296 lines
11 KiB
C
296 lines
11 KiB
C
/* $Xorg: poly.h,v 1.4 2001/02/09 02:03:40 xorgcvs Exp $ */
|
||
/************************************************************************
|
||
|
||
Copyright 1987, 1998 The Open Group
|
||
|
||
Permission to use, copy, modify, distribute, and sell this software and its
|
||
documentation for any purpose is hereby granted without fee, provided that
|
||
the above copyright notice appear in all copies and that both that
|
||
copyright notice and this permission notice appear in supporting
|
||
documentation.
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
||
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of The Open Group shall not be
|
||
used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from The Open Group.
|
||
|
||
|
||
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
|
||
|
||
All Rights Reserved
|
||
|
||
Permission to use, copy, modify, and distribute this software and its
|
||
documentation for any purpose and without fee is hereby granted,
|
||
provided that the above copyright notice appear in all copies and that
|
||
both that copyright notice and this permission notice appear in
|
||
supporting documentation, and that the name of Digital not be
|
||
used in advertising or publicity pertaining to distribution of the
|
||
software without specific, written prior permission.
|
||
|
||
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
|
||
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
|
||
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
|
||
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
||
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
||
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
|
||
SOFTWARE.
|
||
|
||
************************************************************************/
|
||
|
||
/*
|
||
* This file contains a few macros to help track
|
||
* the edge of a filled object. The object is assumed
|
||
* to be filled in scanline order, and thus the
|
||
* algorithm used is an extension of Bresenham's line
|
||
* drawing algorithm which assumes that y is always the
|
||
* major axis.
|
||
* Since these pieces of code are the same for any filled shape,
|
||
* it is more convenient to gather the library in one
|
||
* place, but since these pieces of code are also in
|
||
* the inner loops of output primitives, procedure call
|
||
* overhead is out of the question.
|
||
* See the author for a derivation if needed.
|
||
*/
|
||
|
||
|
||
/*
|
||
* In scan converting polygons, we want to choose those pixels
|
||
* which are inside the polygon. Thus, we add .5 to the starting
|
||
* x coordinate for both left and right edges. Now we choose the
|
||
* first pixel which is inside the pgon for the left edge and the
|
||
* first pixel which is outside the pgon for the right edge.
|
||
* Draw the left pixel, but not the right.
|
||
*
|
||
* How to add .5 to the starting x coordinate:
|
||
* If the edge is moving to the right, then subtract dy from the
|
||
* error term from the general form of the algorithm.
|
||
* If the edge is moving to the left, then add dy to the error term.
|
||
*
|
||
* The reason for the difference between edges moving to the left
|
||
* and edges moving to the right is simple: If an edge is moving
|
||
* to the right, then we want the algorithm to flip immediately.
|
||
* If it is moving to the left, then we don't want it to flip until
|
||
* we traverse an entire pixel.
|
||
*/
|
||
#define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
|
||
int dx; /* local storage */ \
|
||
\
|
||
/* \
|
||
* if the edge is horizontal, then it is ignored \
|
||
* and assumed not to be processed. Otherwise, do this stuff. \
|
||
*/ \
|
||
if ((dy) != 0) { \
|
||
xStart = (x1); \
|
||
dx = (x2) - xStart; \
|
||
if (dx < 0) { \
|
||
m = dx / (dy); \
|
||
m1 = m - 1; \
|
||
incr1 = -2 * dx + 2 * (dy) * m1; \
|
||
incr2 = -2 * dx + 2 * (dy) * m; \
|
||
d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
|
||
} else { \
|
||
m = dx / (dy); \
|
||
m1 = m + 1; \
|
||
incr1 = 2 * dx - 2 * (dy) * m1; \
|
||
incr2 = 2 * dx - 2 * (dy) * m; \
|
||
d = -2 * m * (dy) + 2 * dx; \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
#define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
|
||
if (m1 > 0) { \
|
||
if (d > 0) { \
|
||
minval += m1; \
|
||
d += incr1; \
|
||
} \
|
||
else { \
|
||
minval += m; \
|
||
d += incr2; \
|
||
} \
|
||
} else {\
|
||
if (d >= 0) { \
|
||
minval += m1; \
|
||
d += incr1; \
|
||
} \
|
||
else { \
|
||
minval += m; \
|
||
d += incr2; \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
|
||
/*
|
||
* This structure contains all of the information needed
|
||
* to run the bresenham algorithm.
|
||
* The variables may be hardcoded into the declarations
|
||
* instead of using this structure to make use of
|
||
* register declarations.
|
||
*/
|
||
typedef struct {
|
||
int minor_axis; /* minor axis */
|
||
int d; /* decision variable */
|
||
int m, m1; /* slope and slope+1 */
|
||
int incr1, incr2; /* error increments */
|
||
} BRESINFO;
|
||
|
||
|
||
#define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \
|
||
BRESINITPGON(dmaj, min1, min2, bres.minor_axis, bres.d, \
|
||
bres.m, bres.m1, bres.incr1, bres.incr2)
|
||
|
||
#define BRESINCRPGONSTRUCT(bres) \
|
||
BRESINCRPGON(bres.d, bres.minor_axis, bres.m, bres.m1, bres.incr1, bres.incr2)
|
||
|
||
|
||
|
||
/*
|
||
* These are the data structures needed to scan
|
||
* convert regions. Two different scan conversion
|
||
* methods are available -- the even-odd method, and
|
||
* the winding number method.
|
||
* The even-odd rule states that a point is inside
|
||
* the polygon if a ray drawn from that point in any
|
||
* direction will pass through an odd number of
|
||
* path segments.
|
||
* By the winding number rule, a point is decided
|
||
* to be inside the polygon if a ray drawn from that
|
||
* point in any direction passes through a different
|
||
* number of clockwise and counter-clockwise path
|
||
* segments.
|
||
*
|
||
* These data structures are adapted somewhat from
|
||
* the algorithm in (Foley/Van Dam) for scan converting
|
||
* polygons.
|
||
* The basic algorithm is to start at the top (smallest y)
|
||
* of the polygon, stepping down to the bottom of
|
||
* the polygon by incrementing the y coordinate. We
|
||
* keep a list of edges which the current scanline crosses,
|
||
* sorted by x. This list is called the Active Edge Table (AET)
|
||
* As we change the y-coordinate, we update each entry in
|
||
* in the active edge table to reflect the edges new xcoord.
|
||
* This list must be sorted at each scanline in case
|
||
* two edges intersect.
|
||
* We also keep a data structure known as the Edge Table (ET),
|
||
* which keeps track of all the edges which the current
|
||
* scanline has not yet reached. The ET is basically a
|
||
* list of ScanLineList structures containing a list of
|
||
* edges which are entered at a given scanline. There is one
|
||
* ScanLineList per scanline at which an edge is entered.
|
||
* When we enter a new edge, we move it from the ET to the AET.
|
||
*
|
||
* From the AET, we can implement the even-odd rule as in
|
||
* (Foley/Van Dam).
|
||
* The winding number rule is a little trickier. We also
|
||
* keep the EdgeTableEntries in the AET linked by the
|
||
* nextWETE (winding EdgeTableEntry) link. This allows
|
||
* the edges to be linked just as before for updating
|
||
* purposes, but only uses the edges linked by the nextWETE
|
||
* link as edges representing spans of the polygon to
|
||
* drawn (as with the even-odd rule).
|
||
*/
|
||
|
||
/*
|
||
* for the winding number rule
|
||
*/
|
||
#define CLOCKWISE 1
|
||
#define COUNTERCLOCKWISE -1
|
||
|
||
typedef struct _EdgeTableEntry {
|
||
int ymax; /* ycoord at which we exit this edge. */
|
||
BRESINFO bres; /* Bresenham info to run the edge */
|
||
struct _EdgeTableEntry *next; /* next in the list */
|
||
struct _EdgeTableEntry *back; /* for insertion sort */
|
||
struct _EdgeTableEntry *nextWETE; /* for winding num rule */
|
||
int ClockWise; /* flag for winding number rule */
|
||
} EdgeTableEntry;
|
||
|
||
|
||
typedef struct _ScanLineList{
|
||
int scanline; /* the scanline represented */
|
||
EdgeTableEntry *edgelist; /* header node */
|
||
struct _ScanLineList *next; /* next in the list */
|
||
} ScanLineList;
|
||
|
||
|
||
typedef struct {
|
||
int ymax; /* ymax for the polygon */
|
||
int ymin; /* ymin for the polygon */
|
||
ScanLineList scanlines; /* header node */
|
||
} EdgeTable;
|
||
|
||
|
||
/*
|
||
* Here is a struct to help with storage allocation
|
||
* so we can allocate a big chunk at a time, and then take
|
||
* pieces from this heap when we need to.
|
||
*/
|
||
#define SLLSPERBLOCK 25
|
||
|
||
typedef struct _ScanLineListBlock {
|
||
ScanLineList SLLs[SLLSPERBLOCK];
|
||
struct _ScanLineListBlock *next;
|
||
} ScanLineListBlock;
|
||
|
||
|
||
|
||
/*
|
||
*
|
||
* a few macros for the inner loops of the fill code where
|
||
* performance considerations don't allow a procedure call.
|
||
*
|
||
* Evaluate the given edge at the given scanline.
|
||
* If the edge has expired, then we leave it and fix up
|
||
* the active edge table; otherwise, we increment the
|
||
* x value to be ready for the next scanline.
|
||
* The winding number rule is in effect, so we must notify
|
||
* the caller when the edge has been removed so he
|
||
* can reorder the Winding Active Edge Table.
|
||
*/
|
||
#define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
|
||
if (pAET->ymax == y) { /* leaving this edge */ \
|
||
pPrevAET->next = pAET->next; \
|
||
pAET = pPrevAET->next; \
|
||
fixWAET = 1; \
|
||
if (pAET) \
|
||
pAET->back = pPrevAET; \
|
||
} \
|
||
else { \
|
||
BRESINCRPGONSTRUCT(pAET->bres); \
|
||
pPrevAET = pAET; \
|
||
pAET = pAET->next; \
|
||
} \
|
||
}
|
||
|
||
|
||
/*
|
||
* Evaluate the given edge at the given scanline.
|
||
* If the edge has expired, then we leave it and fix up
|
||
* the active edge table; otherwise, we increment the
|
||
* x value to be ready for the next scanline.
|
||
* The even-odd rule is in effect.
|
||
*/
|
||
#define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
|
||
if (pAET->ymax == y) { /* leaving this edge */ \
|
||
pPrevAET->next = pAET->next; \
|
||
pAET = pPrevAET->next; \
|
||
if (pAET) \
|
||
pAET->back = pPrevAET; \
|
||
} \
|
||
else { \
|
||
BRESINCRPGONSTRUCT(pAET->bres); \
|
||
pPrevAET = pAET; \
|
||
pAET = pAET->next; \
|
||
} \
|
||
}
|