102 lines
2.3 KiB
Plaintext
102 lines
2.3 KiB
Plaintext
'\" e
|
|
'\"! eqn | mmdoc
|
|
'\"macro stdmacro
|
|
.ds Vn Version 1.2
|
|
.ds Dt 6 March 1997
|
|
.ds Re Release 1.2.0
|
|
.ds Dp May 02 11:53
|
|
.ds Dm 37 lookat.gl
|
|
.ds Xs 1014 4 lookat.gl
|
|
.TH GLULOOKAT 3G
|
|
.SH NAME
|
|
.B "gluLookAt
|
|
\- define a viewing transformation
|
|
|
|
.SH C SPECIFICATION
|
|
void \f3gluLookAt\fP(
|
|
GLdouble \fIeyeX\fP,
|
|
.nf
|
|
.ta \w'\f3void \fPgluLookAt( 'u
|
|
GLdouble \fIeyeY\fP,
|
|
GLdouble \fIeyeZ\fP,
|
|
GLdouble \fIcenterX\fP,
|
|
GLdouble \fIcenterY\fP,
|
|
GLdouble \fIcenterZ\fP,
|
|
GLdouble \fIupX\fP,
|
|
GLdouble \fIupY\fP,
|
|
GLdouble \fIupZ\fP )
|
|
.fi
|
|
|
|
.EQ
|
|
delim $$
|
|
.EN
|
|
.SH PARAMETERS
|
|
.TP \w'\f2eyeX\fP\ \f2eyeY\fP\ \f2eyeZ\fP\ \ 'u
|
|
\f2eyeX\fP, \f2eyeY\fP, \f2eyeZ\fP
|
|
Specifies the position of the eye point.
|
|
.TP
|
|
\f2centerX\fP, \f2centerY\fP, \f2centerZ\fP
|
|
Specifies the position of the reference point.
|
|
.TP
|
|
\f2upX\fP, \f2upY\fP, \f2upZ\fP
|
|
Specifies the direction of the \f2up\fP vector.
|
|
.SH DESCRIPTION
|
|
\%\f3gluLookAt\fP creates a viewing matrix derived from an eye point, a reference
|
|
point indicating the center of the scene, and an \f2UP\fP vector.
|
|
.P
|
|
The matrix
|
|
maps the reference point to the negative \f2z\fP axis and the
|
|
eye point to the origin.
|
|
When a typical projection matrix is used,
|
|
the center of the scene therefore maps to the center of the viewport.
|
|
Similarly, the direction described by the \f2UP\fP
|
|
vector projected onto the viewing plane is mapped to the positive \f2y\fP
|
|
axis so that it points upward in the viewport.
|
|
The \f2UP\fP vector must not be parallel to the line of sight from the
|
|
eye point to the reference point.
|
|
.P
|
|
Let
|
|
.sp
|
|
.EQ
|
|
F ~=~ left ( down 20 { ~ matrix {
|
|
ccol {"centerX" above "centerY" above "centerZ"}
|
|
ccol { ~-~ above ~-~ above ~-~}
|
|
ccol {"eyeX" above "eyeY" above "eyeZ"}
|
|
} } ~~ right )
|
|
|
|
.EN
|
|
|
|
.sp
|
|
Let \f2UP\fP be the vector $("upX", "upY", "upZ")$.
|
|
.P
|
|
Then normalize as follows:
|
|
.EQ
|
|
f ~=~ F over {|| F ||}
|
|
.EN
|
|
.P
|
|
.EQ
|
|
UP sup prime ~=~ UP over {|| UP ||}
|
|
.EN
|
|
.sp
|
|
.P
|
|
Finally, let $s ~=~ f ~times~ UP sup prime$, and $u ~=~ s ~times~ f$.
|
|
.P
|
|
.sp
|
|
M is then constructed as follows:
|
|
.EQ
|
|
M ~=~ left ( matrix {
|
|
ccol { ~s[0] above ~u[0] above -f[0] above 0 }
|
|
ccol { ~s[1] above ~u[1] above -f[1] above 0 }
|
|
ccol { ~s[2] above ~u[2] above -f[2] above 0 }
|
|
ccol { 0 above 0 above 0 above 1 }
|
|
} ~~right )
|
|
.EN
|
|
.P
|
|
and \%\f3gluLookAt\fP is equivalent to
|
|
.Ex
|
|
glMultMatrixf(M);
|
|
glTranslated (-eyex, -eyey, -eyez);
|
|
.Ee
|
|
.SH SEE ALSO
|
|
\f3glFrustum(3G)\fP, \%\f3gluPerspective(3G)\fP
|