xenocara/xserver/test/input.c

1852 lines
52 KiB
C

/**
* Copyright © 2009 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif
#include <stdint.h>
#include <X11/X.h>
#include "misc.h"
#include "resource.h"
#include <X11/Xproto.h>
#include <X11/extensions/XI2proto.h>
#include <X11/Xatom.h>
#include "windowstr.h"
#include "inputstr.h"
#include "eventconvert.h"
#include "exevents.h"
#include "exglobals.h"
#include "dixgrabs.h"
#include "eventstr.h"
#include "inpututils.h"
#include "mi.h"
#include "assert.h"
/**
* Init a device with axes.
* Verify values set on the device.
*
* Result: All axes set to default values (usually 0).
*/
static void
dix_init_valuators(void)
{
DeviceIntRec dev;
ValuatorClassPtr val;
AxisInfoPtr axis;
const int num_axes = 2;
int i;
Atom atoms[MAX_VALUATORS] = { 0 };
memset(&dev, 0, sizeof(DeviceIntRec));
dev.type = MASTER_POINTER; /* claim it's a master to stop ptracccel */
assert(InitValuatorClassDeviceStruct(NULL, 0, atoms, 0, 0) == FALSE);
assert(InitValuatorClassDeviceStruct(&dev, num_axes, atoms, 0, Absolute));
val = dev.valuator;
assert(val);
assert(val->numAxes == num_axes);
assert(val->numMotionEvents == 0);
assert(val->axisVal);
for (i = 0; i < num_axes; i++) {
assert(val->axisVal[i] == 0);
assert(val->axes->min_value == NO_AXIS_LIMITS);
assert(val->axes->max_value == NO_AXIS_LIMITS);
assert(val->axes->mode == Absolute);
}
assert(dev.last.numValuators == num_axes);
/* invalid increment */
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_VERTICAL, 0.0, SCROLL_FLAG_NONE) == FALSE);
/* invalid type */
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_VERTICAL - 1, 1.0, SCROLL_FLAG_NONE) == FALSE);
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_HORIZONTAL + 1, 1.0,
SCROLL_FLAG_NONE) == FALSE);
/* invalid axisnum */
assert(SetScrollValuator
(&dev, 2, SCROLL_TYPE_HORIZONTAL, 1.0, SCROLL_FLAG_NONE) == FALSE);
/* valid */
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_VERTICAL, 3.0, SCROLL_FLAG_NONE) == TRUE);
axis = &dev.valuator->axes[0];
assert(axis->scroll.increment == 3.0);
assert(axis->scroll.type == SCROLL_TYPE_VERTICAL);
assert(axis->scroll.flags == 0);
/* valid */
assert(SetScrollValuator
(&dev, 1, SCROLL_TYPE_HORIZONTAL, 2.0, SCROLL_FLAG_NONE) == TRUE);
axis = &dev.valuator->axes[1];
assert(axis->scroll.increment == 2.0);
assert(axis->scroll.type == SCROLL_TYPE_HORIZONTAL);
assert(axis->scroll.flags == 0);
/* can add another non-preffered axis */
assert(SetScrollValuator
(&dev, 1, SCROLL_TYPE_VERTICAL, 5.0, SCROLL_FLAG_NONE) == TRUE);
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_HORIZONTAL, 5.0, SCROLL_FLAG_NONE) == TRUE);
/* can overwrite with Preferred */
assert(SetScrollValuator
(&dev, 1, SCROLL_TYPE_VERTICAL, 5.5, SCROLL_FLAG_PREFERRED) == TRUE);
axis = &dev.valuator->axes[1];
assert(axis->scroll.increment == 5.5);
assert(axis->scroll.type == SCROLL_TYPE_VERTICAL);
assert(axis->scroll.flags == SCROLL_FLAG_PREFERRED);
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_HORIZONTAL, 8.8,
SCROLL_FLAG_PREFERRED) == TRUE);
axis = &dev.valuator->axes[0];
assert(axis->scroll.increment == 8.8);
assert(axis->scroll.type == SCROLL_TYPE_HORIZONTAL);
assert(axis->scroll.flags == SCROLL_FLAG_PREFERRED);
/* can overwrite as none */
assert(SetScrollValuator(&dev, 0, SCROLL_TYPE_NONE, 5.0,
SCROLL_FLAG_NONE) == TRUE);
axis = &dev.valuator->axes[0];
assert(axis->scroll.type == SCROLL_TYPE_NONE);
/* can overwrite axis with new settings */
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_VERTICAL, 5.0, SCROLL_FLAG_NONE) == TRUE);
axis = &dev.valuator->axes[0];
assert(axis->scroll.type == SCROLL_TYPE_VERTICAL);
assert(axis->scroll.increment == 5.0);
assert(axis->scroll.flags == SCROLL_FLAG_NONE);
assert(SetScrollValuator
(&dev, 0, SCROLL_TYPE_VERTICAL, 3.0, SCROLL_FLAG_NONE) == TRUE);
assert(axis->scroll.type == SCROLL_TYPE_VERTICAL);
assert(axis->scroll.increment == 3.0);
assert(axis->scroll.flags == SCROLL_FLAG_NONE);
}
/* just check the known success cases, and that error cases set the client's
* error value correctly. */
static void
dix_check_grab_values(void)
{
ClientRec client;
GrabParameters param;
int rc;
memset(&client, 0, sizeof(client));
param.grabtype = CORE;
param.this_device_mode = GrabModeSync;
param.other_devices_mode = GrabModeSync;
param.modifiers = AnyModifier;
param.ownerEvents = FALSE;
rc = CheckGrabValues(&client, &param);
assert(rc == Success);
param.this_device_mode = GrabModeAsync;
rc = CheckGrabValues(&client, &param);
assert(rc == Success);
param.this_device_mode = XIGrabModeTouch;
rc = CheckGrabValues(&client, &param);
assert(rc == Success);
param.this_device_mode = XIGrabModeTouch + 1;
rc = CheckGrabValues(&client, &param);
assert(rc == BadValue);
assert(client.errorValue == param.this_device_mode);
assert(client.errorValue == XIGrabModeTouch + 1);
param.this_device_mode = GrabModeSync;
param.other_devices_mode = GrabModeAsync;
rc = CheckGrabValues(&client, &param);
param.this_device_mode = GrabModeSync;
param.other_devices_mode = XIGrabModeTouch;
rc = CheckGrabValues(&client, &param);
assert(rc == Success);
assert(rc == Success);
param.other_devices_mode = XIGrabModeTouch + 1;
rc = CheckGrabValues(&client, &param);
assert(rc == BadValue);
assert(client.errorValue == param.other_devices_mode);
assert(client.errorValue == XIGrabModeTouch + 1);
param.other_devices_mode = GrabModeSync;
param.modifiers = 1 << 13;
rc = CheckGrabValues(&client, &param);
assert(rc == BadValue);
assert(client.errorValue == param.modifiers);
assert(client.errorValue == (1 << 13));
param.modifiers = AnyModifier;
param.ownerEvents = TRUE;
rc = CheckGrabValues(&client, &param);
assert(rc == Success);
param.ownerEvents = 3;
rc = CheckGrabValues(&client, &param);
assert(rc == BadValue);
assert(client.errorValue == param.ownerEvents);
assert(client.errorValue == 3);
}
/**
* Convert various internal events to the matching core event and verify the
* parameters.
*/
static void
dix_event_to_core(int type)
{
DeviceEvent ev;
xEvent *core;
int time;
int x, y;
int rc;
int state;
int detail;
int count;
const int ROOT_WINDOW_ID = 0x100;
/* EventToCore memsets the event to 0 */
#define test_event() \
assert(rc == Success); \
assert(core); \
assert(count == 1); \
assert(core->u.u.type == type); \
assert(core->u.u.detail == detail); \
assert(core->u.keyButtonPointer.time == time); \
assert(core->u.keyButtonPointer.rootX == x); \
assert(core->u.keyButtonPointer.rootY == y); \
assert(core->u.keyButtonPointer.state == state); \
assert(core->u.keyButtonPointer.eventX == 0); \
assert(core->u.keyButtonPointer.eventY == 0); \
assert(core->u.keyButtonPointer.root == ROOT_WINDOW_ID); \
assert(core->u.keyButtonPointer.event == 0); \
assert(core->u.keyButtonPointer.child == 0); \
assert(core->u.keyButtonPointer.sameScreen == FALSE);
x = 0;
y = 0;
time = 12345;
state = 0;
detail = 0;
ev.header = 0xFF;
ev.length = sizeof(DeviceEvent);
ev.time = time;
ev.root_y = x;
ev.root_x = y;
SetBit(ev.valuators.mask, 0);
SetBit(ev.valuators.mask, 1);
ev.root = ROOT_WINDOW_ID;
ev.corestate = state;
ev.detail.key = detail;
ev.type = type;
ev.detail.key = 0;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
x = 1;
y = 2;
ev.root_x = x;
ev.root_y = y;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
x = 0x7FFF;
y = 0x7FFF;
ev.root_x = x;
ev.root_y = y;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
x = 0x8000; /* too high */
y = 0x8000; /* too high */
ev.root_x = x;
ev.root_y = y;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
assert(rc == Success);
assert(core);
assert(count == 1);
assert(core->u.keyButtonPointer.rootX != x);
assert(core->u.keyButtonPointer.rootY != y);
x = 0x7FFF;
y = 0x7FFF;
ev.root_x = x;
ev.root_y = y;
time = 0;
ev.time = time;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
detail = 1;
ev.detail.key = detail;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
detail = 0xFF; /* highest value */
ev.detail.key = detail;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
detail = 0xFFF; /* too big */
ev.detail.key = detail;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
assert(rc == BadMatch);
detail = 0xFF; /* too big */
ev.detail.key = detail;
state = 0xFFFF; /* highest value */
ev.corestate = state;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
test_event();
state = 0x10000; /* too big */
ev.corestate = state;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
assert(rc == Success);
assert(core);
assert(count == 1);
assert(core->u.keyButtonPointer.state != state);
assert(core->u.keyButtonPointer.state == (state & 0xFFFF));
#undef test_event
}
static void
dix_event_to_core_fail(int evtype, int expected_rc)
{
DeviceEvent ev;
xEvent *core;
int rc;
int count;
ev.header = 0xFF;
ev.length = sizeof(DeviceEvent);
ev.type = evtype;
rc = EventToCore((InternalEvent *) &ev, &core, &count);
assert(rc == expected_rc);
}
static void
dix_event_to_core_conversion(void)
{
dix_event_to_core_fail(0, BadImplementation);
dix_event_to_core_fail(1, BadImplementation);
dix_event_to_core_fail(ET_ProximityOut + 1, BadImplementation);
dix_event_to_core_fail(ET_ProximityIn, BadMatch);
dix_event_to_core_fail(ET_ProximityOut, BadMatch);
dix_event_to_core(ET_KeyPress);
dix_event_to_core(ET_KeyRelease);
dix_event_to_core(ET_ButtonPress);
dix_event_to_core(ET_ButtonRelease);
dix_event_to_core(ET_Motion);
}
static void
_dix_test_xi_convert(DeviceEvent *ev, int expected_rc, int expected_count)
{
xEvent *xi;
int count = 0;
int rc;
rc = EventToXI((InternalEvent *) ev, &xi, &count);
assert(rc == expected_rc);
assert(count >= expected_count);
if (count > 0) {
deviceKeyButtonPointer *kbp = (deviceKeyButtonPointer *) xi;
assert(kbp->type == IEventBase + ev->type);
assert(kbp->detail == ev->detail.key);
assert(kbp->time == ev->time);
assert((kbp->deviceid & ~MORE_EVENTS) == ev->deviceid);
assert(kbp->root_x == ev->root_x);
assert(kbp->root_y == ev->root_y);
assert(kbp->state == ev->corestate);
assert(kbp->event_x == 0);
assert(kbp->event_y == 0);
assert(kbp->root == ev->root);
assert(kbp->event == 0);
assert(kbp->child == 0);
assert(kbp->same_screen == FALSE);
while (--count > 0) {
deviceValuator *v = (deviceValuator *) &xi[count];
assert(v->type == DeviceValuator);
assert(v->num_valuators <= 6);
}
free(xi);
}
}
/**
* This tests for internal event → XI1 event conversion
* - all conversions should generate the right XI event type
* - right number of events generated
* - extra events are valuators
*/
static void
dix_event_to_xi1_conversion(void)
{
DeviceEvent ev = { 0 };
int time;
int x, y;
int state;
int detail;
const int ROOT_WINDOW_ID = 0x100;
int deviceid;
IEventBase = 80;
DeviceValuator = IEventBase - 1;
DeviceKeyPress = IEventBase + ET_KeyPress;
DeviceKeyRelease = IEventBase + ET_KeyRelease;
DeviceButtonPress = IEventBase + ET_ButtonPress;
DeviceButtonRelease = IEventBase + ET_ButtonRelease;
DeviceMotionNotify = IEventBase + ET_Motion;
DeviceFocusIn = IEventBase + ET_FocusIn;
DeviceFocusOut = IEventBase + ET_FocusOut;
ProximityIn = IEventBase + ET_ProximityIn;
ProximityOut = IEventBase + ET_ProximityOut;
/* EventToXI callocs */
x = 0;
y = 0;
time = 12345;
state = 0;
detail = 0;
deviceid = 4;
ev.header = 0xFF;
ev.header = 0xFF;
ev.length = sizeof(DeviceEvent);
ev.time = time;
ev.root_y = x;
ev.root_x = y;
SetBit(ev.valuators.mask, 0);
SetBit(ev.valuators.mask, 1);
ev.root = ROOT_WINDOW_ID;
ev.corestate = state;
ev.detail.key = detail;
ev.deviceid = deviceid;
/* test all types for bad match */
ev.type = ET_KeyPress;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_KeyRelease;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_ButtonPress;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_ButtonRelease;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_Motion;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_ProximityIn;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_ProximityOut;
_dix_test_xi_convert(&ev, Success, 1);
/* No axes */
ClearBit(ev.valuators.mask, 0);
ClearBit(ev.valuators.mask, 1);
ev.type = ET_KeyPress;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_KeyRelease;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_ButtonPress;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_ButtonRelease;
_dix_test_xi_convert(&ev, Success, 1);
ev.type = ET_Motion;
_dix_test_xi_convert(&ev, BadMatch, 0);
ev.type = ET_ProximityIn;
_dix_test_xi_convert(&ev, BadMatch, 0);
ev.type = ET_ProximityOut;
_dix_test_xi_convert(&ev, BadMatch, 0);
/* more than 6 axes → 2 valuator events */
SetBit(ev.valuators.mask, 0);
SetBit(ev.valuators.mask, 1);
SetBit(ev.valuators.mask, 2);
SetBit(ev.valuators.mask, 3);
SetBit(ev.valuators.mask, 4);
SetBit(ev.valuators.mask, 5);
SetBit(ev.valuators.mask, 6);
ev.type = ET_KeyPress;
_dix_test_xi_convert(&ev, Success, 2);
ev.type = ET_KeyRelease;
_dix_test_xi_convert(&ev, Success, 2);
ev.type = ET_ButtonPress;
_dix_test_xi_convert(&ev, Success, 2);
ev.type = ET_ButtonRelease;
_dix_test_xi_convert(&ev, Success, 2);
ev.type = ET_Motion;
_dix_test_xi_convert(&ev, Success, 2);
ev.type = ET_ProximityIn;
_dix_test_xi_convert(&ev, Success, 2);
ev.type = ET_ProximityOut;
_dix_test_xi_convert(&ev, Success, 2);
/* keycode too high */
ev.type = ET_KeyPress;
ev.detail.key = 256;
_dix_test_xi_convert(&ev, Success, 0);
/* deviceid too high */
ev.type = ET_KeyPress;
ev.detail.key = 18;
ev.deviceid = 128;
_dix_test_xi_convert(&ev, Success, 0);
}
static void
xi2_struct_sizes(void)
{
#define compare(req) \
assert(sizeof(req) == sz_##req);
compare(xXIQueryVersionReq);
compare(xXIWarpPointerReq);
compare(xXIChangeCursorReq);
compare(xXIChangeHierarchyReq);
compare(xXISetClientPointerReq);
compare(xXIGetClientPointerReq);
compare(xXISelectEventsReq);
compare(xXIQueryVersionReq);
compare(xXIQueryDeviceReq);
compare(xXISetFocusReq);
compare(xXIGetFocusReq);
compare(xXIGrabDeviceReq);
compare(xXIUngrabDeviceReq);
compare(xXIAllowEventsReq);
compare(xXIPassiveGrabDeviceReq);
compare(xXIPassiveUngrabDeviceReq);
compare(xXIListPropertiesReq);
compare(xXIChangePropertyReq);
compare(xXIDeletePropertyReq);
compare(xXIGetPropertyReq);
compare(xXIGetSelectedEventsReq);
#undef compare
}
static void
dix_grab_matching(void)
{
DeviceIntRec xi_all_devices, xi_all_master_devices, dev1, dev2;
GrabRec a, b;
BOOL rc;
memset(&a, 0, sizeof(a));
memset(&b, 0, sizeof(b));
/* different grabtypes must fail */
a.grabtype = CORE;
b.grabtype = XI2;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = XI2;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = CORE;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* XI2 grabs for different devices must fail, regardless of ignoreDevice
* XI2 grabs for master devices must fail against a slave */
memset(&xi_all_devices, 0, sizeof(DeviceIntRec));
memset(&xi_all_master_devices, 0, sizeof(DeviceIntRec));
memset(&dev1, 0, sizeof(DeviceIntRec));
memset(&dev2, 0, sizeof(DeviceIntRec));
xi_all_devices.id = XIAllDevices;
xi_all_master_devices.id = XIAllMasterDevices;
dev1.id = 10;
dev1.type = SLAVE;
dev2.id = 11;
dev2.type = SLAVE;
inputInfo.all_devices = &xi_all_devices;
inputInfo.all_master_devices = &xi_all_master_devices;
a.grabtype = XI2;
b.grabtype = XI2;
a.device = &dev1;
b.device = &dev2;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
a.device = &dev2;
b.device = &dev1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&a, &b, TRUE);
assert(rc == FALSE);
a.device = inputInfo.all_master_devices;
b.device = &dev1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&a, &b, TRUE);
assert(rc == FALSE);
a.device = &dev1;
b.device = inputInfo.all_master_devices;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&a, &b, TRUE);
assert(rc == FALSE);
/* ignoreDevice FALSE must fail for different devices for CORE and XI */
a.grabtype = XI;
b.grabtype = XI;
a.device = &dev1;
b.device = &dev2;
a.modifierDevice = &dev1;
b.modifierDevice = &dev1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
a.device = &dev1;
b.device = &dev2;
a.modifierDevice = &dev1;
b.modifierDevice = &dev1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
/* ignoreDevice FALSE must fail for different modifier devices for CORE
* and XI */
a.grabtype = XI;
b.grabtype = XI;
a.device = &dev1;
b.device = &dev1;
a.modifierDevice = &dev1;
b.modifierDevice = &dev2;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
a.device = &dev1;
b.device = &dev1;
a.modifierDevice = &dev1;
b.modifierDevice = &dev2;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
/* different event type must fail */
a.grabtype = XI2;
b.grabtype = XI2;
a.device = &dev1;
b.device = &dev1;
a.modifierDevice = &dev1;
b.modifierDevice = &dev1;
a.type = XI_KeyPress;
b.type = XI_KeyRelease;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&a, &b, TRUE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
a.device = &dev1;
b.device = &dev1;
a.modifierDevice = &dev1;
b.modifierDevice = &dev1;
a.type = XI_KeyPress;
b.type = XI_KeyRelease;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&a, &b, TRUE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = XI;
a.device = &dev1;
b.device = &dev1;
a.modifierDevice = &dev1;
b.modifierDevice = &dev1;
a.type = XI_KeyPress;
b.type = XI_KeyRelease;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&a, &b, TRUE);
assert(rc == FALSE);
/* different modifiers must fail */
a.grabtype = XI2;
b.grabtype = XI2;
a.device = &dev1;
b.device = &dev1;
a.modifierDevice = &dev1;
b.modifierDevice = &dev1;
a.type = XI_KeyPress;
b.type = XI_KeyPress;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 2;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = XI;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* AnyModifier must fail for XI2 */
a.grabtype = XI2;
b.grabtype = XI2;
a.modifiersDetail.exact = AnyModifier;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* XIAnyModifier must fail for CORE and XI */
a.grabtype = XI;
b.grabtype = XI;
a.modifiersDetail.exact = XIAnyModifier;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
a.modifiersDetail.exact = XIAnyModifier;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* different detail must fail */
a.grabtype = XI2;
b.grabtype = XI2;
a.detail.exact = 1;
b.detail.exact = 2;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = XI;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* detail of AnyModifier must fail */
a.grabtype = XI2;
b.grabtype = XI2;
a.detail.exact = AnyModifier;
b.detail.exact = 1;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = XI;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* detail of XIAnyModifier must fail */
a.grabtype = XI2;
b.grabtype = XI2;
a.detail.exact = XIAnyModifier;
b.detail.exact = 1;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = CORE;
b.grabtype = CORE;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
a.grabtype = XI;
b.grabtype = XI;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == FALSE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == FALSE);
/* XIAnyModifier or AnyModifer must succeed */
a.grabtype = XI2;
b.grabtype = XI2;
a.detail.exact = 1;
b.detail.exact = 1;
a.modifiersDetail.exact = XIAnyModifier;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == TRUE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == TRUE);
a.grabtype = CORE;
b.grabtype = CORE;
a.detail.exact = 1;
b.detail.exact = 1;
a.modifiersDetail.exact = AnyModifier;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == TRUE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == TRUE);
a.grabtype = XI;
b.grabtype = XI;
a.detail.exact = 1;
b.detail.exact = 1;
a.modifiersDetail.exact = AnyModifier;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == TRUE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == TRUE);
/* AnyKey or XIAnyKeycode must succeed */
a.grabtype = XI2;
b.grabtype = XI2;
a.detail.exact = XIAnyKeycode;
b.detail.exact = 1;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == TRUE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == TRUE);
a.grabtype = CORE;
b.grabtype = CORE;
a.detail.exact = AnyKey;
b.detail.exact = 1;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == TRUE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == TRUE);
a.grabtype = XI;
b.grabtype = XI;
a.detail.exact = AnyKey;
b.detail.exact = 1;
a.modifiersDetail.exact = 1;
b.modifiersDetail.exact = 1;
rc = GrabMatchesSecond(&a, &b, FALSE);
assert(rc == TRUE);
rc = GrabMatchesSecond(&b, &a, FALSE);
assert(rc == TRUE);
}
static void
test_bits_to_byte(int i)
{
int expected_bytes;
expected_bytes = (i + 7) / 8;
assert(bits_to_bytes(i) >= i / 8);
assert((bits_to_bytes(i) * 8) - i <= 7);
assert(expected_bytes == bits_to_bytes(i));
}
static void
test_bytes_to_int32(int i)
{
int expected_4byte;
expected_4byte = (i + 3) / 4;
assert(bytes_to_int32(i) <= i);
assert((bytes_to_int32(i) * 4) - i <= 3);
assert(expected_4byte == bytes_to_int32(i));
}
static void
test_pad_to_int32(int i)
{
int expected_bytes;
expected_bytes = ((i + 3) / 4) * 4;
assert(pad_to_int32(i) >= i);
assert(pad_to_int32(i) - i <= 3);
assert(expected_bytes == pad_to_int32(i));
}
static void
test_padding_for_int32(int i)
{
static const int padlength[4] = { 0, 3, 2, 1 };
int expected_bytes = (((i + 3) / 4) * 4) - i;
assert(padding_for_int32(i) >= 0);
assert(padding_for_int32(i) <= 3);
assert(padding_for_int32(i) == expected_bytes);
assert(padding_for_int32(i) == padlength[i & 3]);
assert((padding_for_int32(i) + i) == pad_to_int32(i));
}
static void
include_byte_padding_macros(void)
{
printf("Testing bits_to_bytes()\n");
/* the macros don't provide overflow protection */
test_bits_to_byte(0);
test_bits_to_byte(1);
test_bits_to_byte(2);
test_bits_to_byte(7);
test_bits_to_byte(8);
test_bits_to_byte(0xFF);
test_bits_to_byte(0x100);
test_bits_to_byte(INT_MAX - 9);
test_bits_to_byte(INT_MAX - 8);
printf("Testing bytes_to_int32()\n");
test_bytes_to_int32(0);
test_bytes_to_int32(1);
test_bytes_to_int32(2);
test_bytes_to_int32(7);
test_bytes_to_int32(8);
test_bytes_to_int32(0xFF);
test_bytes_to_int32(0x100);
test_bytes_to_int32(0xFFFF);
test_bytes_to_int32(0x10000);
test_bytes_to_int32(0xFFFFFF);
test_bytes_to_int32(0x1000000);
test_bytes_to_int32(INT_MAX - 4);
test_bytes_to_int32(INT_MAX - 3);
printf("Testing pad_to_int32()\n");
test_pad_to_int32(0);
test_pad_to_int32(1);
test_pad_to_int32(2);
test_pad_to_int32(3);
test_pad_to_int32(7);
test_pad_to_int32(8);
test_pad_to_int32(0xFF);
test_pad_to_int32(0x100);
test_pad_to_int32(0xFFFF);
test_pad_to_int32(0x10000);
test_pad_to_int32(0xFFFFFF);
test_pad_to_int32(0x1000000);
test_pad_to_int32(INT_MAX - 4);
test_pad_to_int32(INT_MAX - 3);
printf("Testing padding_for_int32()\n");
test_padding_for_int32(0);
test_padding_for_int32(1);
test_padding_for_int32(2);
test_padding_for_int32(3);
test_padding_for_int32(7);
test_padding_for_int32(8);
test_padding_for_int32(0xFF);
test_padding_for_int32(0x100);
test_padding_for_int32(0xFFFF);
test_padding_for_int32(0x10000);
test_padding_for_int32(0xFFFFFF);
test_padding_for_int32(0x1000000);
test_padding_for_int32(INT_MAX - 4);
test_padding_for_int32(INT_MAX - 3);
}
static void
xi_unregister_handlers(void)
{
DeviceIntRec dev;
int handler;
memset(&dev, 0, sizeof(dev));
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 1);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 2);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 3);
printf("Unlinking from front.\n");
XIUnregisterPropertyHandler(&dev, 4); /* NOOP */
assert(dev.properties.handlers->id == 3);
XIUnregisterPropertyHandler(&dev, 3);
assert(dev.properties.handlers->id == 2);
XIUnregisterPropertyHandler(&dev, 2);
assert(dev.properties.handlers->id == 1);
XIUnregisterPropertyHandler(&dev, 1);
assert(dev.properties.handlers == NULL);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 4);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 5);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 6);
XIUnregisterPropertyHandler(&dev, 3); /* NOOP */
assert(dev.properties.handlers->next->next->next == NULL);
XIUnregisterPropertyHandler(&dev, 4);
assert(dev.properties.handlers->next->next == NULL);
XIUnregisterPropertyHandler(&dev, 5);
assert(dev.properties.handlers->next == NULL);
XIUnregisterPropertyHandler(&dev, 6);
assert(dev.properties.handlers == NULL);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 7);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 8);
handler = XIRegisterPropertyHandler(&dev, NULL, NULL, NULL);
assert(handler == 9);
XIDeleteAllDeviceProperties(&dev);
assert(dev.properties.handlers == NULL);
XIUnregisterPropertyHandler(&dev, 7); /* NOOP */
}
static void
cmp_attr_fields(InputAttributes * attr1, InputAttributes * attr2)
{
char **tags1, **tags2;
assert(attr1 && attr2);
assert(attr1 != attr2);
assert(attr1->flags == attr2->flags);
if (attr1->product != NULL) {
assert(attr1->product != attr2->product);
assert(strcmp(attr1->product, attr2->product) == 0);
}
else
assert(attr2->product == NULL);
if (attr1->vendor != NULL) {
assert(attr1->vendor != attr2->vendor);
assert(strcmp(attr1->vendor, attr2->vendor) == 0);
}
else
assert(attr2->vendor == NULL);
if (attr1->device != NULL) {
assert(attr1->device != attr2->device);
assert(strcmp(attr1->device, attr2->device) == 0);
}
else
assert(attr2->device == NULL);
if (attr1->pnp_id != NULL) {
assert(attr1->pnp_id != attr2->pnp_id);
assert(strcmp(attr1->pnp_id, attr2->pnp_id) == 0);
}
else
assert(attr2->pnp_id == NULL);
if (attr1->usb_id != NULL) {
assert(attr1->usb_id != attr2->usb_id);
assert(strcmp(attr1->usb_id, attr2->usb_id) == 0);
}
else
assert(attr2->usb_id == NULL);
tags1 = attr1->tags;
tags2 = attr2->tags;
/* if we don't have any tags, skip the tag checking bits */
if (!tags1) {
assert(!tags2);
return;
}
/* Don't lug around empty arrays */
assert(*tags1);
assert(*tags2);
/* check for identical content, but duplicated */
while (*tags1) {
assert(*tags1 != *tags2);
assert(strcmp(*tags1, *tags2) == 0);
tags1++;
tags2++;
}
/* ensure tags1 and tags2 have the same no of elements */
assert(!*tags2);
/* check for not sharing memory */
tags1 = attr1->tags;
while (*tags1) {
tags2 = attr2->tags;
while (*tags2)
assert(*tags1 != *tags2++);
tags1++;
}
}
static void
dix_input_attributes(void)
{
InputAttributes orig = { 0 };
InputAttributes *new;
char *tags[4] = { "tag1", "tag2", "tag2", NULL };
new = DuplicateInputAttributes(NULL);
assert(!new);
new = DuplicateInputAttributes(&orig);
assert(memcmp(&orig, new, sizeof(InputAttributes)) == 0);
orig.product = "product name";
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
orig.vendor = "vendor name";
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
orig.device = "device path";
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
orig.pnp_id = "PnPID";
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
orig.usb_id = "USBID";
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
orig.flags = 0xF0;
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
orig.tags = tags;
new = DuplicateInputAttributes(&orig);
cmp_attr_fields(&orig, new);
FreeInputAttributes(new);
}
static void
dix_input_valuator_masks(void)
{
ValuatorMask *mask = NULL, *copy;
int nvaluators = MAX_VALUATORS;
double valuators[nvaluators];
int val_ranged[nvaluators];
int i;
int first_val, num_vals;
for (i = 0; i < nvaluators; i++) {
valuators[i] = i + 0.5;
val_ranged[i] = i;
}
mask = valuator_mask_new(nvaluators);
assert(mask != NULL);
assert(valuator_mask_size(mask) == 0);
assert(valuator_mask_num_valuators(mask) == 0);
for (i = 0; i < nvaluators; i++) {
assert(!valuator_mask_isset(mask, i));
valuator_mask_set_double(mask, i, valuators[i]);
assert(valuator_mask_isset(mask, i));
assert(valuator_mask_get(mask, i) == trunc(valuators[i]));
assert(valuator_mask_get_double(mask, i) == valuators[i]);
assert(valuator_mask_size(mask) == i + 1);
assert(valuator_mask_num_valuators(mask) == i + 1);
}
for (i = 0; i < nvaluators; i++) {
assert(valuator_mask_isset(mask, i));
valuator_mask_unset(mask, i);
/* we're removing valuators from the front, so size should stay the
* same until the last bit is removed */
if (i < nvaluators - 1)
assert(valuator_mask_size(mask) == nvaluators);
assert(!valuator_mask_isset(mask, i));
}
assert(valuator_mask_size(mask) == 0);
valuator_mask_zero(mask);
assert(valuator_mask_size(mask) == 0);
assert(valuator_mask_num_valuators(mask) == 0);
for (i = 0; i < nvaluators; i++)
assert(!valuator_mask_isset(mask, i));
first_val = 5;
num_vals = 6;
valuator_mask_set_range(mask, first_val, num_vals, val_ranged);
assert(valuator_mask_size(mask) == first_val + num_vals);
assert(valuator_mask_num_valuators(mask) == num_vals);
for (i = 0; i < nvaluators; i++) {
double val;
if (i < first_val || i >= first_val + num_vals) {
assert(!valuator_mask_isset(mask, i));
assert(!valuator_mask_fetch_double(mask, i, &val));
}
else {
assert(valuator_mask_isset(mask, i));
assert(valuator_mask_get(mask, i) == val_ranged[i - first_val]);
assert(valuator_mask_get_double(mask, i) ==
val_ranged[i - first_val]);
assert(valuator_mask_fetch_double(mask, i, &val));
assert(val_ranged[i - first_val] == val);
}
}
copy = valuator_mask_new(nvaluators);
valuator_mask_copy(copy, mask);
assert(mask != copy);
assert(valuator_mask_size(mask) == valuator_mask_size(copy));
assert(valuator_mask_num_valuators(mask) ==
valuator_mask_num_valuators(copy));
for (i = 0; i < nvaluators; i++) {
double a, b;
assert(valuator_mask_isset(mask, i) == valuator_mask_isset(copy, i));
if (!valuator_mask_isset(mask, i))
continue;
assert(valuator_mask_get(mask, i) == valuator_mask_get(copy, i));
assert(valuator_mask_get_double(mask, i) ==
valuator_mask_get_double(copy, i));
assert(valuator_mask_fetch_double(mask, i, &a));
assert(valuator_mask_fetch_double(copy, i, &b));
assert(a == b);
}
valuator_mask_free(&mask);
assert(mask == NULL);
}
static void
dix_valuator_mode(void)
{
DeviceIntRec dev;
const int num_axes = MAX_VALUATORS;
int i;
Atom atoms[MAX_VALUATORS] = { 0 };
memset(&dev, 0, sizeof(DeviceIntRec));
dev.type = MASTER_POINTER; /* claim it's a master to stop ptracccel */
assert(InitValuatorClassDeviceStruct(NULL, 0, atoms, 0, 0) == FALSE);
assert(InitValuatorClassDeviceStruct(&dev, num_axes, atoms, 0, Absolute));
for (i = 0; i < num_axes; i++) {
assert(valuator_get_mode(&dev, i) == Absolute);
valuator_set_mode(&dev, i, Relative);
assert(dev.valuator->axes[i].mode == Relative);
assert(valuator_get_mode(&dev, i) == Relative);
}
valuator_set_mode(&dev, VALUATOR_MODE_ALL_AXES, Absolute);
for (i = 0; i < num_axes; i++)
assert(valuator_get_mode(&dev, i) == Absolute);
valuator_set_mode(&dev, VALUATOR_MODE_ALL_AXES, Relative);
for (i = 0; i < num_axes; i++)
assert(valuator_get_mode(&dev, i) == Relative);
}
static void
include_bit_test_macros(void)
{
uint8_t mask[9] = { 0 };
int i;
for (i = 0; i < sizeof(mask) / sizeof(mask[0]); i++) {
assert(BitIsOn(mask, i) == 0);
SetBit(mask, i);
assert(BitIsOn(mask, i) == 1);
assert(! !(mask[i / 8] & (1 << (i % 8))));
assert(CountBits(mask, sizeof(mask)) == 1);
ClearBit(mask, i);
assert(BitIsOn(mask, i) == 0);
}
}
/**
* Ensure that val->axisVal and val->axes are aligned on doubles.
*/
static void
dix_valuator_alloc(void)
{
ValuatorClassPtr v = NULL;
int num_axes = 0;
while (num_axes < 5) {
v = AllocValuatorClass(v, num_axes);
assert(v);
assert(v->numAxes == num_axes);
#if !defined(__i386__) && !defined(__sh__)
/* must be double-aligned on 64 bit */
assert(((void *) v->axisVal - (void *) v) % sizeof(double) == 0);
assert(((void *) v->axes - (void *) v) % sizeof(double) == 0);
#endif
num_axes++;
}
free(v);
}
static void
dix_get_master(void)
{
DeviceIntRec vcp, vck;
DeviceIntRec ptr, kbd;
DeviceIntRec floating;
SpriteInfoRec vcp_sprite, vck_sprite;
SpriteInfoRec ptr_sprite, kbd_sprite;
SpriteInfoRec floating_sprite;
memset(&vcp, 0, sizeof(vcp));
memset(&vck, 0, sizeof(vck));
memset(&ptr, 0, sizeof(ptr));
memset(&kbd, 0, sizeof(kbd));
memset(&floating, 0, sizeof(floating));
memset(&vcp_sprite, 0, sizeof(vcp_sprite));
memset(&vck_sprite, 0, sizeof(vck_sprite));
memset(&ptr_sprite, 0, sizeof(ptr_sprite));
memset(&kbd_sprite, 0, sizeof(kbd_sprite));
memset(&floating_sprite, 0, sizeof(floating_sprite));
vcp.type = MASTER_POINTER;
vck.type = MASTER_KEYBOARD;
ptr.type = SLAVE;
kbd.type = SLAVE;
floating.type = SLAVE;
vcp.spriteInfo = &vcp_sprite;
vck.spriteInfo = &vck_sprite;
ptr.spriteInfo = &ptr_sprite;
kbd.spriteInfo = &kbd_sprite;
floating.spriteInfo = &floating_sprite;
vcp_sprite.paired = &vck;
vck_sprite.paired = &vcp;
ptr_sprite.paired = &vcp;
kbd_sprite.paired = &vck;
floating_sprite.paired = &floating;
vcp_sprite.spriteOwner = TRUE;
floating_sprite.spriteOwner = TRUE;
ptr.master = &vcp;
kbd.master = &vck;
assert(GetPairedDevice(&vcp) == &vck);
assert(GetPairedDevice(&vck) == &vcp);
assert(GetMaster(&ptr, MASTER_POINTER) == &vcp);
assert(GetMaster(&ptr, MASTER_KEYBOARD) == &vck);
assert(GetMaster(&kbd, MASTER_POINTER) == &vcp);
assert(GetMaster(&kbd, MASTER_KEYBOARD) == &vck);
assert(GetMaster(&ptr, MASTER_ATTACHED) == &vcp);
assert(GetMaster(&kbd, MASTER_ATTACHED) == &vck);
assert(GetPairedDevice(&floating) == &floating);
assert(GetMaster(&floating, MASTER_POINTER) == NULL);
assert(GetMaster(&floating, MASTER_KEYBOARD) == NULL);
assert(GetMaster(&floating, MASTER_ATTACHED) == NULL);
assert(GetMaster(&vcp, POINTER_OR_FLOAT) == &vcp);
assert(GetMaster(&vck, POINTER_OR_FLOAT) == &vcp);
assert(GetMaster(&ptr, POINTER_OR_FLOAT) == &vcp);
assert(GetMaster(&kbd, POINTER_OR_FLOAT) == &vcp);
assert(GetMaster(&vcp, KEYBOARD_OR_FLOAT) == &vck);
assert(GetMaster(&vck, KEYBOARD_OR_FLOAT) == &vck);
assert(GetMaster(&ptr, KEYBOARD_OR_FLOAT) == &vck);
assert(GetMaster(&kbd, KEYBOARD_OR_FLOAT) == &vck);
assert(GetMaster(&floating, KEYBOARD_OR_FLOAT) == &floating);
assert(GetMaster(&floating, POINTER_OR_FLOAT) == &floating);
}
static void
input_option_test(void)
{
InputOption *list = NULL;
InputOption *opt;
const char *val;
printf("Testing input_option list interface\n");
list = input_option_new(list, "key", "value");
assert(list);
opt = input_option_find(list, "key");
val = input_option_get_value(opt);
assert(strcmp(val, "value") == 0);
list = input_option_new(list, "2", "v2");
opt = input_option_find(list, "key");
val = input_option_get_value(opt);
assert(strcmp(val, "value") == 0);
opt = input_option_find(list, "2");
val = input_option_get_value(opt);
assert(strcmp(val, "v2") == 0);
list = input_option_new(list, "3", "v3");
/* search, delete */
opt = input_option_find(list, "key");
val = input_option_get_value(opt);
assert(strcmp(val, "value") == 0);
list = input_option_free_element(list, "key");
opt = input_option_find(list, "key");
assert(opt == NULL);
opt = input_option_find(list, "2");
val = input_option_get_value(opt);
assert(strcmp(val, "v2") == 0);
list = input_option_free_element(list, "2");
opt = input_option_find(list, "2");
assert(opt == NULL);
opt = input_option_find(list, "3");
val = input_option_get_value(opt);
assert(strcmp(val, "v3") == 0);
list = input_option_free_element(list, "3");
opt = input_option_find(list, "3");
assert(opt == NULL);
/* list deletion */
list = input_option_new(list, "1", "v3");
list = input_option_new(list, "2", "v3");
list = input_option_new(list, "3", "v3");
input_option_free_list(&list);
assert(list == NULL);
list = input_option_new(list, "1", "v1");
list = input_option_new(list, "2", "v2");
list = input_option_new(list, "3", "v3");
/* value replacement */
opt = input_option_find(list, "2");
val = input_option_get_value(opt);
assert(strcmp(val, "v2") == 0);
input_option_set_value(opt, "foo");
val = input_option_get_value(opt);
assert(strcmp(val, "foo") == 0);
opt = input_option_find(list, "2");
val = input_option_get_value(opt);
assert(strcmp(val, "foo") == 0);
/* key replacement */
input_option_set_key(opt, "bar");
val = input_option_get_key(opt);
assert(strcmp(val, "bar") == 0);
opt = input_option_find(list, "bar");
val = input_option_get_value(opt);
assert(strcmp(val, "foo") == 0);
/* value replacement in input_option_new */
list = input_option_new(list, "bar", "foobar");
opt = input_option_find(list, "bar");
val = input_option_get_value(opt);
assert(strcmp(val, "foobar") == 0);
input_option_free_list(&list);
assert(list == NULL);
}
static void
_test_double_fp16_values(double orig_d)
{
FP1616 first_fp16, final_fp16;
double final_d;
if (orig_d > 0x7FFF) {
printf("Test out of range\n");
assert(0);
}
first_fp16 = double_to_fp1616(orig_d);
final_d = fp1616_to_double(first_fp16);
final_fp16 = double_to_fp1616(final_d);
/* {
* char first_fp16_s[64];
* char final_fp16_s[64];
* snprintf(first_fp16_s, sizeof(first_fp16_s), "%d + %u * 2^-16", (first_fp16 & 0xffff0000) >> 16, first_fp16 & 0xffff);
* snprintf(final_fp16_s, sizeof(final_fp16_s), "%d + %u * 2^-16", (final_fp16 & 0xffff0000) >> 16, final_fp16 & 0xffff);
*
* printf("FP16: original double: %f first fp16: %s, re-encoded double: %f, final fp16: %s\n", orig_d, first_fp16_s, final_d, final_fp16_s);
* }
*/
/* since we lose precision, we only do rough range testing */
assert(final_d > orig_d - 0.1);
assert(final_d < orig_d + 0.1);
assert(memcmp(&first_fp16, &final_fp16, sizeof(FP1616)) == 0);
if (orig_d > 0)
_test_double_fp16_values(-orig_d);
}
static void
_test_double_fp32_values(double orig_d)
{
FP3232 first_fp32, final_fp32;
double final_d;
if (orig_d > 0x7FFFFFFF) {
printf("Test out of range\n");
assert(0);
}
first_fp32 = double_to_fp3232(orig_d);
final_d = fp3232_to_double(first_fp32);
final_fp32 = double_to_fp3232(final_d);
/* {
* char first_fp32_s[64];
* char final_fp32_s[64];
* snprintf(first_fp32_s, sizeof(first_fp32_s), "%d + %u * 2^-32", first_fp32.integral, first_fp32.frac);
* snprintf(final_fp32_s, sizeof(final_fp32_s), "%d + %u * 2^-32", first_fp32.integral, final_fp32.frac);
*
* printf("FP32: original double: %f first fp32: %s, re-encoded double: %f, final fp32: %s\n", orig_d, first_fp32_s, final_d, final_fp32_s);
* }
*/
/* since we lose precision, we only do rough range testing */
assert(final_d > orig_d - 0.1);
assert(final_d < orig_d + 0.1);
assert(memcmp(&first_fp32, &final_fp32, sizeof(FP3232)) == 0);
if (orig_d > 0)
_test_double_fp32_values(-orig_d);
}
static void
dix_double_fp_conversion(void)
{
uint32_t i;
printf("Testing double to FP1616/FP3232 conversions\n");
_test_double_fp16_values(0);
for (i = 1; i < 0x7FFF; i <<= 1) {
double val;
val = i;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
/* and some pseudo-random floating points */
val = i - 0.00382;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.00382;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.05234;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.12342;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.27583;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.50535;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.72342;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
val = i + 0.80408;
_test_double_fp16_values(val);
_test_double_fp32_values(val);
}
for (i = 0x7FFFF; i < 0x7FFFFFFF; i <<= 1) {
_test_double_fp32_values(i);
/* and a few more random floating points, obtained
* by faceplanting into the numpad repeatedly */
_test_double_fp32_values(i + 0.010177);
_test_double_fp32_values(i + 0.213841);
_test_double_fp32_values(i + 0.348720);
_test_double_fp32_values(i + 0.472020);
_test_double_fp32_values(i + 0.572020);
_test_double_fp32_values(i + 0.892929);
}
}
/* The mieq test verifies that events added to the queue come out in the same
* order that they went in.
*/
static uint32_t mieq_test_event_last_processed;
static void
mieq_test_event_handler(int screenNum, InternalEvent *ie, DeviceIntPtr dev)
{
RawDeviceEvent *e = (RawDeviceEvent *) ie;
assert(e->type == ET_RawMotion);
assert(e->flags > mieq_test_event_last_processed);
mieq_test_event_last_processed = e->flags;
}
static void
_mieq_test_generate_events(uint32_t start, uint32_t count)
{
count += start;
while (start < count) {
RawDeviceEvent e = { 0 };
e.header = ET_Internal;
e.type = ET_RawMotion;
e.length = sizeof(e);
e.time = GetTimeInMillis();
e.flags = start;
mieqEnqueue(NULL, (InternalEvent *) &e);
start++;
}
}
#define mieq_test_generate_events(c) { _mieq_test_generate_events(next, c); next += c; }
static void
mieq_test(void)
{
uint32_t next = 1;
mieq_test_event_last_processed = 0;
mieqInit();
mieqSetHandler(ET_RawMotion, mieq_test_event_handler);
/* Enough to fit the buffer but trigger a grow */
mieq_test_generate_events(180);
/* We should resize to 512 now */
mieqProcessInputEvents();
/* Some should now get dropped */
mieq_test_generate_events(500);
/* Tell us how many got dropped, 1024 now */
mieqProcessInputEvents();
/* Now make it 2048 */
mieq_test_generate_events(900);
mieqProcessInputEvents();
/* Now make it 4096 (max) */
mieq_test_generate_events(1950);
mieqProcessInputEvents();
/* Now overflow one last time with the maximal queue and reach the verbosity limit */
mieq_test_generate_events(10000);
mieqProcessInputEvents();
mieqFini();
}
/* Simple check that we're replaying events in-order */
static void
process_input_proc(InternalEvent *ev, DeviceIntPtr device)
{
static int last_evtype = -1;
if (ev->any.header == 0xac)
last_evtype = -1;
assert(ev->any.type == ++last_evtype);
}
static void
dix_enqueue_events(void)
{
#define NEVENTS 5
DeviceIntRec dev;
InternalEvent ev[NEVENTS];
SpriteInfoRec spriteInfo;
SpriteRec sprite;
QdEventPtr qe;
int i;
memset(&dev, 0, sizeof(dev));
dev.public.processInputProc = process_input_proc;
memset(&spriteInfo, 0, sizeof(spriteInfo));
memset(&sprite, 0, sizeof(sprite));
dev.spriteInfo = &spriteInfo;
spriteInfo.sprite = &sprite;
InitEvents();
assert(xorg_list_is_empty(&syncEvents.pending));
/* this way PlayReleasedEvents really runs through all events in the
* queue */
inputInfo.devices = &dev;
/* to reset process_input_proc */
ev[0].any.header = 0xac;
for (i = 0; i < NEVENTS; i++) {
ev[i].any.length = sizeof(*ev);
ev[i].any.type = i;
EnqueueEvent(&ev[i], &dev);
assert(!xorg_list_is_empty(&syncEvents.pending));
qe = xorg_list_last_entry(&syncEvents.pending, QdEventRec, next);
assert(memcmp(qe->event, &ev[i], ev[i].any.length) == 0);
qe = xorg_list_first_entry(&syncEvents.pending, QdEventRec, next);
assert(memcmp(qe->event, &ev[0], ev[i].any.length) == 0);
}
/* calls process_input_proc */
dev.deviceGrab.sync.frozen = 1;
PlayReleasedEvents();
assert(!xorg_list_is_empty(&syncEvents.pending));
dev.deviceGrab.sync.frozen = 0;
PlayReleasedEvents();
assert(xorg_list_is_empty(&syncEvents.pending));
inputInfo.devices = NULL;
}
int
main(int argc, char **argv)
{
dix_enqueue_events();
dix_double_fp_conversion();
dix_input_valuator_masks();
dix_input_attributes();
dix_init_valuators();
dix_event_to_core_conversion();
dix_event_to_xi1_conversion();
dix_check_grab_values();
xi2_struct_sizes();
dix_grab_matching();
dix_valuator_mode();
include_byte_padding_macros();
include_bit_test_macros();
xi_unregister_handlers();
dix_valuator_alloc();
dix_get_master();
input_option_test();
mieq_test();
return 0;
}