831 lines
22 KiB
C
831 lines
22 KiB
C
/* -*- Mode: C; tab-width: 4 -*- */
|
|
/* apollonian --- Apollonian Circles */
|
|
|
|
#if !defined( lint ) && !defined( SABER )
|
|
static const char sccsid[] = "@(#)apollonian.c 5.02 2001/07/01 xlockmore";
|
|
#endif
|
|
|
|
/*-
|
|
* Copyright (c) 2000, 2001 by Allan R. Wilks <allan@research.att.com>.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for any purpose and without fee is hereby granted,
|
|
* provided that the above copyright notice appear in all copies and that
|
|
* both that copyright notice and this permission notice appear in
|
|
* supporting documentation.
|
|
*
|
|
* This file is provided AS IS with no warranties of any kind. The author
|
|
* shall have no liability with respect to the infringement of copyrights,
|
|
* trade secrets or any patents by this file or any part thereof. In no
|
|
* event will the author be liable for any lost revenue or profits or
|
|
* other special, indirect and consequential damages.
|
|
*
|
|
* radius r = 1 / c (curvature)
|
|
*
|
|
* Descartes Circle Theorem: (a, b, c, d are curvatures of tangential circles)
|
|
* Let a, b, c, d be the curvatures of for mutually (externally) tangent
|
|
* circles in the plane. Then
|
|
* a^2 + b^2 + c^2 + d^2 = (a + b + c + d)^2 / 2
|
|
*
|
|
* Complex Descartes Theorem: If the oriented curvatues and (complex) centers
|
|
* of an oriented Descrates configuration in the plane are a, b, c, d and
|
|
* w, x, y, z respectively, then
|
|
* a^2*w^2 + b^2*x^2 + c^2*y^2 + d^2*z^2 = (aw + bx + cy + dz)^2 / 2
|
|
* In addition these quantities satisfy
|
|
* a^2*w + b^2*x + c^2*y + d^2*z = (aw + bx + cy + dz)(a + b + c + d) / 2
|
|
*
|
|
* Enumerate root integer Descartes quadruples (a,b,c,d) satisfying the
|
|
* Descartes condition:
|
|
* 2(a^2+b^2+c^2+d^2) = (a+b+c+d)^2
|
|
* i.e., quadruples for which no application of the "pollinate" operator
|
|
* z <- 2(a+b+c+d) - 3*z,
|
|
* where z is in {a,b,c,d}, gives a quad of strictly smaller sum. This
|
|
* is equivalent to the condition:
|
|
* sum(a,b,c,d) >= 2*max(a,b,c,d)
|
|
* which, because of the Descartes condition, is equivalent to
|
|
* sum(a^2,b^2,c^2,d^2) >= 2*max(a,b,c,d)^2
|
|
*
|
|
*
|
|
* Todo:
|
|
* Add a small font
|
|
*
|
|
* Revision History:
|
|
* 25-Jun-2001: Converted from C and Postscript code by David Bagley
|
|
* Original code by Allan R. Wilks <allan@research.att.com>.
|
|
*
|
|
* From Circle Math Science News April 21, 2001 VOL. 254-255
|
|
* http://www.sciencenews.org/20010421/toc.asp
|
|
* Apollonian Circle Packings Assorted papers from Ronald L Graham,
|
|
* Jeffrey Lagarias, Colin Mallows, Allan Wilks, Catherine Yan
|
|
* http://front.math.ucdavis.edu/math.NT/0009113
|
|
* http://front.math.ucdavis.edu/math.MG/0101066
|
|
* http://front.math.ucdavis.edu/math.MG/0010298
|
|
* http://front.math.ucdavis.edu/math.MG/0010302
|
|
* http://front.math.ucdavis.edu/math.MG/0010324
|
|
*/
|
|
|
|
#ifdef STANDALONE
|
|
#define MODE_apollonian
|
|
#define PROGCLASS "Apollonian"
|
|
#define HACK_INIT init_apollonian
|
|
#define HACK_DRAW draw_apollonian
|
|
#define apollonian_opts xlockmore_opts
|
|
#define DEFAULTS "*delay: 1000000 \n" \
|
|
"*count: 64 \n" \
|
|
"*cycles: 20 \n" \
|
|
"*ncolors: 64 \n"
|
|
#include "xlockmore.h" /* in xscreensaver distribution */
|
|
#else /* STANDALONE */
|
|
#include "xlock.h" /* in xlockmore distribution */
|
|
#endif /* STANDALONE */
|
|
|
|
#ifdef MODE_apollonian
|
|
|
|
#define DEF_ALTGEOM "True"
|
|
#define DEF_LABEL "True"
|
|
|
|
static Bool altgeom;
|
|
static Bool label;
|
|
|
|
static XrmOptionDescRec opts[] =
|
|
{
|
|
{(char *) "-altgeom", (char *) ".apollonian.altgeom", XrmoptionNoArg, (caddr_t) "on"},
|
|
{(char *) "+altgeom", (char *) ".apollonian.altgeom", XrmoptionNoArg, (caddr_t) "off"},
|
|
{(char *) "-label", (char *) ".apollonian.label", XrmoptionNoArg, (caddr_t) "on"},
|
|
{(char *) "+label", (char *) ".apollonian.label", XrmoptionNoArg, (caddr_t) "off"},
|
|
};
|
|
static argtype vars[] =
|
|
{
|
|
{(void *) & altgeom, (char *) "altgeom", (char *) "AltGeom", (char *) DEF_ALTGEOM, t_Bool},
|
|
{(void *) & label, (char *) "label", (char *) "Label", (char *) DEF_LABEL, t_Bool},
|
|
};
|
|
static OptionStruct desc[] =
|
|
{
|
|
{(char *) "-/+altgeom", (char *) "turn on/off alternate geometries (off euclidean space, on includes spherical and hyperbolic)"},
|
|
{(char *) "-/+label", (char *) "turn on/off alternate space and number labeling"},
|
|
};
|
|
|
|
ModeSpecOpt apollonian_opts =
|
|
{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc};
|
|
|
|
#ifdef DOFONT
|
|
extern XFontStruct *getFont(Display * display);
|
|
#endif
|
|
|
|
#ifdef USE_MODULES
|
|
ModStruct apollonian_description =
|
|
{"apollonian", "init_apollonian", "draw_apollonian", "release_apollonian",
|
|
"init_apollonian", "init_apollonian", (char *) NULL, &apollonian_opts,
|
|
1000000, 64, 20, 1, 64, 1.0, "",
|
|
"Shows Apollonian circles", 0, NULL};
|
|
|
|
#endif
|
|
|
|
typedef struct {
|
|
int a, b, c, d;
|
|
} apollonian_quadruple;
|
|
|
|
typedef struct {
|
|
double e; /* euclidean bend */
|
|
double s; /* spherical bend */
|
|
double h; /* hyperbolic bend */
|
|
double x, y; /* euclidean bend times euclidean position */
|
|
} circle;
|
|
|
|
typedef enum {euclidean = 0, spherical = 1, hyperbolic = 2} Space;
|
|
|
|
static const char * space_string[] = {
|
|
"euclidean",
|
|
"spherical",
|
|
"hyperbolic"
|
|
};
|
|
|
|
/*
|
|
Generate Apollonian packing starting with a quadruple of circles.
|
|
The four input lines each contain the 5-tuple (e,s,h,x,y) representing
|
|
the circle with radius 1/e and center (x/e,y/e). The s and h is propagated
|
|
like e, x and y, but can differ from e so as to represent different
|
|
geometries, spherical and hyperbolic, respectively. The "standard" picture,
|
|
for example (-1, 2, 2, 3), can be labeled for the three geometries.
|
|
Origins of circles z1, z2, z3, z4
|
|
a * z1 = 0
|
|
b * z2 = (a+b)/a
|
|
c * z3 = (q123 + a * i)^2/(a*(a+b)) where q123 = sqrt(a*b+a*c+b*c)
|
|
d * z4 = (q124 + a * i)^2/(a*(a+b)) where q124 = q123 - a - b
|
|
If (e,x,y) represents the Euclidean circle (1/e,x/e,y/e) (so that e is
|
|
the label in the standard picture) then the "spherical label" is
|
|
(e^2+x^2+y^2-1)/(2*e) (an integer!) and the "hyperbolic label", is
|
|
calulated by h + s = e.
|
|
*/
|
|
static circle examples[][4] = {
|
|
{ /* double semi-bounded */
|
|
{ 0, 0, 0, 0, 1},
|
|
{ 0, 0, 0, 0, -1},
|
|
{ 1, 1, 1, -1, 0},
|
|
{ 1, 1, 1, 1, 0}
|
|
},
|
|
#if 0
|
|
{ /* standard */
|
|
{-1, 0, -1, 0, 0},
|
|
{ 2, 1, 1, 1, 0},
|
|
{ 2, 1, 1, -1, 0},
|
|
{ 3, 2, 1, 0, 2}
|
|
},
|
|
{ /* next simplest */
|
|
{-2, -1, -1, 0.0, 0},
|
|
{ 3, 2, 1, 0.5, 0},
|
|
{ 6, 3, 3, -2.0, 0},
|
|
{ 7, 4, 3, -1.5, 2}
|
|
},
|
|
{ /* */
|
|
{-3, -2, -1, 0.0, 0},
|
|
{ 4, 3, 1, 1.0 / 3.0, 0},
|
|
{12, 7, 5, -3.0, 0},
|
|
{13, 8, 5, -8.0 / 3.0, 2}
|
|
},
|
|
{ /* Mickey */
|
|
{-3, -2, -1, 0.0, 0},
|
|
{ 5, 4, 1, 2.0 / 3.0, 0},
|
|
{ 8, 5, 3, -4.0 / 3.0, -1},
|
|
{ 8, 5, 3, -4.0 / 3.0, 1}
|
|
},
|
|
{ /* */
|
|
{-4, -3, -1, 0.00, 0},
|
|
{ 5, 4, 1, 0.25, 0},
|
|
{20, 13, 7, -4.00, 0},
|
|
{21, 14, 7, -3.75, 2}
|
|
},
|
|
{ /* Mickey2 */
|
|
{-4, -2, -2, 0.0, 0},
|
|
{ 8, 4, 4, 1.0, 0},
|
|
{ 9, 5, 4, -0.75, -1},
|
|
{ 9, 5, 4, -0.75, 1}
|
|
},
|
|
{ /* Mickey3 */
|
|
{-5, -4, -1, 0.0, 0},
|
|
{ 7, 6, 1, 0.4, 0},
|
|
{18, 13, 5, -2.4, -1},
|
|
{18, 13, 5, -2.4, 1}
|
|
},
|
|
{ /* */
|
|
{-6, -5, -1, 0.0, 0},
|
|
{ 7, 6, 1, 1.0 / 6.0, 0},
|
|
{42, 31, 11, -6.0, 0},
|
|
{43, 32, 11, -35.0 / 6.0, 2}
|
|
},
|
|
{ /* */
|
|
{-6, -3, -3, 0.0, 0},
|
|
{10, 5, 5, 2.0 / 3.0, 0},
|
|
{15, 8, 7, -1.5, 0},
|
|
{19, 10, 9, -5.0 / 6.0, 2}
|
|
},
|
|
{ /* asymmetric */
|
|
{-6, -5, -1, 0.0, 0.0},
|
|
{11, 10, 1, 5.0 / 6.0, 0.0},
|
|
{14, 11, 3, -16.0 / 15.0, -0.8},
|
|
{15, 12, 3, -0.9, 1.2}
|
|
},
|
|
#endif
|
|
/* Non integer stuff */
|
|
#define DELTA 2.154700538 /* ((3+2*sqrt(3))/3) */
|
|
{ /* 3 fold symmetric bounded (x, y calculated later) */
|
|
{ -1, -1, -1, 0.0, 0.0},
|
|
{DELTA, DELTA, DELTA, 1.0, 0.0},
|
|
{DELTA, DELTA, DELTA, 1.0, -1.0},
|
|
{DELTA, DELTA, DELTA, -1.0, 1.0}
|
|
},
|
|
{ /* semi-bounded (x, y calculated later) */
|
|
#define ALPHA 2.618033989 /* ((3+sqrt(5))/2) */
|
|
{ 1.0, 1.0, 1.0, 0, 0},
|
|
{ 0.0, 0.0, 0.0, 0, -1},
|
|
{1.0/(ALPHA*ALPHA), 1.0/(ALPHA*ALPHA), 1.0/(ALPHA*ALPHA), -1, 0},
|
|
{ 1.0/ALPHA, 1.0/ALPHA, 1.0/ALPHA, -1, 0}
|
|
},
|
|
{ /* unbounded (x, y calculated later) */
|
|
/* #define PHI 1.618033989 *//* ((1+sqrt(5))/2) */
|
|
#define BETA 2.890053638 /* (PHI+sqrt(PHI)) */
|
|
{ 1.0, 1.0, 1.0, 0, 0},
|
|
{1.0/(BETA*BETA*BETA), 1.0/(BETA*BETA*BETA), 1.0/(BETA*BETA*BETA), 1, 0},
|
|
{ 1.0/(BETA*BETA), 1.0/(BETA*BETA), 1.0/(BETA*BETA), 1, 0},
|
|
{ 1.0/BETA, 1.0/BETA, 1.0/BETA, 1, 0}
|
|
}
|
|
};
|
|
|
|
#define PREDEF_CIRCLE_GAMES (sizeof (examples) / (4 * sizeof (circle)))
|
|
|
|
#if 0
|
|
Euclidean
|
|
0, 0, 1, 1
|
|
-1, 2, 2, 3
|
|
-2, 3, 6, 7
|
|
-3, 5, 8, 8
|
|
-4, 8, 9, 9
|
|
-3, 4, 12, 13
|
|
-6, 11, 14, 15
|
|
-5, 7, 18, 18
|
|
-6, 10, 15, 19
|
|
-7, 12, 17, 20
|
|
-4, 5, 20, 21
|
|
-9, 18, 19, 22
|
|
-8, 13, 21, 24
|
|
Spherical
|
|
0, 1, 1, 2
|
|
-1, 2, 3, 4
|
|
-2, 4, 5, 5
|
|
-2, 3, 7, 8
|
|
Hyperbolic
|
|
-1, 1, 1, 1
|
|
0, 0, 1, 3
|
|
-2, 3, 5, 6
|
|
-3, 6, 6, 7
|
|
#endif
|
|
|
|
typedef struct {
|
|
int size;
|
|
XPoint offset;
|
|
Space geometry;
|
|
circle c1, c2, c3, c4;
|
|
int color_offset;
|
|
int count;
|
|
Bool label, altgeom;
|
|
apollonian_quadruple *quad;
|
|
#ifdef DOFONT
|
|
XFontStruct *font;
|
|
#endif
|
|
int time;
|
|
int game;
|
|
} apollonianstruct;
|
|
|
|
static apollonianstruct *apollonians = (apollonianstruct *) NULL;
|
|
|
|
#ifdef WIN32
|
|
#define FONT_HEIGHT 15
|
|
#define FONT_WIDTH 10
|
|
#define FONT_LENGTH 16
|
|
#else
|
|
#define FONT_HEIGHT 19
|
|
#define FONT_WIDTH 15
|
|
#define FONT_LENGTH 20
|
|
#endif
|
|
#define MAX_CHAR 10
|
|
#define K 2.15470053837925152902 /* 1+2/sqrt(3) */
|
|
#define MAXBEND 100 /* Do not want configurable by user since it will take too
|
|
much time if increased. */
|
|
|
|
static int
|
|
gcd(int a, int b)
|
|
{
|
|
int r;
|
|
|
|
while (b) {
|
|
r = a % b;
|
|
a = b;
|
|
b = r;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static int
|
|
isqrt(int n)
|
|
{
|
|
int y;
|
|
|
|
if (n < 0)
|
|
return -1;
|
|
y = (int) (sqrt((double) n) + 0.5);
|
|
return ((n == y*y) ? y : -1);
|
|
}
|
|
|
|
static void
|
|
dquad(int n, apollonian_quadruple *quad)
|
|
{
|
|
int a, b, c, d;
|
|
int counter = 0, B, C;
|
|
|
|
for (a = 0; a < MAXBEND; a++) {
|
|
B = (int) (K * a);
|
|
for (b = a + 1; b <= B; b++) {
|
|
C = (int) (((a + b) * (a + b)) / (4.0 * (b - a)));
|
|
for (c = b; c <= C; c++) {
|
|
d = isqrt(b*c-a*(b+c));
|
|
if (d >= 0 && (gcd(a,gcd(b,c)) <= 1)) {
|
|
quad[counter].a = -a;
|
|
quad[counter].b = b;
|
|
quad[counter].c = c;
|
|
quad[counter].d = -a+b+c-2*d;
|
|
if (++counter >= n) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
(void) printf("found only %d below maximum bend of %d\n",
|
|
counter, MAXBEND);
|
|
for (; counter < n; counter++) {
|
|
quad[counter].a = -1;
|
|
quad[counter].b = 2;
|
|
quad[counter].c = 2;
|
|
quad[counter].d = 3;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Given a Descartes quadruple of bends (a,b,c,d), with a<0, find a
|
|
* quadruple of circles, represented by (bend,bend*x,bend*y), such
|
|
* that the circles have the given bends and the bends times the
|
|
* centers are integers.
|
|
*
|
|
* This just performs an exaustive search, assuming that the outer
|
|
* circle has center in the unit square.
|
|
*
|
|
* It is always sufficient to look in {(x,y):0<=y<=x<=1/2} for the
|
|
* center of the outer circle, but this may not lead to a packing
|
|
* that can be labelled with integer spherical and hyperbolic labels.
|
|
* To effect the smaller search, replace FOR(a) with
|
|
*
|
|
* for (pa = ea/2; pa <= 0; pa++) for (qa = pa; qa <= 0; qa++)
|
|
*/
|
|
|
|
#define For(v,l,h) for (v = l; v <= h; v++)
|
|
#define FOR(z) For(p##z,lop##z,hip##z) For(q##z,loq##z,hiq##z)
|
|
#define H(z) ((e##z*e##z+p##z*p##z+q##z*q##z)%2)
|
|
#define UNIT(z) ((abs(e##z)-1)*(abs(e##z)-1) >= p##z*p##z+q##z*q##z)
|
|
#define T(z,w) is_tangent(e##z,p##z,q##z,e##w,p##w,q##w)
|
|
#define LO(r,z) lo##r##z = iceil(e##z*(r##a+1),ea)-1
|
|
#define HI(r,z) hi##r##z = iflor(e##z*(r##a-1),ea)-1
|
|
#define B(z) LO(p,z); HI(p,z); LO(q,z); HI(q,z)
|
|
|
|
static int
|
|
is_quad(int a, int b, int c, int d)
|
|
{
|
|
int s;
|
|
|
|
s = a+b+c+d;
|
|
return 2*(a*a+b*b+c*c+d*d) == s*s;
|
|
}
|
|
|
|
static Bool
|
|
is_tangent(int e1, int p1, int q1, int e2, int p2, int q2)
|
|
{
|
|
int dx, dy, s;
|
|
|
|
dx = p1*e2 - p2*e1;
|
|
dy = q1*e2 - q2*e1;
|
|
s = e1 + e2;
|
|
return dx*dx + dy*dy == s*s;
|
|
}
|
|
|
|
static int
|
|
iflor(int a, int b)
|
|
{
|
|
int q;
|
|
|
|
if (b == 0) {
|
|
(void) printf("iflor: b = 0\n");
|
|
return 0;
|
|
}
|
|
if (a%b == 0)
|
|
return a/b;
|
|
q = abs(a)/abs(b);
|
|
return ((a<0)^(b<0)) ? -q-1 : q;
|
|
}
|
|
|
|
static int
|
|
iceil(int a, int b)
|
|
{
|
|
int q;
|
|
|
|
if (b == 0) {
|
|
(void) printf("iceil: b = 0\n");
|
|
return 0;
|
|
}
|
|
if (a%b == 0)
|
|
return a/b;
|
|
q = abs(a)/abs(b);
|
|
return ((a<0)^(b<0)) ? -q : 1+q;
|
|
}
|
|
|
|
static double
|
|
geom(Space geometry, int e, int p, int q)
|
|
{
|
|
int g = (geometry == spherical) ? -1 :
|
|
(geometry == hyperbolic) ? 1 : 0;
|
|
|
|
if (g)
|
|
return (e*e + (1.0 - p*p - q*q) * g) / (2.0*e);
|
|
(void) printf("geom: g = 0\n");
|
|
return ((double) e);
|
|
}
|
|
|
|
static void
|
|
cquad(circle *c1, circle *c2, circle *c3, circle *c4)
|
|
{
|
|
int ea, eb, ec, ed;
|
|
int pa, pb, pc, pd;
|
|
int qa, qb, qc, qd;
|
|
int lopa, lopb, lopc, lopd;
|
|
int hipa, hipb, hipc, hipd;
|
|
int loqa, loqb, loqc, loqd;
|
|
int hiqa, hiqb, hiqc, hiqd;
|
|
|
|
ea = (int) c1->e;
|
|
eb = (int) c2->e;
|
|
ec = (int) c3->e;
|
|
ed = (int) c4->e;
|
|
if (ea >= 0)
|
|
(void) printf("ea = %d\n", ea);
|
|
if (!is_quad(ea,eb,ec,ed))
|
|
(void) printf("Error not quad %d %d %d %d\n", ea, eb, ec, ed);
|
|
lopa = loqa = ea;
|
|
hipa = hiqa = 0;
|
|
FOR(a) {
|
|
B(b); B(c); B(d);
|
|
if (H(a) && UNIT(a)) FOR(b) {
|
|
if (H(b) && T(a,b)) FOR(c) {
|
|
if (H(c) && T(a,c) && T(b,c)) FOR(d) {
|
|
if (H(d) && T(a,d) && T(b,d) && T(c,d)) {
|
|
c1->s = geom(spherical, ea, pa, qa);
|
|
c1->h = geom(hyperbolic, ea, pa, qa);
|
|
c2->s = geom(spherical, eb, pb, qb);
|
|
c2->h = geom(hyperbolic, eb, pb, qb);
|
|
c3->s = geom(spherical, ec, pc, qc);
|
|
c3->h = geom(hyperbolic, ec, pc, qc);
|
|
c4->s = geom(spherical, ed, pd, qd);
|
|
c4->h = geom(hyperbolic, ed, pd, qd);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
p(ModeInfo *mi, circle c)
|
|
{
|
|
apollonianstruct *cp = &apollonians[MI_SCREEN(mi)];
|
|
char string[10];
|
|
double g, e;
|
|
int g_width;
|
|
|
|
#ifdef DEBUG
|
|
(void) printf("c.e=%g c.s=%g c.h=%g c.x=%g c.y=%g\n",
|
|
c.e, c.s, c.h, c.x, c.y);
|
|
#endif
|
|
g = (cp->geometry == spherical) ? c.s : (cp->geometry == hyperbolic) ?
|
|
c.h : c.e;
|
|
if (c.e < 0.0) {
|
|
if (g < 0.0)
|
|
g = -g;
|
|
if (MI_NPIXELS(mi) <= 2)
|
|
XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
|
|
MI_WHITE_PIXEL(mi));
|
|
else
|
|
XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
|
|
MI_PIXEL(mi, ((int) ((g + cp->color_offset) *
|
|
g)) % MI_NPIXELS(mi)));
|
|
XDrawArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
((int) (cp->size * (-cp->c1.e) * (c.x - 1.0) /
|
|
(-2.0 * c.e) + cp->size / 2.0 + cp->offset.x)),
|
|
((int) (cp->size * (-cp->c1.e) * (c.y - 1.0) /
|
|
(-2.0 * c.e) + cp->size / 2.0 + cp->offset.y)),
|
|
(int) (cp->c1.e * cp->size / c.e),
|
|
(int) (cp->c1.e * cp->size / c.e), 0, 23040);
|
|
if (!cp->label) {
|
|
#ifdef DEBUG
|
|
(void) printf("%g\n", -g);
|
|
#endif
|
|
return;
|
|
}
|
|
(void) sprintf(string, "%g", (g == 0.0) ? 0 : -g);
|
|
if (cp->size >= 10 * FONT_WIDTH) {
|
|
/* hard code these to corners */
|
|
XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
((int) (cp->size * c.x / (2.0 * c.e))) + cp->offset.x,
|
|
((int) (cp->size * c.y / (2.0 * c.e))) + FONT_HEIGHT,
|
|
string, (g == 0.0) ? 1 : ((g < 10.0) ? 2 :
|
|
((g < 100.0) ? 3 : 4)));
|
|
}
|
|
if (cp->altgeom && MI_HEIGHT(mi) >= 30 * FONT_WIDTH) {
|
|
XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
((int) (cp->size * c.x / (2.0 * c.e) + cp->offset.x)),
|
|
((int) (cp->size * c.y / (2.0 * c.e) + MI_HEIGHT(mi) -
|
|
FONT_HEIGHT / 2)), (char *) space_string[(int) cp->geometry],
|
|
strlen(space_string[(int) cp->geometry]));
|
|
}
|
|
return;
|
|
}
|
|
if (MI_NPIXELS(mi) <= 2)
|
|
XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_WHITE_PIXEL(mi));
|
|
else
|
|
XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
|
|
MI_PIXEL(mi, ((int) ((g + cp->color_offset) * g)) %
|
|
MI_NPIXELS(mi)));
|
|
if (c.e == 0.0) {
|
|
if (c.x == 0.0 && c.y != 0.0) {
|
|
XDrawLine(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
0, (int) ((c.y + 1.0) * cp->size / 2.0 + cp->offset.y),
|
|
MI_WIDTH(mi),
|
|
(int) ((c.y + 1.0) * cp->size / 2.0 + cp->offset.y));
|
|
} else if (c.y == 0.0 && c.x != 0.0) {
|
|
XDrawLine(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
(int) ((c.x + 1.0) * cp->size / 2.0 + cp->offset.x), 0,
|
|
(int) ((c.x + 1.0) * cp->size / 2.0 + cp->offset.x),
|
|
MI_HEIGHT(mi));
|
|
}
|
|
return;
|
|
}
|
|
e = (cp->c1.e >= 0.0) ? 1.0 : -cp->c1.e;
|
|
XFillArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
((int) (cp->size * e * (c.x - 1.0) / (2.0 * c.e) +
|
|
cp->size / 2.0 + cp->offset.x)),
|
|
((int) (cp->size * e * (c.y - 1.0) / (2.0 * c.e) +
|
|
cp->size / 2.0 + cp->offset.y)),
|
|
(int) (e * cp->size / c.e), (int) (e * cp->size / c.e),
|
|
0, 23040);
|
|
if (!cp->label) {
|
|
#ifdef DEBUG
|
|
(void) printf("%g\n", g);
|
|
#endif
|
|
return;
|
|
}
|
|
if (MI_NPIXELS(mi) <= 2)
|
|
XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_BLACK_PIXEL(mi));
|
|
else
|
|
XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
|
|
MI_PIXEL(mi, ((int) ((g + cp->color_offset) * g) +
|
|
MI_NPIXELS(mi) / 2) % MI_NPIXELS(mi)));
|
|
g_width = (g < 10.0) ? 1: ((g < 100.0) ? 2 : 3);
|
|
if (c.e < e * cp->size / (FONT_LENGTH + 5 * g_width) && g < 1000.0) {
|
|
(void) sprintf(string, "%g", g);
|
|
XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
|
|
((int) (cp->size * e * c.x / (2.0 * c.e) +
|
|
cp->size / 2.0 + cp->offset.x)) -
|
|
g_width * FONT_WIDTH / 2,
|
|
((int) (cp->size * e * c.y / (2.0 * c.e) +
|
|
cp->size / 2.0 + cp->offset.y)) +
|
|
FONT_HEIGHT / 2,
|
|
string, g_width);
|
|
}
|
|
}
|
|
|
|
#define BIG 7
|
|
static void
|
|
f(ModeInfo *mi, circle c1, circle c2, circle c3, circle c4)
|
|
{
|
|
apollonianstruct *cp = &apollonians[MI_SCREEN(mi)];
|
|
int e = (int) ((cp->c1.e >= 0.0) ? 1.0 : -cp->c1.e);
|
|
circle c;
|
|
|
|
c.e = 2*(c1.e+c2.e+c3.e) - c4.e;
|
|
c.s = 2*(c1.s+c2.s+c3.s) - c4.s;
|
|
c.h = 2*(c1.h+c2.h+c3.h) - c4.h;
|
|
c.x = 2*(c1.x+c2.x+c3.x) - c4.x;
|
|
c.y = 2*(c1.y+c2.y+c3.y) - c4.y;
|
|
if (c.e > cp->size * e || c.x / c.e > BIG || c.y / c.e > BIG ||
|
|
c.x / c.e < -BIG || c.y / c.e < -BIG)
|
|
return;
|
|
p(mi, c);
|
|
f(mi, c2, c3, c, c1);
|
|
f(mi, c1, c3, c, c2);
|
|
f(mi, c1, c2, c, c3);
|
|
}
|
|
|
|
static void
|
|
free_apollonian(
|
|
#ifdef DOFONT
|
|
Display *display,
|
|
#endif
|
|
apollonianstruct *cp)
|
|
{
|
|
if (cp->quad != NULL) {
|
|
free(cp->quad);
|
|
cp->quad = (apollonian_quadruple *) NULL;
|
|
}
|
|
#ifdef DOFONT
|
|
if (cp->gc != None) {
|
|
XFreeGC(display, cp->gc);
|
|
cp->gc = None;
|
|
}
|
|
if (cp->font != None) {
|
|
XFreeFont(display, cp->font);
|
|
cp->font = None;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef DEBUG
|
|
static void
|
|
randomize_c(int randomize, circle * c)
|
|
{
|
|
if (randomize / 2) {
|
|
double temp;
|
|
|
|
temp = c->x;
|
|
c->x = c->y;
|
|
c->y = temp;
|
|
}
|
|
if (randomize % 2) {
|
|
c->x = -c->x;
|
|
c->y = -c->y;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
init_apollonian(ModeInfo * mi)
|
|
{
|
|
apollonianstruct *cp;
|
|
int i;
|
|
|
|
if (apollonians == NULL) {
|
|
if ((apollonians = (apollonianstruct *) calloc(MI_NUM_SCREENS(mi),
|
|
sizeof (apollonianstruct))) == NULL)
|
|
return;
|
|
}
|
|
cp = &apollonians[MI_SCREEN(mi)];
|
|
|
|
cp->size = MAX(MIN(MI_WIDTH(mi), MI_HEIGHT(mi)) - 1, 1);
|
|
cp->offset.x = (MI_WIDTH(mi) - cp->size) / 2;
|
|
cp->offset.y = (MI_HEIGHT(mi) - cp->size) / 2;
|
|
cp->color_offset = NRAND(MI_NPIXELS(mi));
|
|
|
|
#ifdef DOFONT
|
|
if (cp->font == None) {
|
|
if ((cp->font = getFont(MI_DISPLAY(mi))) == None)
|
|
return False;
|
|
}
|
|
#endif
|
|
cp->label = label;
|
|
cp->altgeom = cp->label && altgeom;
|
|
|
|
if (cp->quad == NULL) {
|
|
if (MI_COUNT(mi))
|
|
cp->count = ABS(MI_COUNT(mi));
|
|
else
|
|
cp->count = 1;
|
|
if ((cp->quad = (apollonian_quadruple *) malloc(cp->count *
|
|
sizeof (apollonian_quadruple))) == NULL) {
|
|
return;
|
|
}
|
|
dquad(cp->count, cp->quad);
|
|
}
|
|
cp->game = NRAND(PREDEF_CIRCLE_GAMES + cp->count);
|
|
cp->geometry = (Space) ((cp->game && cp->altgeom) ? NRAND(3) : 0);
|
|
|
|
if (cp->game < (int) PREDEF_CIRCLE_GAMES) {
|
|
cp->c1 = examples[cp->game][0];
|
|
cp->c2 = examples[cp->game][1];
|
|
cp->c3 = examples[cp->game][2];
|
|
cp->c4 = examples[cp->game][3];
|
|
/* do not label non int */
|
|
cp->label = cp->label && (cp->c4.e == (int) cp->c4.e);
|
|
} else { /* uses results of dquad, all int */
|
|
i = cp->game - PREDEF_CIRCLE_GAMES;
|
|
cp->c1.e = cp->quad[i].a;
|
|
cp->c2.e = cp->quad[i].b;
|
|
cp->c3.e = cp->quad[i].c;
|
|
cp->c4.e = cp->quad[i].d;
|
|
if (cp->geometry != euclidean)
|
|
cquad(&(cp->c1), &(cp->c2), &(cp->c3), &(cp->c4));
|
|
}
|
|
cp->time = 0;
|
|
MI_CLEARWINDOW(mi);
|
|
if (cp->game != 0) {
|
|
double q123;
|
|
|
|
if (cp->c1.e == 0.0 || cp->c1.e == -cp->c2.e)
|
|
return;
|
|
cp->c1.x = 0.0;
|
|
cp->c1.y = 0.0;
|
|
cp->c2.x = -(cp->c1.e + cp->c2.e) / cp->c1.e;
|
|
cp->c2.y = 0;
|
|
q123 = sqrt(cp->c1.e * cp->c2.e + cp->c1.e * cp->c3.e +
|
|
cp->c2.e * cp->c3.e);
|
|
#ifdef DEBUG
|
|
(void) printf("q123 = %g, ", q123);
|
|
#endif
|
|
cp->c3.x = (cp->c1.e * cp->c1.e - q123 * q123) / (cp->c1.e *
|
|
(cp->c1.e + cp->c2.e));
|
|
cp->c3.y = -2.0 * q123 / (cp->c1.e + cp->c2.e);
|
|
q123 = -cp->c1.e - cp->c2.e + q123;
|
|
cp->c4.x = (cp->c1.e * cp->c1.e - q123 * q123) / (cp->c1.e *
|
|
(cp->c1.e + cp->c2.e));
|
|
cp->c4.y = -2.0 * q123 / (cp->c1.e + cp->c2.e);
|
|
#ifdef DEBUG
|
|
(void) printf("q124 = %g\n", q123);
|
|
(void) printf("%g %g %g %g %g %g %g %g\n",
|
|
cp->c1.x, cp->c1.y, cp->c2.x, cp->c2.y,
|
|
cp->c3.x, cp->c3.y, cp->c4.x, cp->c4.y);
|
|
#endif
|
|
}
|
|
#ifndef DEBUG
|
|
if (LRAND() & 1) {
|
|
cp->c3.y = -cp->c3.y;
|
|
cp->c4.y = -cp->c4.y;
|
|
}
|
|
i = NRAND(4);
|
|
randomize_c(i, &(cp->c1));
|
|
randomize_c(i, &(cp->c2));
|
|
randomize_c(i, &(cp->c3));
|
|
randomize_c(i, &(cp->c4));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
draw_apollonian(ModeInfo * mi)
|
|
{
|
|
apollonianstruct *cp;
|
|
|
|
if (apollonians == NULL)
|
|
return;
|
|
cp = &apollonians[MI_SCREEN(mi)];
|
|
|
|
|
|
MI_IS_DRAWN(mi) = True;
|
|
|
|
if (cp->time < 5) {
|
|
switch (cp->time) {
|
|
case 0:
|
|
p(mi, cp->c1);
|
|
p(mi, cp->c2);
|
|
p(mi, cp->c3);
|
|
p(mi, cp->c4);
|
|
break;
|
|
case 1:
|
|
f(mi, cp->c1, cp->c2, cp->c3, cp->c4);
|
|
break;
|
|
case 2:
|
|
f(mi, cp->c1, cp->c2, cp->c4, cp->c3);
|
|
break;
|
|
case 3:
|
|
f(mi, cp->c1, cp->c3, cp->c4, cp->c2);
|
|
break;
|
|
case 4:
|
|
f(mi, cp->c2, cp->c3, cp->c4, cp->c1);
|
|
}
|
|
}
|
|
if (++cp->time > MI_CYCLES(mi))
|
|
init_apollonian(mi);
|
|
}
|
|
|
|
void
|
|
release_apollonian(ModeInfo * mi)
|
|
{
|
|
if (apollonians != NULL) {
|
|
int screen;
|
|
|
|
for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++)
|
|
free_apollonian(
|
|
#ifdef DOFONT
|
|
MI_DISPLAY(mi),
|
|
#endif
|
|
&apollonians[screen]);
|
|
free(apollonians);
|
|
apollonians = (apollonianstruct *) NULL;
|
|
}
|
|
}
|
|
|
|
#endif /* MODE_apollonian */
|