xenocara/lib/libpciaccess/src/openbsd_pci.c
kettenis 3ff4e178c2 Indicate that devices need access to legacy VGA resources. Makes sure xserver
disables DRI if the VGA arbiter is in use.

ok matthieu@
2011-01-12 21:49:21 +00:00

661 lines
15 KiB
C

/*
* Copyright (c) 2008 Mark Kettenis
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/memrange.h>
#include <sys/mman.h>
#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "pciaccess.h"
#include "pciaccess_private.h"
/*
* This should allow for 16 domains, which should cover everything
* except perhaps the really big fridge-sized sparc64 server machines
* that are unlikely to have any graphics hardware in them.
*/
static int pcifd[16];
static int ndomains;
static int aperturefd = -1;
static int
pci_read(int domain, int bus, int dev, int func, uint32_t reg, uint32_t *val)
{
struct pci_io io;
int err;
bzero(&io, sizeof(io));
io.pi_sel.pc_bus = bus;
io.pi_sel.pc_dev = dev;
io.pi_sel.pc_func = func;
io.pi_reg = reg;
io.pi_width = 4;
err = ioctl(pcifd[domain], PCIOCREAD, &io);
if (err)
return (err);
*val = io.pi_data;
return 0;
}
static int
pci_write(int domain, int bus, int dev, int func, uint32_t reg, uint32_t val)
{
struct pci_io io;
bzero(&io, sizeof(io));
io.pi_sel.pc_bus = bus;
io.pi_sel.pc_dev = dev;
io.pi_sel.pc_func = func;
io.pi_reg = reg;
io.pi_width = 4;
io.pi_data = val;
return ioctl(pcifd[domain], PCIOCWRITE, &io);
}
/**
* Read a VGA ROM
*
*/
static int
pci_device_openbsd_read_rom(struct pci_device *device, void *buffer)
{
struct pci_device_private *priv = (struct pci_device_private *)device;
unsigned char *bios;
pciaddr_t rom_base;
pciaddr_t rom_size;
u_int32_t csr, rom;
int pci_rom, domain, bus, dev, func;
domain = device->domain;
if (domain < 0 || domain >= ndomains)
return ENXIO;
bus = device->bus;
dev = device->dev;
func = device->func;
if (aperturefd == -1)
return ENOSYS;
if (priv->base.rom_size == 0) {
#if defined(__alpha__) || defined(__amd64__) || defined(__i386__)
if ((device->device_class & 0x00ffff00) ==
((PCI_CLASS_DISPLAY << 16) |
(PCI_SUBCLASS_DISPLAY_VGA << 8))) {
rom_base = 0xc0000;
rom_size = 0x10000;
pci_rom = 0;
} else
#endif
return ENOSYS;
} else {
rom_base = priv->rom_base;
rom_size = priv->base.rom_size;
pci_rom = 1;
pci_read(domain, bus, dev, func, PCI_COMMAND_STATUS_REG, &csr);
pci_write(domain, bus, dev, func, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MEM_ENABLE);
pci_read(domain, bus, dev, func, PCI_ROM_REG, &rom);
pci_write(domain, bus, dev, func, PCI_ROM_REG,
rom | PCI_ROM_ENABLE);
}
bios = mmap(NULL, rom_size, PROT_READ, MAP_SHARED,
aperturefd, (off_t)rom_base);
if (bios == MAP_FAILED)
return errno;
memcpy(buffer, bios, rom_size);
munmap(bios, rom_size);
if (pci_rom) {
/* Restore PCI config space */
pci_write(domain, bus, dev, func, PCI_ROM_REG, rom);
pci_write(domain, bus, dev, func, PCI_COMMAND_STATUS_REG, csr);
}
return 0;
}
static int
pci_nfuncs(int domain, int bus, int dev)
{
uint32_t hdr;
if (domain < 0 || domain >= ndomains)
return ENXIO;
if (pci_read(domain, bus, dev, 0, PCI_BHLC_REG, &hdr) != 0)
return -1;
return (PCI_HDRTYPE_MULTIFN(hdr) ? 8 : 1);
}
static int
pci_device_openbsd_map_range(struct pci_device *dev,
struct pci_device_mapping *map)
{
struct mem_range_desc mr;
struct mem_range_op mo;
int prot = PROT_READ;
if (map->flags & PCI_DEV_MAP_FLAG_WRITABLE)
prot |= PROT_WRITE;
map->memory = mmap(NULL, map->size, prot, MAP_SHARED, aperturefd,
map->base);
if (map->memory == MAP_FAILED)
return errno;
#if defined(__i386__) || defined(__amd64__)
/* No need to set an MTRR if it's the default mode. */
if ((map->flags & PCI_DEV_MAP_FLAG_CACHABLE) ||
(map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE)) {
mr.mr_base = map->base;
mr.mr_len = map->size;
mr.mr_flags = 0;
if (map->flags & PCI_DEV_MAP_FLAG_CACHABLE)
mr.mr_flags |= MDF_WRITEBACK;
if (map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE)
mr.mr_flags |= MDF_WRITECOMBINE;
strlcpy(mr.mr_owner, "pciaccess", sizeof(mr.mr_owner));
mo.mo_desc = &mr;
mo.mo_arg[0] = MEMRANGE_SET_UPDATE;
if (ioctl(aperturefd, MEMRANGE_SET, &mo))
(void)fprintf(stderr, "mtrr set failed: %s\n",
strerror(errno));
}
#endif
return 0;
}
static int
pci_device_openbsd_unmap_range(struct pci_device *dev,
struct pci_device_mapping *map)
{
#if defined(__i386__) || defined(__amd64__)
struct mem_range_desc mr;
struct mem_range_op mo;
if ((map->flags & PCI_DEV_MAP_FLAG_CACHABLE) ||
(map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE)) {
mr.mr_base = map->base;
mr.mr_len = map->size;
mr.mr_flags = MDF_UNCACHEABLE;
strlcpy(mr.mr_owner, "pciaccess", sizeof(mr.mr_owner));
mo.mo_desc = &mr;
mo.mo_arg[0] = MEMRANGE_SET_REMOVE;
(void)ioctl(aperturefd, MEMRANGE_SET, &mo);
}
#endif
return pci_device_generic_unmap_range(dev, map);
}
static int
pci_device_openbsd_read(struct pci_device *dev, void *data,
pciaddr_t offset, pciaddr_t size, pciaddr_t *bytes_read)
{
struct pci_io io;
io.pi_sel.pc_bus = dev->bus;
io.pi_sel.pc_dev = dev->dev;
io.pi_sel.pc_func = dev->func;
*bytes_read = 0;
while (size > 0) {
int toread = MIN(size, 4 - (offset & 0x3));
io.pi_reg = (offset & ~0x3);
io.pi_width = 4;
if (ioctl(pcifd[dev->domain], PCIOCREAD, &io) == -1)
return errno;
io.pi_data = htole32(io.pi_data);
io.pi_data >>= ((offset & 0x3) * 8);
memcpy(data, &io.pi_data, toread);
offset += toread;
data = (char *)data + toread;
size -= toread;
*bytes_read += toread;
}
return 0;
}
static int
pci_device_openbsd_write(struct pci_device *dev, const void *data,
pciaddr_t offset, pciaddr_t size, pciaddr_t *bytes_written)
{
struct pci_io io;
if ((offset % 4) != 0 || (size % 4) != 0)
return EINVAL;
io.pi_sel.pc_bus = dev->bus;
io.pi_sel.pc_dev = dev->dev;
io.pi_sel.pc_func = dev->func;
*bytes_written = 0;
while (size > 0) {
io.pi_reg = offset;
io.pi_width = 4;
memcpy(&io.pi_data, data, 4);
if (ioctl(pcifd[dev->domain], PCIOCWRITE, &io) == -1)
return errno;
offset += 4;
data = (char *)data + 4;
size -= 4;
*bytes_written += 4;
}
return 0;
}
static void
pci_system_openbsd_destroy(void)
{
int domain;
for (domain = 0; domain < ndomains; domain++)
close(pcifd[domain]);
ndomains = 0;
}
static int
pci_device_openbsd_probe(struct pci_device *device)
{
struct pci_device_private *priv = (struct pci_device_private *)device;
struct pci_mem_region *region;
uint64_t reg64, size64;
uint32_t bar, reg, size;
int domain, bus, dev, func, err;
domain = device->domain;
bus = device->bus;
dev = device->dev;
func = device->func;
err = pci_read(domain, bus, dev, func, PCI_BHLC_REG, &reg);
if (err)
return err;
priv->header_type = PCI_HDRTYPE_TYPE(reg);
if (priv->header_type != 0)
return 0;
region = device->regions;
for (bar = PCI_MAPREG_START; bar < PCI_MAPREG_END;
bar += sizeof(uint32_t), region++) {
err = pci_read(domain, bus, dev, func, bar, &reg);
if (err)
return err;
/* Probe the size of the region. */
err = pci_write(domain, bus, dev, func, bar, ~0);
if (err)
return err;
pci_read(domain, bus, dev, func, bar, &size);
pci_write(domain, bus, dev, func, bar, reg);
if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
region->is_IO = 1;
region->base_addr = PCI_MAPREG_IO_ADDR(reg);
region->size = PCI_MAPREG_IO_SIZE(size);
} else {
if (PCI_MAPREG_MEM_PREFETCHABLE(reg))
region->is_prefetchable = 1;
switch(PCI_MAPREG_MEM_TYPE(reg)) {
case PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
region->base_addr = PCI_MAPREG_MEM_ADDR(reg);
region->size = PCI_MAPREG_MEM_SIZE(size);
break;
case PCI_MAPREG_MEM_TYPE_64BIT:
region->is_64 = 1;
reg64 = reg;
size64 = size;
bar += sizeof(uint32_t);
err = pci_read(domain, bus, dev, func, bar, &reg);
if (err)
return err;
reg64 |= (uint64_t)reg << 32;
err = pci_write(domain, bus, dev, func, bar, ~0);
if (err)
return err;
pci_read(domain, bus, dev, func, bar, &size);
pci_write(domain, bus, dev, func, bar, reg64 >> 32);
size64 |= (uint64_t)size << 32;
region->base_addr = PCI_MAPREG_MEM64_ADDR(reg64);
region->size = PCI_MAPREG_MEM64_SIZE(size64);
region++;
break;
}
}
}
/* Probe expansion ROM if present */
err = pci_read(domain, bus, dev, func, PCI_ROM_REG, &reg);
if (err)
return err;
if (reg != 0) {
err = pci_write(domain, bus, dev, func, PCI_ROM_REG, ~PCI_ROM_ENABLE);
if (err)
return err;
pci_read(domain, bus, dev, func, PCI_ROM_REG, &size);
pci_write(domain, bus, dev, func, PCI_ROM_REG, reg);
if (PCI_ROM_ADDR(reg) != 0) {
priv->rom_base = PCI_ROM_ADDR(reg);
device->rom_size = PCI_ROM_SIZE(size);
}
}
return 0;
}
static const struct pci_system_methods openbsd_pci_methods = {
pci_system_openbsd_destroy,
NULL,
pci_device_openbsd_read_rom,
pci_device_openbsd_probe,
pci_device_openbsd_map_range,
pci_device_openbsd_unmap_range,
pci_device_openbsd_read,
pci_device_openbsd_write,
pci_fill_capabilities_generic
};
int
pci_system_openbsd_create(void)
{
struct pci_device_private *device;
int domain, bus, dev, func, ndevs, nfuncs;
char path[MAXPATHLEN];
uint32_t reg;
if (ndomains > 0)
return 0;
for (domain = 0; domain < sizeof(pcifd) / sizeof(pcifd[0]); domain++) {
snprintf(path, sizeof(path), "/dev/pci%d", domain);
pcifd[domain] = open(path, O_RDWR);
if (pcifd[domain] == -1)
break;
ndomains++;
}
if (ndomains == 0)
return ENXIO;
pci_sys = calloc(1, sizeof(struct pci_system));
if (pci_sys == NULL) {
for (domain = 0; domain < ndomains; domain++)
close(pcifd[domain]);
ndomains = 0;
return ENOMEM;
}
pci_sys->methods = &openbsd_pci_methods;
ndevs = 0;
for (domain = 0; domain < ndomains; domain++) {
for (bus = 0; bus < 256; bus++) {
for (dev = 0; dev < 32; dev++) {
nfuncs = pci_nfuncs(domain, bus, dev);
for (func = 0; func < nfuncs; func++) {
if (pci_read(domain, bus, dev, func,
PCI_ID_REG, &reg) != 0)
continue;
if (PCI_VENDOR(reg) == PCI_VENDOR_INVALID ||
PCI_VENDOR(reg) == 0)
continue;
ndevs++;
}
}
}
}
pci_sys->num_devices = ndevs;
pci_sys->devices = calloc(ndevs, sizeof(struct pci_device_private));
if (pci_sys->devices == NULL) {
free(pci_sys);
pci_sys = NULL;
for (domain = 0; domain < ndomains; domain++)
close(pcifd[domain]);
ndomains = 0;
return ENOMEM;
}
device = pci_sys->devices;
for (domain = 0; domain < ndomains; domain++) {
for (bus = 0; bus < 256; bus++) {
for (dev = 0; dev < 32; dev++) {
nfuncs = pci_nfuncs(domain, bus, dev);
for (func = 0; func < nfuncs; func++) {
if (pci_read(domain, bus, dev, func,
PCI_ID_REG, &reg) != 0)
continue;
if (PCI_VENDOR(reg) == PCI_VENDOR_INVALID ||
PCI_VENDOR(reg) == 0)
continue;
device->base.domain = domain;
device->base.bus = bus;
device->base.dev = dev;
device->base.func = func;
device->base.vendor_id = PCI_VENDOR(reg);
device->base.device_id = PCI_PRODUCT(reg);
if (pci_read(domain, bus, dev, func,
PCI_CLASS_REG, &reg) != 0)
continue;
device->base.device_class =
PCI_INTERFACE(reg) |
PCI_CLASS(reg) << 16 |
PCI_SUBCLASS(reg) << 8;
device->base.revision = PCI_REVISION(reg);
if (pci_read(domain, bus, dev, func,
PCI_SUBVEND_0, &reg) != 0)
continue;
device->base.subvendor_id = PCI_VENDOR(reg);
device->base.subdevice_id = PCI_PRODUCT(reg);
device->base.vgaarb_rsrc =
VGA_ARB_RSRC_LEGACY_IO |
VGA_ARB_RSRC_LEGACY_MEM;
device++;
}
}
}
}
return 0;
}
void
pci_system_openbsd_init_dev_mem(int fd)
{
aperturefd = fd;
}
int
pci_device_vgaarb_init(void)
{
struct pci_device *dev = pci_sys->vga_target;
struct pci_device_iterator *iter;
struct pci_id_match vga_match = {
PCI_MATCH_ANY, PCI_MATCH_ANY, PCI_MATCH_ANY, PCI_MATCH_ANY,
(PCI_CLASS_DISPLAY << 16) | (PCI_SUBCLASS_DISPLAY_VGA << 8),
0x00ffff00
};
struct pci_vga pv;
int err;
pv.pv_sel.pc_bus = 0;
pv.pv_sel.pc_dev = 0;
pv.pv_sel.pc_func = 0;
err = ioctl(pcifd[0], PCIOCGETVGA, &pv);
if (err)
return err;
pci_sys->vga_target = pci_device_find_by_slot(0, pv.pv_sel.pc_bus,
pv.pv_sel.pc_dev, pv.pv_sel.pc_func);
/* Count the number of VGA devices in domain 0. */
iter = pci_id_match_iterator_create(&vga_match);
if (iter == NULL)
return -1;
pci_sys->vga_count = 0;
while ((dev = pci_device_next(iter)) != NULL) {
if (dev->domain == 0)
pci_sys->vga_count++;
}
pci_iterator_destroy(iter);
return 0;
}
void
pci_device_vgaarb_fini(void)
{
struct pci_device *dev;
struct pci_vga pv;
if (pci_sys == NULL)
return;
dev = pci_sys->vga_target;
if (dev == NULL)
return;
pv.pv_sel.pc_bus = dev->bus;
pv.pv_sel.pc_dev = dev->dev;
pv.pv_sel.pc_func = dev->func;
pv.pv_lock = PCI_VGA_UNLOCK;
ioctl(pcifd[dev->domain], PCIOCSETVGA, &pv);
}
int
pci_device_vgaarb_set_target(struct pci_device *dev)
{
pci_sys->vga_target = dev;
return 0;
}
int
pci_device_vgaarb_lock(void)
{
struct pci_device *dev = pci_sys->vga_target;
struct pci_vga pv;
if (dev == NULL)
return -1;
#if 0
if (dev->vgaarb_rsrc == 0 || pci_sys->vga_count == 1)
return 0;
#else
if (pci_sys->vga_count == 1)
return 0;
#endif
pv.pv_sel.pc_bus = dev->bus;
pv.pv_sel.pc_dev = dev->dev;
pv.pv_sel.pc_func = dev->func;
pv.pv_lock = PCI_VGA_LOCK;
return ioctl(pcifd[dev->domain], PCIOCSETVGA, &pv);
}
int
pci_device_vgaarb_unlock(void)
{
struct pci_device *dev = pci_sys->vga_target;
struct pci_vga pv;
if (dev == NULL)
return -1;
#if 0
if (dev->vgaarb_rsrc == 0 || pci_sys->vga_count == 1)
return 0;
#else
if (pci_sys->vga_count == 1)
return 0;
#endif
pv.pv_sel.pc_bus = dev->bus;
pv.pv_sel.pc_dev = dev->dev;
pv.pv_sel.pc_func = dev->func;
pv.pv_lock = PCI_VGA_UNLOCK;
return ioctl(pcifd[dev->domain], PCIOCSETVGA, &pv);
}
int
pci_device_vgaarb_get_info(struct pci_device *dev, int *vga_count,
int *rsrc_decodes)
{
*vga_count = pci_sys->vga_count;
if (dev)
*rsrc_decodes = dev->vgaarb_rsrc;
return 0;
}
int
pci_device_vgaarb_decodes(int rsrc_decodes)
{
struct pci_device *dev = pci_sys->vga_target;
if (dev == NULL)
return -1;
dev->vgaarb_rsrc = rsrc_decodes;
return 0;
}