xenocara/xserver/glamor/glamor_gradient.c
matthieu e927c03e30 Update to xserver 1.18.3. Tested by shadchin@ and naddy@.
Note that indirect GLX is now disbled by default.
2016-05-29 12:02:34 +00:00

1456 lines
55 KiB
C

/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Junyan He <junyan.he@linux.intel.com>
*
*/
/** @file glamor_gradient.c
*
* Gradient acceleration implementation
*/
#include "glamor_priv.h"
#define LINEAR_SMALL_STOPS (6 + 2)
#define LINEAR_LARGE_STOPS (16 + 2)
#define RADIAL_SMALL_STOPS (6 + 2)
#define RADIAL_LARGE_STOPS (16 + 2)
#ifdef GLAMOR_GRADIENT_SHADER
static const char *
_glamor_create_getcolor_fs_source(ScreenPtr screen, int stops_count,
int use_array)
{
char *gradient_fs = NULL;
#define gradient_fs_getcolor\
GLAMOR_DEFAULT_PRECISION\
"uniform int n_stop;\n"\
"uniform float stops[%d];\n"\
"uniform vec4 stop_colors[%d];\n"\
"vec4 get_color(float stop_len)\n"\
"{\n"\
" int i = 0;\n"\
" float new_alpha; \n"\
" vec4 gradient_color;\n"\
" float percentage; \n"\
" for(i = 0; i < n_stop - 1; i++) {\n"\
" if(stop_len < stops[i])\n"\
" break; \n"\
" }\n"\
" \n"\
" if(stops[i] - stops[i-1] > 2.0)\n"\
" percentage = 0.0;\n" /*For comply with pixman, walker->stepper overflow.*/\
" else if(stops[i] - stops[i-1] < 0.000001)\n"\
" percentage = 0.0;\n"\
" else \n"\
" percentage = (stop_len - stops[i-1])/(stops[i] - stops[i-1]);\n"\
" new_alpha = percentage * stop_colors[i].a + \n"\
" (1.0-percentage) * stop_colors[i-1].a; \n"\
" gradient_color = vec4((percentage * stop_colors[i].rgb \n"\
" + (1.0-percentage) * stop_colors[i-1].rgb)*new_alpha, \n"\
" new_alpha);\n"\
" \n"\
" return gradient_color;\n"\
"}\n"
/* Because the array access for shader is very slow, the performance is very low
if use array. So use global uniform to replace for it if the number of n_stops is small. */
const char *gradient_fs_getcolor_no_array =
GLAMOR_DEFAULT_PRECISION
"uniform int n_stop;\n"
"uniform float stop0;\n"
"uniform float stop1;\n"
"uniform float stop2;\n"
"uniform float stop3;\n"
"uniform float stop4;\n"
"uniform float stop5;\n"
"uniform float stop6;\n"
"uniform float stop7;\n"
"uniform vec4 stop_color0;\n"
"uniform vec4 stop_color1;\n"
"uniform vec4 stop_color2;\n"
"uniform vec4 stop_color3;\n"
"uniform vec4 stop_color4;\n"
"uniform vec4 stop_color5;\n"
"uniform vec4 stop_color6;\n"
"uniform vec4 stop_color7;\n"
"\n"
"vec4 get_color(float stop_len)\n"
"{\n"
" float stop_after;\n"
" float stop_before;\n"
" vec4 stop_color_before;\n"
" vec4 stop_color_after;\n"
" float new_alpha; \n"
" vec4 gradient_color;\n"
" float percentage; \n"
" \n"
" if((stop_len < stop0) && (n_stop >= 1)) {\n"
" stop_color_before = stop_color0;\n"
" stop_color_after = stop_color0;\n"
" stop_after = stop0;\n"
" stop_before = stop0;\n"
" } else if((stop_len < stop1) && (n_stop >= 2)) {\n"
" stop_color_before = stop_color0;\n"
" stop_color_after = stop_color1;\n"
" stop_after = stop1;\n"
" stop_before = stop0;\n"
" } else if((stop_len < stop2) && (n_stop >= 3)) {\n"
" stop_color_before = stop_color1;\n"
" stop_color_after = stop_color2;\n"
" stop_after = stop2;\n"
" stop_before = stop1;\n"
" } else if((stop_len < stop3) && (n_stop >= 4)){\n"
" stop_color_before = stop_color2;\n"
" stop_color_after = stop_color3;\n"
" stop_after = stop3;\n"
" stop_before = stop2;\n"
" } else if((stop_len < stop4) && (n_stop >= 5)){\n"
" stop_color_before = stop_color3;\n"
" stop_color_after = stop_color4;\n"
" stop_after = stop4;\n"
" stop_before = stop3;\n"
" } else if((stop_len < stop5) && (n_stop >= 6)){\n"
" stop_color_before = stop_color4;\n"
" stop_color_after = stop_color5;\n"
" stop_after = stop5;\n"
" stop_before = stop4;\n"
" } else if((stop_len < stop6) && (n_stop >= 7)){\n"
" stop_color_before = stop_color5;\n"
" stop_color_after = stop_color6;\n"
" stop_after = stop6;\n"
" stop_before = stop5;\n"
" } else if((stop_len < stop7) && (n_stop >= 8)){\n"
" stop_color_before = stop_color6;\n"
" stop_color_after = stop_color7;\n"
" stop_after = stop7;\n"
" stop_before = stop6;\n"
" } else {\n"
" stop_color_before = stop_color7;\n"
" stop_color_after = stop_color7;\n"
" stop_after = stop7;\n"
" stop_before = stop7;\n"
" }\n"
" if(stop_after - stop_before > 2.0)\n"
" percentage = 0.0;\n" //For comply with pixman, walker->stepper overflow.
" else if(stop_after - stop_before < 0.000001)\n"
" percentage = 0.0;\n"
" else \n"
" percentage = (stop_len - stop_before)/(stop_after - stop_before);\n"
" new_alpha = percentage * stop_color_after.a + \n"
" (1.0-percentage) * stop_color_before.a; \n"
" gradient_color = vec4((percentage * stop_color_after.rgb \n"
" + (1.0-percentage) * stop_color_before.rgb)*new_alpha, \n"
" new_alpha);\n"
" \n"
" return gradient_color;\n"
"}\n";
if (use_array) {
XNFasprintf(&gradient_fs,
gradient_fs_getcolor, stops_count, stops_count);
return gradient_fs;
}
else {
return XNFstrdup(gradient_fs_getcolor_no_array);
}
}
static void
_glamor_create_radial_gradient_program(ScreenPtr screen, int stops_count,
int dyn_gen)
{
glamor_screen_private *glamor_priv;
int index;
GLint gradient_prog = 0;
char *gradient_fs = NULL;
GLint fs_prog, vs_prog;
const char *gradient_vs =
GLAMOR_DEFAULT_PRECISION
"attribute vec4 v_position;\n"
"attribute vec4 v_texcoord;\n"
"varying vec2 source_texture;\n"
"\n"
"void main()\n"
"{\n"
" gl_Position = v_position;\n"
" source_texture = v_texcoord.xy;\n"
"}\n";
/*
* Refer to pixman radial gradient.
*
* The problem is given the two circles of c1 and c2 with the radius of r1 and
* r1, we need to caculate the t, which is used to do interpolate with stops,
* using the fomula:
* length((1-t)*c1 + t*c2 - p) = (1-t)*r1 + t*r2
* expand the fomula with xy coond, get the following:
* sqrt(sqr((1-t)*c1.x + t*c2.x - p.x) + sqr((1-t)*c1.y + t*c2.y - p.y))
* = (1-t)r1 + t*r2
* <====> At*t- 2Bt + C = 0
* where A = sqr(c2.x - c1.x) + sqr(c2.y - c1.y) - sqr(r2 -r1)
* B = (p.x - c1.x)*(c2.x - c1.x) + (p.y - c1.y)*(c2.y - c1.y) + r1*(r2 -r1)
* C = sqr(p.x - c1.x) + sqr(p.y - c1.y) - r1*r1
*
* solve the fomula and we get the result of
* t = (B + sqrt(B*B - A*C)) / A or
* t = (B - sqrt(B*B - A*C)) / A (quadratic equation have two solutions)
*
* The solution we are going to prefer is the bigger one, unless the
* radius associated to it is negative (or it falls outside the valid t range)
*/
#define gradient_radial_fs_template\
GLAMOR_DEFAULT_PRECISION\
"uniform mat3 transform_mat;\n"\
"uniform int repeat_type;\n"\
"uniform float A_value;\n"\
"uniform vec2 c1;\n"\
"uniform float r1;\n"\
"uniform vec2 c2;\n"\
"uniform float r2;\n"\
"varying vec2 source_texture;\n"\
"\n"\
"vec4 get_color(float stop_len);\n"\
"\n"\
"int t_invalid;\n"\
"\n"\
"float get_stop_len()\n"\
"{\n"\
" float t = 0.0;\n"\
" float sqrt_value;\n"\
" t_invalid = 0;\n"\
" \n"\
" vec3 tmp = vec3(source_texture.x, source_texture.y, 1.0);\n"\
" vec3 source_texture_trans = transform_mat * tmp;\n"\
" source_texture_trans.xy = source_texture_trans.xy/source_texture_trans.z;\n"\
" float B_value = (source_texture_trans.x - c1.x) * (c2.x - c1.x)\n"\
" + (source_texture_trans.y - c1.y) * (c2.y - c1.y)\n"\
" + r1 * (r2 - r1);\n"\
" float C_value = (source_texture_trans.x - c1.x) * (source_texture_trans.x - c1.x)\n"\
" + (source_texture_trans.y - c1.y) * (source_texture_trans.y - c1.y)\n"\
" - r1*r1;\n"\
" if(abs(A_value) < 0.00001) {\n"\
" if(B_value == 0.0) {\n"\
" t_invalid = 1;\n"\
" return t;\n"\
" }\n"\
" t = 0.5 * C_value / B_value;"\
" } else {\n"\
" sqrt_value = B_value * B_value - A_value * C_value;\n"\
" if(sqrt_value < 0.0) {\n"\
" t_invalid = 1;\n"\
" return t;\n"\
" }\n"\
" sqrt_value = sqrt(sqrt_value);\n"\
" t = (B_value + sqrt_value) / A_value;\n"\
" }\n"\
" if(repeat_type == %d) {\n" /* RepeatNone case. */\
" if((t <= 0.0) || (t > 1.0))\n"\
/* try another if first one invalid*/\
" t = (B_value - sqrt_value) / A_value;\n"\
" \n"\
" if((t <= 0.0) || (t > 1.0)) {\n" /*still invalid, return.*/\
" t_invalid = 1;\n"\
" return t;\n"\
" }\n"\
" } else {\n"\
" if(t * (r2 - r1) <= -1.0 * r1)\n"\
/* try another if first one invalid*/\
" t = (B_value - sqrt_value) / A_value;\n"\
" \n"\
" if(t * (r2 -r1) <= -1.0 * r1) {\n" /*still invalid, return.*/\
" t_invalid = 1;\n"\
" return t;\n"\
" }\n"\
" }\n"\
" \n"\
" if(repeat_type == %d){\n" /* repeat normal*/\
" t = fract(t);\n"\
" }\n"\
" \n"\
" if(repeat_type == %d) {\n" /* repeat reflect*/\
" t = abs(fract(t * 0.5 + 0.5) * 2.0 - 1.0);\n"\
" }\n"\
" \n"\
" return t;\n"\
"}\n"\
"\n"\
"void main()\n"\
"{\n"\
" float stop_len = get_stop_len();\n"\
" if(t_invalid == 1) {\n"\
" gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0);\n"\
" } else {\n"\
" gl_FragColor = get_color(stop_len);\n"\
" }\n"\
"}\n"\
"\n"\
"%s\n" /* fs_getcolor_source */
const char *fs_getcolor_source;
glamor_priv = glamor_get_screen_private(screen);
if ((glamor_priv->radial_max_nstops >= stops_count) && (dyn_gen)) {
/* Very Good, not to generate again. */
return;
}
glamor_make_current(glamor_priv);
if (dyn_gen && glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][2]) {
glDeleteProgram(glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][2]);
glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][2] = 0;
}
gradient_prog = glCreateProgram();
vs_prog = glamor_compile_glsl_prog(GL_VERTEX_SHADER, gradient_vs);
fs_getcolor_source =
_glamor_create_getcolor_fs_source(screen, stops_count,
(stops_count > 0));
XNFasprintf(&gradient_fs,
gradient_radial_fs_template,
PIXMAN_REPEAT_NONE, PIXMAN_REPEAT_NORMAL,
PIXMAN_REPEAT_REFLECT,
fs_getcolor_source);
fs_prog = glamor_compile_glsl_prog(GL_FRAGMENT_SHADER, gradient_fs);
free(gradient_fs);
glAttachShader(gradient_prog, vs_prog);
glAttachShader(gradient_prog, fs_prog);
glDeleteShader(vs_prog);
glDeleteShader(fs_prog);
glBindAttribLocation(gradient_prog, GLAMOR_VERTEX_POS, "v_position");
glBindAttribLocation(gradient_prog, GLAMOR_VERTEX_SOURCE, "v_texcoord");
glamor_link_glsl_prog(screen, gradient_prog, "radial gradient");
if (dyn_gen) {
index = 2;
glamor_priv->radial_max_nstops = stops_count;
}
else if (stops_count) {
index = 1;
}
else {
index = 0;
}
glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][index] = gradient_prog;
}
static void
_glamor_create_linear_gradient_program(ScreenPtr screen, int stops_count,
int dyn_gen)
{
glamor_screen_private *glamor_priv;
int index = 0;
GLint gradient_prog = 0;
char *gradient_fs = NULL;
GLint fs_prog, vs_prog;
const char *gradient_vs =
GLAMOR_DEFAULT_PRECISION
"attribute vec4 v_position;\n"
"attribute vec4 v_texcoord;\n"
"varying vec2 source_texture;\n"
"\n"
"void main()\n"
"{\n"
" gl_Position = v_position;\n"
" source_texture = v_texcoord.xy;\n"
"}\n";
/*
* |
* |\
* | \
* | \
* | \
* |\ \
* | \ \
* cos_val = |\ p1d \ /
* sqrt(1/(slope*slope+1.0)) ------>\ \ \ /
* | \ \ \
* | \ \ / \
* | \ *Pt1\
* *p1 | \ \ *P
* \ | / \ \ /
* \ | / \ \ /
* \ | pd \
* \ | \ / \
* p2* | \ / \ /
* slope = (p2.y - p1.y) / | / p2d /
* (p2.x - p1.x) | / \ /
* | / \ /
* | / /
* | / /
* | / *Pt2
* | /
* | /
* | /
* | /
* | /
* -------+---------------------------------
* O|
* |
* |
*
* step 1: compute the distance of p, pt1 and pt2 in the slope direction.
* Caculate the distance on Y axis first and multiply cos_val to
* get the value on slope direction(pd, p1d and p2d represent the
* distance of p, pt1, and pt2 respectively).
*
* step 2: caculate the percentage of (pd - p1d)/(p2d - p1d).
* If (pd - p1d) > (p2d - p1d) or < 0, then sub or add (p2d - p1d)
* to make it in the range of [0, (p2d - p1d)].
*
* step 3: compare the percentage to every stop and find the stpos just
* before and after it. Use the interpolation fomula to compute RGBA.
*/
#define gradient_fs_template \
GLAMOR_DEFAULT_PRECISION\
"uniform mat3 transform_mat;\n"\
"uniform int repeat_type;\n"\
"uniform int hor_ver;\n"\
"uniform float pt_slope;\n"\
"uniform float cos_val;\n"\
"uniform float p1_distance;\n"\
"uniform float pt_distance;\n"\
"varying vec2 source_texture;\n"\
"\n"\
"vec4 get_color(float stop_len);\n"\
"\n"\
"float get_stop_len()\n"\
"{\n"\
" vec3 tmp = vec3(source_texture.x, source_texture.y, 1.0);\n"\
" float len_percentage;\n"\
" float distance;\n"\
" float _p1_distance;\n"\
" float _pt_distance;\n"\
" float y_dist;\n"\
" float stop_after;\n"\
" float stop_before;\n"\
" vec4 stop_color_before;\n"\
" vec4 stop_color_after;\n"\
" float new_alpha; \n"\
" vec4 gradient_color;\n"\
" float percentage; \n"\
" vec3 source_texture_trans = transform_mat * tmp;\n"\
" \n"\
" if(hor_ver == 0) { \n" /*Normal case.*/\
" y_dist = source_texture_trans.y - source_texture_trans.x*pt_slope;\n"\
" distance = y_dist * cos_val;\n"\
" _p1_distance = p1_distance * source_texture_trans.z;\n"\
" _pt_distance = pt_distance * source_texture_trans.z;\n"\
" \n"\
" } else if (hor_ver == 1) {\n"/*horizontal case.*/\
" distance = source_texture_trans.x;\n"\
" _p1_distance = p1_distance * source_texture_trans.z;\n"\
" _pt_distance = pt_distance * source_texture_trans.z;\n"\
" } \n"\
" \n"\
" distance = distance - _p1_distance; \n"\
" \n"\
" if(repeat_type == %d){\n" /* repeat normal*/\
" distance = mod(distance, _pt_distance);\n"\
" }\n"\
" \n"\
" if(repeat_type == %d) {\n" /* repeat reflect*/\
" distance = abs(mod(distance + _pt_distance, 2.0 * _pt_distance) - _pt_distance);\n"\
" }\n"\
" \n"\
" len_percentage = distance/(_pt_distance);\n"\
" \n"\
" return len_percentage;\n"\
"}\n"\
"\n"\
"void main()\n"\
"{\n"\
" float stop_len = get_stop_len();\n"\
" gl_FragColor = get_color(stop_len);\n"\
"}\n"\
"\n"\
"%s" /* fs_getcolor_source */
const char *fs_getcolor_source;
glamor_priv = glamor_get_screen_private(screen);
if ((glamor_priv->linear_max_nstops >= stops_count) && (dyn_gen)) {
/* Very Good, not to generate again. */
return;
}
glamor_make_current(glamor_priv);
if (dyn_gen && glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][2]) {
glDeleteProgram(glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][2]);
glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][2] = 0;
}
gradient_prog = glCreateProgram();
vs_prog = glamor_compile_glsl_prog(GL_VERTEX_SHADER, gradient_vs);
fs_getcolor_source =
_glamor_create_getcolor_fs_source(screen, stops_count, stops_count > 0);
XNFasprintf(&gradient_fs,
gradient_fs_template,
PIXMAN_REPEAT_NORMAL, PIXMAN_REPEAT_REFLECT,
fs_getcolor_source);
fs_prog = glamor_compile_glsl_prog(GL_FRAGMENT_SHADER, gradient_fs);
free(gradient_fs);
glAttachShader(gradient_prog, vs_prog);
glAttachShader(gradient_prog, fs_prog);
glDeleteShader(vs_prog);
glDeleteShader(fs_prog);
glBindAttribLocation(gradient_prog, GLAMOR_VERTEX_POS, "v_position");
glBindAttribLocation(gradient_prog, GLAMOR_VERTEX_SOURCE, "v_texcoord");
glamor_link_glsl_prog(screen, gradient_prog, "linear gradient");
if (dyn_gen) {
index = 2;
glamor_priv->linear_max_nstops = stops_count;
}
else if (stops_count) {
index = 1;
}
else {
index = 0;
}
glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][index] = gradient_prog;
}
void
glamor_init_gradient_shader(ScreenPtr screen)
{
glamor_screen_private *glamor_priv;
int i;
glamor_priv = glamor_get_screen_private(screen);
for (i = 0; i < 3; i++) {
glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][i] = 0;
glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][i] = 0;
}
glamor_priv->linear_max_nstops = 0;
glamor_priv->radial_max_nstops = 0;
_glamor_create_linear_gradient_program(screen, 0, 0);
_glamor_create_linear_gradient_program(screen, LINEAR_LARGE_STOPS, 0);
_glamor_create_radial_gradient_program(screen, 0, 0);
_glamor_create_radial_gradient_program(screen, RADIAL_LARGE_STOPS, 0);
}
static void
_glamor_gradient_convert_trans_matrix(PictTransform *from, float to[3][3],
int width, int height, int normalize)
{
/*
* Because in the shader program, we normalize all the pixel cood to [0, 1],
* so with the transform matrix, the correct logic should be:
* v_s = A*T*v
* v_s: point vector in shader after normalized.
* A: The transition matrix from width X height --> 1.0 X 1.0
* T: The transform matrix.
* v: point vector in width X height space.
*
* result is OK if we use this fomula. But for every point in width X height space,
* we can just use their normalized point vector in shader, namely we can just
* use the result of A*v in shader. So we have no chance to insert T in A*v.
* We can just convert v_s = A*T*v to v_s = A*T*inv(A)*A*v, where inv(A) is the
* inverse matrix of A. Now, v_s = (A*T*inv(A)) * (A*v)
* So, to get the correct v_s, we need to cacula1 the matrix: (A*T*inv(A)), and
* we name this matrix T_s.
*
* Firstly, because A is for the scale convertion, we find
* -- --
* |1/w 0 0 |
* A = | 0 1/h 0 |
* | 0 0 1.0|
* -- --
* so T_s = A*T*inv(a) and result
*
* -- --
* | t11 h*t12/w t13/w|
* T_s = | w*t21/h t22 t23/h|
* | w*t31 h*t32 t33 |
* -- --
*/
to[0][0] = (float) pixman_fixed_to_double(from->matrix[0][0]);
to[0][1] = (float) pixman_fixed_to_double(from->matrix[0][1])
* (normalize ? (((float) height) / ((float) width)) : 1.0);
to[0][2] = (float) pixman_fixed_to_double(from->matrix[0][2])
/ (normalize ? ((float) width) : 1.0);
to[1][0] = (float) pixman_fixed_to_double(from->matrix[1][0])
* (normalize ? (((float) width) / ((float) height)) : 1.0);
to[1][1] = (float) pixman_fixed_to_double(from->matrix[1][1]);
to[1][2] = (float) pixman_fixed_to_double(from->matrix[1][2])
/ (normalize ? ((float) height) : 1.0);
to[2][0] = (float) pixman_fixed_to_double(from->matrix[2][0])
* (normalize ? ((float) width) : 1.0);
to[2][1] = (float) pixman_fixed_to_double(from->matrix[2][1])
* (normalize ? ((float) height) : 1.0);
to[2][2] = (float) pixman_fixed_to_double(from->matrix[2][2]);
DEBUGF("the transform matrix is:\n%f\t%f\t%f\n%f\t%f\t%f\n%f\t%f\t%f\n",
to[0][0], to[0][1], to[0][2],
to[1][0], to[1][1], to[1][2], to[2][0], to[2][1], to[2][2]);
}
static int
_glamor_gradient_set_pixmap_destination(ScreenPtr screen,
glamor_screen_private *glamor_priv,
PicturePtr dst_picture,
GLfloat *xscale, GLfloat *yscale,
int x_source, int y_source,
int tex_normalize)
{
glamor_pixmap_private *pixmap_priv;
PixmapPtr pixmap = NULL;
GLfloat *v;
char *vbo_offset;
pixmap = glamor_get_drawable_pixmap(dst_picture->pDrawable);
pixmap_priv = glamor_get_pixmap_private(pixmap);
if (!GLAMOR_PIXMAP_PRIV_HAS_FBO(pixmap_priv)) { /* should always have here. */
return 0;
}
glamor_set_destination_pixmap_priv_nc(glamor_priv, pixmap, pixmap_priv);
pixmap_priv_get_dest_scale(pixmap, pixmap_priv, xscale, yscale);
DEBUGF("xscale = %f, yscale = %f,"
" x_source = %d, y_source = %d, width = %d, height = %d\n",
*xscale, *yscale, x_source, y_source,
dst_picture->pDrawable->width, dst_picture->pDrawable->height);
v = glamor_get_vbo_space(screen, 16 * sizeof(GLfloat), &vbo_offset);
glamor_set_normalize_vcoords_tri_strip(*xscale, *yscale,
0, 0,
(INT16) (dst_picture->pDrawable->
width),
(INT16) (dst_picture->pDrawable->
height),
v);
if (tex_normalize) {
glamor_set_normalize_tcoords_tri_stripe(*xscale, *yscale,
x_source, y_source,
(INT16) (dst_picture->
pDrawable->width +
x_source),
(INT16) (dst_picture->
pDrawable->height +
y_source),
&v[8]);
}
else {
glamor_set_tcoords_tri_strip(x_source, y_source,
(INT16) (dst_picture->pDrawable->width) +
x_source,
(INT16) (dst_picture->pDrawable->height) +
y_source,
&v[8]);
}
DEBUGF("vertices --> leftup : %f X %f, rightup: %f X %f,"
"rightbottom: %f X %f, leftbottom : %f X %f\n",
v[0], v[1], v[2], v[3],
v[4], v[5], v[6], v[7]);
DEBUGF("tex_vertices --> leftup : %f X %f, rightup: %f X %f,"
"rightbottom: %f X %f, leftbottom : %f X %f\n",
v[8], v[9], v[10], v[11],
v[12], v[13], v[14], v[15]);
glamor_make_current(glamor_priv);
glVertexAttribPointer(GLAMOR_VERTEX_POS, 2, GL_FLOAT,
GL_FALSE, 0, vbo_offset);
glVertexAttribPointer(GLAMOR_VERTEX_SOURCE, 2, GL_FLOAT,
GL_FALSE, 0, vbo_offset + 8 * sizeof(GLfloat));
glEnableVertexAttribArray(GLAMOR_VERTEX_POS);
glEnableVertexAttribArray(GLAMOR_VERTEX_SOURCE);
glamor_put_vbo_space(screen);
return 1;
}
static int
_glamor_gradient_set_stops(PicturePtr src_picture, PictGradient *pgradient,
GLfloat *stop_colors, GLfloat *n_stops)
{
int i;
int count = 1;
for (i = 0; i < pgradient->nstops; i++) {
stop_colors[count * 4] =
pixman_fixed_to_double(pgradient->stops[i].color.red);
stop_colors[count * 4 + 1] =
pixman_fixed_to_double(pgradient->stops[i].color.green);
stop_colors[count * 4 + 2] =
pixman_fixed_to_double(pgradient->stops[i].color.blue);
stop_colors[count * 4 + 3] =
pixman_fixed_to_double(pgradient->stops[i].color.alpha);
n_stops[count] =
(GLfloat) pixman_fixed_to_double(pgradient->stops[i].x);
count++;
}
/* for the end stop. */
count++;
switch (src_picture->repeatType) {
#define REPEAT_FILL_STOPS(m, n) \
stop_colors[(m)*4 + 0] = stop_colors[(n)*4 + 0]; \
stop_colors[(m)*4 + 1] = stop_colors[(n)*4 + 1]; \
stop_colors[(m)*4 + 2] = stop_colors[(n)*4 + 2]; \
stop_colors[(m)*4 + 3] = stop_colors[(n)*4 + 3];
default:
case PIXMAN_REPEAT_NONE:
stop_colors[0] = 0.0; //R
stop_colors[1] = 0.0; //G
stop_colors[2] = 0.0; //B
stop_colors[3] = 0.0; //Alpha
n_stops[0] = -(float) INT_MAX; //should be small enough.
stop_colors[0 + (count - 1) * 4] = 0.0; //R
stop_colors[1 + (count - 1) * 4] = 0.0; //G
stop_colors[2 + (count - 1) * 4] = 0.0; //B
stop_colors[3 + (count - 1) * 4] = 0.0; //Alpha
n_stops[count - 1] = (float) INT_MAX; //should be large enough.
break;
case PIXMAN_REPEAT_NORMAL:
REPEAT_FILL_STOPS(0, count - 2);
n_stops[0] = n_stops[count - 2] - 1.0;
REPEAT_FILL_STOPS(count - 1, 1);
n_stops[count - 1] = n_stops[1] + 1.0;
break;
case PIXMAN_REPEAT_REFLECT:
REPEAT_FILL_STOPS(0, 1);
n_stops[0] = -n_stops[1];
REPEAT_FILL_STOPS(count - 1, count - 2);
n_stops[count - 1] = 1.0 + 1.0 - n_stops[count - 2];
break;
case PIXMAN_REPEAT_PAD:
REPEAT_FILL_STOPS(0, 1);
n_stops[0] = -(float) INT_MAX;
REPEAT_FILL_STOPS(count - 1, count - 2);
n_stops[count - 1] = (float) INT_MAX;
break;
#undef REPEAT_FILL_STOPS
}
for (i = 0; i < count; i++) {
DEBUGF("n_stops[%d] = %f, color = r:%f g:%f b:%f a:%f\n",
i, n_stops[i],
stop_colors[i * 4], stop_colors[i * 4 + 1],
stop_colors[i * 4 + 2], stop_colors[i * 4 + 3]);
}
return count;
}
PicturePtr
glamor_generate_radial_gradient_picture(ScreenPtr screen,
PicturePtr src_picture,
int x_source, int y_source,
int width, int height,
PictFormatShort format)
{
glamor_screen_private *glamor_priv;
PicturePtr dst_picture = NULL;
PixmapPtr pixmap = NULL;
GLint gradient_prog = 0;
int error;
int stops_count = 0;
int count = 0;
GLfloat *stop_colors = NULL;
GLfloat *n_stops = NULL;
GLfloat xscale, yscale;
float transform_mat[3][3];
static const float identity_mat[3][3] = { {1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}
};
GLfloat stop_colors_st[RADIAL_SMALL_STOPS * 4];
GLfloat n_stops_st[RADIAL_SMALL_STOPS];
GLfloat A_value;
GLfloat cxy[4];
float c1x, c1y, c2x, c2y, r1, r2;
GLint transform_mat_uniform_location = 0;
GLint repeat_type_uniform_location = 0;
GLint n_stop_uniform_location = 0;
GLint stops_uniform_location = 0;
GLint stop_colors_uniform_location = 0;
GLint stop0_uniform_location = 0;
GLint stop1_uniform_location = 0;
GLint stop2_uniform_location = 0;
GLint stop3_uniform_location = 0;
GLint stop4_uniform_location = 0;
GLint stop5_uniform_location = 0;
GLint stop6_uniform_location = 0;
GLint stop7_uniform_location = 0;
GLint stop_color0_uniform_location = 0;
GLint stop_color1_uniform_location = 0;
GLint stop_color2_uniform_location = 0;
GLint stop_color3_uniform_location = 0;
GLint stop_color4_uniform_location = 0;
GLint stop_color5_uniform_location = 0;
GLint stop_color6_uniform_location = 0;
GLint stop_color7_uniform_location = 0;
GLint A_value_uniform_location = 0;
GLint c1_uniform_location = 0;
GLint r1_uniform_location = 0;
GLint c2_uniform_location = 0;
GLint r2_uniform_location = 0;
glamor_priv = glamor_get_screen_private(screen);
glamor_make_current(glamor_priv);
/* Create a pixmap with VBO. */
pixmap = glamor_create_pixmap(screen,
width, height,
PIXMAN_FORMAT_DEPTH(format), 0);
if (!pixmap)
goto GRADIENT_FAIL;
dst_picture = CreatePicture(0, &pixmap->drawable,
PictureMatchFormat(screen,
PIXMAN_FORMAT_DEPTH(format),
format), 0, 0, serverClient,
&error);
/* Release the reference, picture will hold the last one. */
glamor_destroy_pixmap(pixmap);
if (!dst_picture)
goto GRADIENT_FAIL;
ValidatePicture(dst_picture);
stops_count = src_picture->pSourcePict->radial.nstops + 2;
/* Because the max value of nstops is unkown, so create a program
when nstops > LINEAR_LARGE_STOPS. */
if (stops_count <= RADIAL_SMALL_STOPS) {
gradient_prog = glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][0];
}
else if (stops_count <= RADIAL_LARGE_STOPS) {
gradient_prog = glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][1];
}
else {
_glamor_create_radial_gradient_program(screen,
src_picture->pSourcePict->linear.
nstops + 2, 1);
gradient_prog = glamor_priv->gradient_prog[SHADER_GRADIENT_RADIAL][2];
}
/* Bind all the uniform vars . */
transform_mat_uniform_location = glGetUniformLocation(gradient_prog,
"transform_mat");
repeat_type_uniform_location = glGetUniformLocation(gradient_prog,
"repeat_type");
n_stop_uniform_location = glGetUniformLocation(gradient_prog, "n_stop");
A_value_uniform_location = glGetUniformLocation(gradient_prog, "A_value");
c1_uniform_location = glGetUniformLocation(gradient_prog, "c1");
r1_uniform_location = glGetUniformLocation(gradient_prog, "r1");
c2_uniform_location = glGetUniformLocation(gradient_prog, "c2");
r2_uniform_location = glGetUniformLocation(gradient_prog, "r2");
if (src_picture->pSourcePict->radial.nstops + 2 <= RADIAL_SMALL_STOPS) {
stop0_uniform_location =
glGetUniformLocation(gradient_prog, "stop0");
stop1_uniform_location =
glGetUniformLocation(gradient_prog, "stop1");
stop2_uniform_location =
glGetUniformLocation(gradient_prog, "stop2");
stop3_uniform_location =
glGetUniformLocation(gradient_prog, "stop3");
stop4_uniform_location =
glGetUniformLocation(gradient_prog, "stop4");
stop5_uniform_location =
glGetUniformLocation(gradient_prog, "stop5");
stop6_uniform_location =
glGetUniformLocation(gradient_prog, "stop6");
stop7_uniform_location =
glGetUniformLocation(gradient_prog, "stop7");
stop_color0_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color0");
stop_color1_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color1");
stop_color2_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color2");
stop_color3_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color3");
stop_color4_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color4");
stop_color5_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color5");
stop_color6_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color6");
stop_color7_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color7");
}
else {
stops_uniform_location =
glGetUniformLocation(gradient_prog, "stops");
stop_colors_uniform_location =
glGetUniformLocation(gradient_prog, "stop_colors");
}
glUseProgram(gradient_prog);
glUniform1i(repeat_type_uniform_location, src_picture->repeatType);
if (src_picture->transform) {
_glamor_gradient_convert_trans_matrix(src_picture->transform,
transform_mat, width, height, 0);
glUniformMatrix3fv(transform_mat_uniform_location,
1, 1, &transform_mat[0][0]);
}
else {
glUniformMatrix3fv(transform_mat_uniform_location,
1, 1, &identity_mat[0][0]);
}
if (!_glamor_gradient_set_pixmap_destination
(screen, glamor_priv, dst_picture, &xscale, &yscale, x_source, y_source,
0))
goto GRADIENT_FAIL;
glamor_set_alu(screen, GXcopy);
/* Set all the stops and colors to shader. */
if (stops_count > RADIAL_SMALL_STOPS) {
stop_colors = xallocarray(stops_count, 4 * sizeof(float));
if (stop_colors == NULL) {
ErrorF("Failed to allocate stop_colors memory.\n");
goto GRADIENT_FAIL;
}
n_stops = xallocarray(stops_count, sizeof(float));
if (n_stops == NULL) {
ErrorF("Failed to allocate n_stops memory.\n");
goto GRADIENT_FAIL;
}
}
else {
stop_colors = stop_colors_st;
n_stops = n_stops_st;
}
count =
_glamor_gradient_set_stops(src_picture,
&src_picture->pSourcePict->gradient,
stop_colors, n_stops);
if (src_picture->pSourcePict->linear.nstops + 2 <= RADIAL_SMALL_STOPS) {
int j = 0;
glUniform4f(stop_color0_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color1_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color2_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color3_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color4_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color5_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color6_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color7_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j = 0;
glUniform1f(stop0_uniform_location, n_stops[j++]);
glUniform1f(stop1_uniform_location, n_stops[j++]);
glUniform1f(stop2_uniform_location, n_stops[j++]);
glUniform1f(stop3_uniform_location, n_stops[j++]);
glUniform1f(stop4_uniform_location, n_stops[j++]);
glUniform1f(stop5_uniform_location, n_stops[j++]);
glUniform1f(stop6_uniform_location, n_stops[j++]);
glUniform1f(stop7_uniform_location, n_stops[j++]);
glUniform1i(n_stop_uniform_location, count);
}
else {
glUniform4fv(stop_colors_uniform_location, count, stop_colors);
glUniform1fv(stops_uniform_location, count, n_stops);
glUniform1i(n_stop_uniform_location, count);
}
c1x = (float) pixman_fixed_to_double(src_picture->pSourcePict->radial.c1.x);
c1y = (float) pixman_fixed_to_double(src_picture->pSourcePict->radial.c1.y);
c2x = (float) pixman_fixed_to_double(src_picture->pSourcePict->radial.c2.x);
c2y = (float) pixman_fixed_to_double(src_picture->pSourcePict->radial.c2.y);
r1 = (float) pixman_fixed_to_double(src_picture->pSourcePict->radial.c1.
radius);
r2 = (float) pixman_fixed_to_double(src_picture->pSourcePict->radial.c2.
radius);
glamor_set_circle_centre(width, height, c1x, c1y, cxy);
glUniform2fv(c1_uniform_location, 1, cxy);
glUniform1f(r1_uniform_location, r1);
glamor_set_circle_centre(width, height, c2x, c2y, cxy);
glUniform2fv(c2_uniform_location, 1, cxy);
glUniform1f(r2_uniform_location, r2);
A_value =
(c2x - c1x) * (c2x - c1x) + (c2y - c1y) * (c2y - c1y) - (r2 -
r1) * (r2 -
r1);
glUniform1f(A_value_uniform_location, A_value);
DEBUGF("C1:(%f, %f) R1:%f\nC2:(%f, %f) R2:%f\nA = %f\n",
c1x, c1y, r1, c2x, c2y, r2, A_value);
/* Now rendering. */
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
/* Do the clear logic. */
if (stops_count > RADIAL_SMALL_STOPS) {
free(n_stops);
free(stop_colors);
}
glDisableVertexAttribArray(GLAMOR_VERTEX_POS);
glDisableVertexAttribArray(GLAMOR_VERTEX_SOURCE);
return dst_picture;
GRADIENT_FAIL:
if (dst_picture) {
FreePicture(dst_picture, 0);
}
if (stops_count > RADIAL_SMALL_STOPS) {
if (n_stops)
free(n_stops);
if (stop_colors)
free(stop_colors);
}
glDisableVertexAttribArray(GLAMOR_VERTEX_POS);
glDisableVertexAttribArray(GLAMOR_VERTEX_SOURCE);
return NULL;
}
PicturePtr
glamor_generate_linear_gradient_picture(ScreenPtr screen,
PicturePtr src_picture,
int x_source, int y_source,
int width, int height,
PictFormatShort format)
{
glamor_screen_private *glamor_priv;
PicturePtr dst_picture = NULL;
PixmapPtr pixmap = NULL;
GLint gradient_prog = 0;
int error;
float pt_distance;
float p1_distance;
GLfloat cos_val;
int stops_count = 0;
GLfloat *stop_colors = NULL;
GLfloat *n_stops = NULL;
int count = 0;
float slope;
GLfloat xscale, yscale;
GLfloat pt1[2], pt2[2];
float transform_mat[3][3];
static const float identity_mat[3][3] = { {1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}
};
GLfloat stop_colors_st[LINEAR_SMALL_STOPS * 4];
GLfloat n_stops_st[LINEAR_SMALL_STOPS];
GLint transform_mat_uniform_location = 0;
GLint n_stop_uniform_location = 0;
GLint stops_uniform_location = 0;
GLint stop0_uniform_location = 0;
GLint stop1_uniform_location = 0;
GLint stop2_uniform_location = 0;
GLint stop3_uniform_location = 0;
GLint stop4_uniform_location = 0;
GLint stop5_uniform_location = 0;
GLint stop6_uniform_location = 0;
GLint stop7_uniform_location = 0;
GLint stop_colors_uniform_location = 0;
GLint stop_color0_uniform_location = 0;
GLint stop_color1_uniform_location = 0;
GLint stop_color2_uniform_location = 0;
GLint stop_color3_uniform_location = 0;
GLint stop_color4_uniform_location = 0;
GLint stop_color5_uniform_location = 0;
GLint stop_color6_uniform_location = 0;
GLint stop_color7_uniform_location = 0;
GLint pt_slope_uniform_location = 0;
GLint repeat_type_uniform_location = 0;
GLint hor_ver_uniform_location = 0;
GLint cos_val_uniform_location = 0;
GLint p1_distance_uniform_location = 0;
GLint pt_distance_uniform_location = 0;
glamor_priv = glamor_get_screen_private(screen);
glamor_make_current(glamor_priv);
/* Create a pixmap with VBO. */
pixmap = glamor_create_pixmap(screen,
width, height,
PIXMAN_FORMAT_DEPTH(format), 0);
if (!pixmap)
goto GRADIENT_FAIL;
dst_picture = CreatePicture(0, &pixmap->drawable,
PictureMatchFormat(screen,
PIXMAN_FORMAT_DEPTH(format),
format), 0, 0, serverClient,
&error);
/* Release the reference, picture will hold the last one. */
glamor_destroy_pixmap(pixmap);
if (!dst_picture)
goto GRADIENT_FAIL;
ValidatePicture(dst_picture);
stops_count = src_picture->pSourcePict->linear.nstops + 2;
/* Because the max value of nstops is unkown, so create a program
when nstops > LINEAR_LARGE_STOPS. */
if (stops_count <= LINEAR_SMALL_STOPS) {
gradient_prog = glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][0];
}
else if (stops_count <= LINEAR_LARGE_STOPS) {
gradient_prog = glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][1];
}
else {
_glamor_create_linear_gradient_program(screen,
src_picture->pSourcePict->linear.
nstops + 2, 1);
gradient_prog = glamor_priv->gradient_prog[SHADER_GRADIENT_LINEAR][2];
}
/* Bind all the uniform vars . */
n_stop_uniform_location =
glGetUniformLocation(gradient_prog, "n_stop");
pt_slope_uniform_location =
glGetUniformLocation(gradient_prog, "pt_slope");
repeat_type_uniform_location =
glGetUniformLocation(gradient_prog, "repeat_type");
hor_ver_uniform_location =
glGetUniformLocation(gradient_prog, "hor_ver");
transform_mat_uniform_location =
glGetUniformLocation(gradient_prog, "transform_mat");
cos_val_uniform_location =
glGetUniformLocation(gradient_prog, "cos_val");
p1_distance_uniform_location =
glGetUniformLocation(gradient_prog, "p1_distance");
pt_distance_uniform_location =
glGetUniformLocation(gradient_prog, "pt_distance");
if (src_picture->pSourcePict->linear.nstops + 2 <= LINEAR_SMALL_STOPS) {
stop0_uniform_location =
glGetUniformLocation(gradient_prog, "stop0");
stop1_uniform_location =
glGetUniformLocation(gradient_prog, "stop1");
stop2_uniform_location =
glGetUniformLocation(gradient_prog, "stop2");
stop3_uniform_location =
glGetUniformLocation(gradient_prog, "stop3");
stop4_uniform_location =
glGetUniformLocation(gradient_prog, "stop4");
stop5_uniform_location =
glGetUniformLocation(gradient_prog, "stop5");
stop6_uniform_location =
glGetUniformLocation(gradient_prog, "stop6");
stop7_uniform_location =
glGetUniformLocation(gradient_prog, "stop7");
stop_color0_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color0");
stop_color1_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color1");
stop_color2_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color2");
stop_color3_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color3");
stop_color4_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color4");
stop_color5_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color5");
stop_color6_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color6");
stop_color7_uniform_location =
glGetUniformLocation(gradient_prog, "stop_color7");
}
else {
stops_uniform_location =
glGetUniformLocation(gradient_prog, "stops");
stop_colors_uniform_location =
glGetUniformLocation(gradient_prog, "stop_colors");
}
glUseProgram(gradient_prog);
glUniform1i(repeat_type_uniform_location, src_picture->repeatType);
/* set the transform matrix. */
if (src_picture->transform) {
_glamor_gradient_convert_trans_matrix(src_picture->transform,
transform_mat, width, height, 1);
glUniformMatrix3fv(transform_mat_uniform_location,
1, 1, &transform_mat[0][0]);
}
else {
glUniformMatrix3fv(transform_mat_uniform_location,
1, 1, &identity_mat[0][0]);
}
if (!_glamor_gradient_set_pixmap_destination
(screen, glamor_priv, dst_picture, &xscale, &yscale, x_source, y_source,
1))
goto GRADIENT_FAIL;
glamor_set_alu(screen, GXcopy);
/* Normalize the PTs. */
glamor_set_normalize_pt(xscale, yscale,
pixman_fixed_to_double(src_picture->pSourcePict->
linear.p1.x),
pixman_fixed_to_double(src_picture->pSourcePict->
linear.p1.y),
pt1);
DEBUGF("pt1:(%f, %f) ---> (%f %f)\n",
pixman_fixed_to_double(src_picture->pSourcePict->linear.p1.x),
pixman_fixed_to_double(src_picture->pSourcePict->linear.p1.y),
pt1[0], pt1[1]);
glamor_set_normalize_pt(xscale, yscale,
pixman_fixed_to_double(src_picture->pSourcePict->
linear.p2.x),
pixman_fixed_to_double(src_picture->pSourcePict->
linear.p2.y),
pt2);
DEBUGF("pt2:(%f, %f) ---> (%f %f)\n",
pixman_fixed_to_double(src_picture->pSourcePict->linear.p2.x),
pixman_fixed_to_double(src_picture->pSourcePict->linear.p2.y),
pt2[0], pt2[1]);
/* Set all the stops and colors to shader. */
if (stops_count > LINEAR_SMALL_STOPS) {
stop_colors = xallocarray(stops_count, 4 * sizeof(float));
if (stop_colors == NULL) {
ErrorF("Failed to allocate stop_colors memory.\n");
goto GRADIENT_FAIL;
}
n_stops = xallocarray(stops_count, sizeof(float));
if (n_stops == NULL) {
ErrorF("Failed to allocate n_stops memory.\n");
goto GRADIENT_FAIL;
}
}
else {
stop_colors = stop_colors_st;
n_stops = n_stops_st;
}
count =
_glamor_gradient_set_stops(src_picture,
&src_picture->pSourcePict->gradient,
stop_colors, n_stops);
if (src_picture->pSourcePict->linear.nstops + 2 <= LINEAR_SMALL_STOPS) {
int j = 0;
glUniform4f(stop_color0_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color1_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color2_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color3_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color4_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color5_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color6_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j++;
glUniform4f(stop_color7_uniform_location,
stop_colors[4 * j + 0], stop_colors[4 * j + 1],
stop_colors[4 * j + 2], stop_colors[4 * j + 3]);
j = 0;
glUniform1f(stop0_uniform_location, n_stops[j++]);
glUniform1f(stop1_uniform_location, n_stops[j++]);
glUniform1f(stop2_uniform_location, n_stops[j++]);
glUniform1f(stop3_uniform_location, n_stops[j++]);
glUniform1f(stop4_uniform_location, n_stops[j++]);
glUniform1f(stop5_uniform_location, n_stops[j++]);
glUniform1f(stop6_uniform_location, n_stops[j++]);
glUniform1f(stop7_uniform_location, n_stops[j++]);
glUniform1i(n_stop_uniform_location, count);
}
else {
glUniform4fv(stop_colors_uniform_location, count, stop_colors);
glUniform1fv(stops_uniform_location, count, n_stops);
glUniform1i(n_stop_uniform_location, count);
}
if (src_picture->pSourcePict->linear.p2.y == src_picture->pSourcePict->linear.p1.y) { // The horizontal case.
glUniform1i(hor_ver_uniform_location, 1);
DEBUGF("p1.y: %f, p2.y: %f, enter the horizontal case\n",
pt1[1], pt2[1]);
p1_distance = pt1[0];
pt_distance = (pt2[0] - p1_distance);
glUniform1f(p1_distance_uniform_location, p1_distance);
glUniform1f(pt_distance_uniform_location, pt_distance);
}
else {
/* The slope need to compute here. In shader, the viewport set will change
the orginal slope and the slope which is vertical to it will not be correct. */
slope = -(float) (src_picture->pSourcePict->linear.p2.x
- src_picture->pSourcePict->linear.p1.x) /
(float) (src_picture->pSourcePict->linear.p2.y
- src_picture->pSourcePict->linear.p1.y);
slope = slope * yscale / xscale;
glUniform1f(pt_slope_uniform_location, slope);
glUniform1i(hor_ver_uniform_location, 0);
cos_val = sqrt(1.0 / (slope * slope + 1.0));
glUniform1f(cos_val_uniform_location, cos_val);
p1_distance = (pt1[1] - pt1[0] * slope) * cos_val;
pt_distance = (pt2[1] - pt2[0] * slope) * cos_val - p1_distance;
glUniform1f(p1_distance_uniform_location, p1_distance);
glUniform1f(pt_distance_uniform_location, pt_distance);
}
/* Now rendering. */
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
/* Do the clear logic. */
if (stops_count > LINEAR_SMALL_STOPS) {
free(n_stops);
free(stop_colors);
}
glDisableVertexAttribArray(GLAMOR_VERTEX_POS);
glDisableVertexAttribArray(GLAMOR_VERTEX_SOURCE);
return dst_picture;
GRADIENT_FAIL:
if (dst_picture) {
FreePicture(dst_picture, 0);
}
if (stops_count > LINEAR_SMALL_STOPS) {
if (n_stops)
free(n_stops);
if (stop_colors)
free(stop_colors);
}
glDisableVertexAttribArray(GLAMOR_VERTEX_POS);
glDisableVertexAttribArray(GLAMOR_VERTEX_SOURCE);
return NULL;
}
#endif /* End of GLAMOR_GRADIENT_SHADER */