102 lines
2.4 KiB
Plaintext
102 lines
2.4 KiB
Plaintext
'\" e
|
|
'\"! eqn | mmdoc
|
|
'\"macro stdmacro
|
|
.ds Vn Version 1.2
|
|
.ds Dt 24 September 1999
|
|
.ds Re Release 1.2.1
|
|
.ds Dp Jan 14 18:30
|
|
.ds Dm 01 evalpoint
|
|
.ds Xs 57169 5 evalpoint.gl
|
|
.TH GLEVALPOINT 3G
|
|
.SH NAME
|
|
.B "glEvalPoint1, glEvalPoint2
|
|
\- generate and evaluate a single point in a mesh
|
|
|
|
.SH C SPECIFICATION
|
|
void \f3glEvalPoint1\fP(
|
|
GLint \fIi\fP )
|
|
.nf
|
|
.fi
|
|
void \f3glEvalPoint2\fP(
|
|
GLint \fIi\fP,
|
|
.nf
|
|
.ta \w'\f3void \fPglEvalPoint2( 'u
|
|
GLint \fIj\fP )
|
|
.fi
|
|
|
|
.EQ
|
|
delim $$
|
|
.EN
|
|
.SH PARAMETERS
|
|
.TP \w'\f2i\fP\ \ 'u
|
|
\f2i\fP
|
|
Specifies the integer value for grid domain variable $i$.
|
|
.TP
|
|
\f2j\fP
|
|
Specifies the integer value for grid domain variable $j$
|
|
(\%\f3glEvalPoint2\fP only).
|
|
.SH DESCRIPTION
|
|
\%\f3glMapGrid\fP and \%\f3glEvalMesh\fP are used in tandem to efficiently
|
|
generate and evaluate a series of evenly spaced map domain values.
|
|
\%\f3glEvalPoint\fP can be used to evaluate a single grid point in the same gridspace
|
|
that is traversed by \%\f3glEvalMesh\fP.
|
|
Calling \%\f3glEvalPoint1\fP is equivalent to calling
|
|
.nf
|
|
.IP
|
|
\f7
|
|
glEvalCoord1( i$^cdot^DELTA u ~+~ u sub 1$ );
|
|
\fP
|
|
.RE
|
|
.fi
|
|
where
|
|
.sp
|
|
.in
|
|
$DELTA u ~=~ ( u sub 2 - u sub 1 ) ^/^ n$
|
|
.in 0
|
|
.sp
|
|
.P
|
|
and $n$, $u sub 1$, and $u sub 2$
|
|
are the arguments to the most recent \%\f3glMapGrid1\fP command.
|
|
The one absolute numeric requirement is that if $i~=~n$,
|
|
then the value computed from
|
|
$i ^cdot^ DELTA u ~+~ u sub 1$ is exactly $u sub 2$.
|
|
.P
|
|
In the two-dimensional case, \%\f3glEvalPoint2\fP, let
|
|
.nf
|
|
.IP
|
|
$DELTA u ~=~ mark ( u sub 2 - u sub 1 ) ^/^ n$
|
|
.sp
|
|
$DELTA v ~=~ mark ( v sub 2 - v sub 1 ) ^/^ m,$
|
|
.RE
|
|
.fi
|
|
.P
|
|
where $n$, $u sub 1$, $u sub 2$, $m$, $v sub 1$, and $v sub 2$
|
|
are the arguments to the most recent \%\f3glMapGrid2\fP command.
|
|
Then the \%\f3glEvalPoint2\fP command is equivalent to calling
|
|
.nf
|
|
.IP
|
|
\f7
|
|
glEvalCoord2( i$^cdot^DELTA u ~+~ u sub 1$, j$^cdot^DELTA v ~+~ v sub 1$ );
|
|
\fP
|
|
.RE
|
|
.fi
|
|
The only absolute numeric requirements are that if $i~=~n$,
|
|
then the value computed from
|
|
$i ^cdot^DELTA u ~+~ u sub 1$ is exactly $u sub 2$,
|
|
and if $j~=~m$, then the value computed from
|
|
$i ^cdot^DELTA v ~+~ v sub 1$ is exactly $v sub 2$.
|
|
.SH ASSOCIATED GETS
|
|
\%\f3glGet\fP with argument \%\f3GL_MAP1_GRID_DOMAIN\fP
|
|
.br
|
|
\%\f3glGet\fP with argument \%\f3GL_MAP2_GRID_DOMAIN\fP
|
|
.br
|
|
\%\f3glGet\fP with argument \%\f3GL_MAP1_GRID_SEGMENTS\fP
|
|
.br
|
|
\%\f3glGet\fP with argument \%\f3GL_MAP2_GRID_SEGMENTS\fP
|
|
.SH SEE ALSO
|
|
\%\f3glEvalCoord(3G)\fP,
|
|
\%\f3glEvalMesh(3G)\fP,
|
|
\%\f3glMap1(3G)\fP,
|
|
\%\f3glMap2(3G)\fP,
|
|
\%\f3glMapGrid(3G)\fP
|