return NULL;
return ret;
}
drmBO *drmBOListBuf(void *iterator)
{
drmBONode *node;
drmMMListHead *l = (drmMMListHead *) iterator;
node = DRMLISTENTRY(drmBONode, l, head);
return node->buf;
}
int drmBOCreateList(int numTarget, drmBOList *list)
{
DRMINITLISTHEAD(&list->list);
DRMINITLISTHEAD(&list->free);
list->numTarget = numTarget;
list->numCurrent = 0;
list->numOnList = 0;
return drmAdjustListNodes(list);
}
static void drmBOCopyReply(const drm_bo_arg_reply_t *rep,
drmBO *buf)
{
buf->handle = rep->handle;
buf->flags = rep->flags;
buf->size = rep->size;
buf->offset = rep->offset;
buf->mapHandle = rep->arg_handle;
buf->mask = rep->mask;
buf->start = rep->buffer_start;
buf->fenceFlags = rep->fence_flags;
buf->replyFlags = rep->rep_flags;
buf->pageAlignment = rep->page_alignment;
}
int drmBOCreate(int fd, unsigned long start, unsigned long size,
unsigned pageAlignment, void *user_buffer, drm_bo_type_t type,
unsigned mask,
unsigned hint, drmBO *buf)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
int ret;
memset(buf, 0, sizeof(*buf));
memset(&arg, 0, sizeof(arg));
req->mask = mask;
req->hint = hint;
req->size = size;
req->type = type;
req->page_alignment = pageAlignment;
buf->virtual = NULL;
switch(type) {
case drm_bo_type_dc:
req->buffer_start = start;
break;
case drm_bo_type_user:
req->buffer_start = (unsigned long) user_buffer;
buf->virtual = user_buffer;
break;
case drm_bo_type_fake:
req->buffer_start = start;
break;
default:
return -EINVAL;
}
req->op = drm_bo_create;
do {
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, &arg);
} while (ret != 0 && errno == EAGAIN);
if (ret)
return -errno;
if (!arg.handled) {
return -EFAULT;
}
if (rep->ret) {
fprintf(stderr, "Error %d\n", rep->ret);
return rep->ret;
}
drmBOCopyReply(rep, buf);
buf->mapVirtual = NULL;
buf->mapCount = 0;
return 0;
}
int drmBODestroy(int fd, drmBO *buf)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
if (buf->mapVirtual && (buf->type != drm_bo_type_fake)) {
(void) drmUnmap(buf->mapVirtual, buf->start + buf->size);
buf->mapVirtual = NULL;
buf->virtual = NULL;
}
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->op = drm_bo_destroy;
if (ioctl(fd, DRM_IOCTL_BUFOBJ, &arg))
return -errno;
if (!arg.handled) {
return -EFAULT;
}
if (rep->ret) {
return rep->ret;
}
buf->handle = 0;
return 0;
}
int drmBOReference(int fd, unsigned handle, drmBO *buf)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
memset(&arg, 0, sizeof(arg));
req->handle = handle;
req->op = drm_bo_reference;
if (ioctl(fd, DRM_IOCTL_BUFOBJ, &arg))
return -errno;
if (!arg.handled) {
return -EFAULT;
}
if (rep->ret) {
return rep->ret;
}
drmBOCopyReply(rep, buf);
buf->type = drm_bo_type_dc;
buf->mapVirtual = NULL;
buf->mapCount = 0;
buf->virtual = NULL;
return 0;
}
int drmBOUnReference(int fd, drmBO *buf)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
if (buf->mapVirtual && (buf->type != drm_bo_type_fake)) {
(void) munmap(buf->mapVirtual, buf->start + buf->size);
buf->mapVirtual = NULL;
buf->virtual = NULL;
}
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->op = drm_bo_unreference;
if (ioctl(fd, DRM_IOCTL_BUFOBJ, &arg))
return -errno;
if (!arg.handled) {
return -EFAULT;
}
if (rep->ret) {
return rep->ret;
}
buf->handle = 0;
return 0;
}
/*
* Flags can be DRM_BO_FLAG_READ, DRM_BO_FLAG_WRITE or'ed together
* Hint currently be DRM_BO_HINT_DONT_BLOCK, which makes the
* call return an -EBUSY if it can' immediately honor the mapping request.
*/
int drmBOMap(int fd, drmBO *buf, unsigned mapFlags, unsigned mapHint,
void **address)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
int ret = 0;
/*
* Make sure we have a virtual address of the buffer.
*/
if (!buf->virtual && buf->type != drm_bo_type_fake) {
drmAddress virtual;
virtual = mmap(0, buf->size + buf->start,
PROT_READ | PROT_WRITE, MAP_SHARED,
fd, buf->mapHandle);
if (virtual == MAP_FAILED) {
ret = -errno;
}
if (ret)
return ret;
buf->mapVirtual = virtual;
buf->virtual = ((char *) virtual) + buf->start;
}
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->mask = mapFlags;
req->hint = mapHint;
req->op = drm_bo_map;
/*
* May hang if the buffer object is busy.
* This IOCTL synchronizes the buffer.
*/
do {
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, &arg);
} while (ret != 0 && errno == EAGAIN);
if (ret)
return ret;
if (!arg.handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
drmBOCopyReply(rep, buf);
buf->mapFlags = mapFlags;
++buf->mapCount;
*address = buf->virtual;
return 0;
}
int drmBOUnmap(int fd, drmBO *buf)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->op = drm_bo_unmap;
if (ioctl(fd, DRM_IOCTL_BUFOBJ, &arg)) {
return -errno;
}
if (!arg.handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
return 0;
}
int drmBOValidate(int fd, drmBO *buf, unsigned flags, unsigned mask,
unsigned hint)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
int ret = 0;
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->mask = flags;
req->hint = hint;
req->arg_handle = mask; /* Encode mask in the arg_handle field :/ */
req->op = drm_bo_validate;
do{
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, &arg);
} while (ret && errno == EAGAIN);
if (ret)
return ret;
if (!arg.handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
drmBOCopyReply(rep, buf);
return 0;
}
int drmBOFence(int fd, drmBO *buf, unsigned flags, unsigned fenceHandle)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
int ret = 0;
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->mask = flags;
req->arg_handle = fenceHandle;
req->op = drm_bo_validate;
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, &arg);
if (ret)
return ret;
if (!arg.handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
return 0;
}
int drmBOInfo(int fd, drmBO *buf)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
int ret = 0;
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->op = drm_bo_info;
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, &arg);
if (ret)
return ret;
if (!arg.handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
drmBOCopyReply(rep, buf);
return 0;
}
int drmBOWaitIdle(int fd, drmBO *buf, unsigned hint)
{
drm_bo_arg_t arg;
drm_bo_arg_request_t *req = &arg.d.req;
drm_bo_arg_reply_t *rep = &arg.d.rep;
int ret = 0;
if ((buf->flags & DRM_BO_FLAG_SHAREABLE) ||
(buf->replyFlags & DRM_BO_REP_BUSY)) {
memset(&arg, 0, sizeof(arg));
req->handle = buf->handle;
req->op = drm_bo_wait_idle;
req->hint = hint;
do {
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, &arg);
} while (ret && errno == EAGAIN);
if (ret)
return ret;
if (!arg.handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
drmBOCopyReply(rep, buf);
}
return 0;
}
int drmBOBusy(int fd, drmBO *buf, int *busy)
{
if (!(buf->flags & DRM_BO_FLAG_SHAREABLE) &&
!(buf->replyFlags & DRM_BO_REP_BUSY)) {
*busy = 0;
return 0;
} else {
int ret = drmBOInfo(fd, buf);
if (ret)
return ret;
*busy = (buf->replyFlags & DRM_BO_REP_BUSY);
return 0;
}
}
int drmAddValidateItem(drmBOList *list, drmBO *buf, unsigned flags,
unsigned mask,
int *newItem)
{
drmBONode *node, *cur;
drmMMListHead *l;
*newItem = 0;
cur = NULL;
for (l = list->list.next; l != &list->list; l = l->next) {
node = DRMLISTENTRY(drmBONode, l, head);
if (node->buf == buf) {
cur = node;
break;
}
}
if (!cur) {
cur = drmAddListItem(list, buf, flags, mask);
if (!cur) {
drmMsg("Out of memory creating validate list node.\n");
return -ENOMEM;
}
*newItem = 1;
cur->arg0 = flags;
cur->arg1 = mask;
} else {
unsigned memMask = (cur->arg1 | mask) & DRM_BO_MASK_MEM;
unsigned memFlags = cur->arg0 & flags & memMask;
if (!memFlags) {
drmMsg("Incompatible memory location requests "
"on validate list.\n");
drmMsg("Previous flag: 0x%08lx, mask: 0x%08lx\n",
cur->arg0, cur->arg1);
drmMsg("Current flag: 0x%08lx, mask: 0x%08lx\n",
flags, mask);
return -EINVAL;
}
if (mask & cur->arg1 & ~DRM_BO_MASK_MEM & (cur->arg0 ^ flags)) {
drmMsg("Incompatible buffer flag requests "
"on validate list.\n");
drmMsg("Previous flag: 0x%08lx, mask: 0x%08lx\n",
cur->arg0, cur->arg1);
drmMsg("Current flag: 0x%08lx, mask: 0x%08lx\n",
flags, mask);
return -EINVAL;
}
cur->arg1 |= mask;
cur->arg0 = memFlags | ((cur->arg0 | flags) &
cur->arg1 & ~DRM_BO_MASK_MEM);
}
return 0;
}
int drmBOValidateList(int fd, drmBOList *list)
{
drmBONode *node;
drmMMListHead *l;
drm_bo_arg_t *arg, *first;
drm_bo_arg_request_t *req;
drm_bo_arg_reply_t *rep;
drm_u64_t *prevNext = NULL;
drmBO *buf;
int ret;
first = NULL;
for (l = list->list.next; l != &list->list; l = l->next) {
node = DRMLISTENTRY(drmBONode, l, head);
arg = &node->bo_arg;
req = &arg->d.req;
if (!first)
first = arg;
if (prevNext)
*prevNext = (unsigned long) arg;
memset(arg, 0, sizeof(*arg));
prevNext = &arg->next;
req->handle = node->buf->handle;
req->op = drm_bo_validate;
req->mask = node->arg0;
req->hint = 0;
req->arg_handle = node->arg1;
}
if (!first)
return 0;
do{
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, first);
} while (ret && errno == EAGAIN);
if (ret)
return -errno;
for (l = list->list.next; l != &list->list; l = l->next) {
node = DRMLISTENTRY(drmBONode, l, head);
arg = &node->bo_arg;
rep = &arg->d.rep;
if (!arg->handled) {
drmMsg("Unhandled request\n");
return -EFAULT;
}
if (rep->ret)
return rep->ret;
buf = node->buf;
drmBOCopyReply(rep, buf);
}
return 0;
}
int drmBOFenceList(int fd, drmBOList *list, unsigned fenceHandle)
{
drmBONode *node;
drmMMListHead *l;
drm_bo_arg_t *arg, *first;
drm_bo_arg_request_t *req;
drm_bo_arg_reply_t *rep;
drm_u64_t *prevNext = NULL;
drmBO *buf;
unsigned fence_flags;
int ret;
first = NULL;
for (l = list->list.next; l != &list->list; l = l->next) {
node = DRMLISTENTRY(drmBONode, l, head);
arg = &node->bo_arg;
req = &arg->d.req;
if (!first)
first = arg;
if (prevNext)
*prevNext = (unsigned long) arg;
memset(arg, 0, sizeof(*arg));
prevNext = &arg->next;
req->handle = node->buf->handle;
req->op = drm_bo_fence;
req->mask = node->arg0;
req->arg_handle = fenceHandle;
}
if (!first)
return 0;
ret = ioctl(fd, DRM_IOCTL_BUFOBJ, first);
if (ret)
return -errno;
for (l = list->list.next; l != &list->list; l = l->next) {
node = DRMLISTENTRY(drmBONode, l, head);
arg = &node->bo_arg;
rep = &arg->d.rep;
if (!arg->handled)
return -EFAULT;
if (rep->ret)
return rep->ret;
drmBOCopyReply(rep, node->buf);
}
return 0;
}
int drmMMInit(int fd, unsigned long pOffset, unsigned long pSize,
unsigned memType)
{
drm_mm_init_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.req.op = mm_init;
arg.req.p_offset = pOffset;
arg.req.p_size = pSize;
arg.req.mem_type = memType;
if (ioctl(fd, DRM_IOCTL_MM_INIT, &arg))
return -errno;
return 0;
}
int drmMMTakedown(int fd, unsigned memType)
{
drm_mm_init_arg_t arg;
memset(&arg, 0, sizeof(arg));
arg.req.op = mm_takedown;
arg.req.mem_type = memType;
if (ioctl(fd, DRM_IOCTL_MM_INIT, &arg))
return -errno;
return 0;
}
int drmMMLock(int fd, unsigned memType)
{
drm_mm_init_arg_t arg;
int ret;
memset(&arg, 0, sizeof(arg));
arg.req.op = mm_lock;
arg.req.mem_type = memType;
do{
ret = ioctl(fd, DRM_IOCTL_MM_INIT, &arg);
} while (ret && errno == EAGAIN);
return ret;
}
int drmMMUnlock(int fd, unsigned memType)
{
drm_mm_init_arg_t arg;
int ret;
memset(&arg, 0, sizeof(arg));
arg.req.op = mm_unlock;
arg.req.mem_type = memType;
do{
ret = ioctl(fd, DRM_IOCTL_MM_INIT, &arg);
} while (ret && errno == EAGAIN);
return ret;
}
#define DRM_MAX_FDS 16
static struct {
char *BusID;
int fd;
int refcount;
} connection[DRM_MAX_FDS];
static int nr_fds = 0;
int drmOpenOnce(void *unused,
const char *BusID,
int *newlyopened)
{
int i;
int fd;
for (i = 0; i < nr_fds; i++)
if (strcmp(BusID, connection[i].BusID) == 0) {
connection[i].refcount++;
*newlyopened = 0;
return connection[i].fd;
}
fd = drmOpen(unused, BusID);
if (fd <= 0 || nr_fds == DRM_MAX_FDS)
return fd;
connection[nr_fds].BusID = strdup(BusID);
connection[nr_fds].fd = fd;
connection[nr_fds].refcount = 1;
*newlyopened = 1;
if (0)
fprintf(stderr, "saved connection %d for %s %d\n",
nr_fds, connection[nr_fds].BusID,
strcmp(BusID, connection[nr_fds].BusID));
nr_fds++;
return fd;
}
void drmCloseOnce(int fd)
{
int i;
for (i = 0; i < nr_fds; i++) {
if (fd == connection[i].fd) {
if (--connection[i].refcount == 0) {
drmClose(connection[i].fd);
free(connection[i].BusID);
if (i < --nr_fds)
connection[i] = connection[nr_fds];
return;
}
}
}
}
#ifdef X_PRIVSEP
static int
_priv_open_device(const char *path)
{
drmMsg("_priv_open_device\n");
return open(path, O_RDWR, 0);
}
int priv_open_device(const char *)
__attribute__((weak, alias ("_priv_open_device")));
#endif