/* * Copyright © 2000 Keith Packard * Copyright © 2005 Patrick Lam * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of Keith Packard not be used in * advertising or publicity pertaining to distribution of the software without * specific, written prior permission. Keith Packard makes no * representations about the suitability of this software for any purpose. It * is provided "as is" without express or implied warranty. * * KEITH PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL KEITH PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "fcint.h" #include "../fc-arch/fcarch.h" #include #include #include #include #include #include #if defined(HAVE_MMAP) || defined(__CYGWIN__) # include # include #elif defined(_WIN32) # include #endif #ifndef O_BINARY #define O_BINARY 0 #endif struct MD5Context { FcChar32 buf[4]; FcChar32 bits[2]; unsigned char in[64]; }; static void MD5Init(struct MD5Context *ctx); static void MD5Update(struct MD5Context *ctx, unsigned char *buf, unsigned len); static void MD5Final(unsigned char digest[16], struct MD5Context *ctx); static void MD5Transform(FcChar32 buf[4], FcChar32 in[16]); #define CACHEBASE_LEN (1 + 32 + 1 + sizeof (FC_ARCHITECTURE) + sizeof (FC_CACHE_SUFFIX)) static const char bin2hex[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; static FcChar8 * FcDirCacheBasename (const FcChar8 * dir, FcChar8 cache_base[CACHEBASE_LEN]) { unsigned char hash[16]; FcChar8 *hex_hash; int cnt; struct MD5Context ctx; MD5Init (&ctx); MD5Update (&ctx, (unsigned char *)dir, strlen ((char *) dir)); MD5Final (hash, &ctx); cache_base[0] = '/'; hex_hash = cache_base + 1; for (cnt = 0; cnt < 16; ++cnt) { hex_hash[2*cnt ] = bin2hex[hash[cnt] >> 4]; hex_hash[2*cnt+1] = bin2hex[hash[cnt] & 0xf]; } hex_hash[2*cnt] = 0; strcat ((char *) cache_base, "-" FC_ARCHITECTURE FC_CACHE_SUFFIX); return cache_base; } FcBool FcDirCacheUnlink (const FcChar8 *dir, FcConfig *config) { FcChar8 *cache_hashed = NULL; FcChar8 cache_base[CACHEBASE_LEN]; FcStrList *list; FcChar8 *cache_dir; FcDirCacheBasename (dir, cache_base); list = FcStrListCreate (config->cacheDirs); if (!list) return FcFalse; while ((cache_dir = FcStrListNext (list))) { cache_hashed = FcStrPlus (cache_dir, cache_base); if (!cache_hashed) break; (void) unlink ((char *) cache_hashed); } FcStrListDone (list); /* return FcFalse if something went wrong */ if (cache_dir) return FcFalse; return FcTrue; } static int FcDirCacheOpenFile (const FcChar8 *cache_file, struct stat *file_stat) { int fd; fd = open((char *) cache_file, O_RDONLY | O_BINARY); if (fd < 0) return fd; if (fstat (fd, file_stat) < 0) { close (fd); return -1; } return fd; } /* * Look for a cache file for the specified dir. Attempt * to use each one we find, stopping when the callback * indicates success */ static FcBool FcDirCacheProcess (FcConfig *config, const FcChar8 *dir, FcBool (*callback) (int fd, struct stat *stat, void *closure), void *closure, FcChar8 **cache_file_ret) { int fd = -1; FcChar8 cache_base[CACHEBASE_LEN]; FcStrList *list; FcChar8 *cache_dir; struct stat file_stat, dir_stat; FcBool ret = FcFalse; if (stat ((char *) dir, &dir_stat) < 0) return FcFalse; FcDirCacheBasename (dir, cache_base); list = FcStrListCreate (config->cacheDirs); if (!list) return FcFalse; while ((cache_dir = FcStrListNext (list))) { FcChar8 *cache_hashed = FcStrPlus (cache_dir, cache_base); if (!cache_hashed) break; fd = FcDirCacheOpenFile (cache_hashed, &file_stat); if (fd >= 0) { if (dir_stat.st_mtime <= file_stat.st_mtime) { ret = (*callback) (fd, &file_stat, closure); if (ret) { if (cache_file_ret) *cache_file_ret = cache_hashed; else FcStrFree (cache_hashed); close (fd); break; } } close (fd); } FcStrFree (cache_hashed); } FcStrListDone (list); return ret; } #define FC_CACHE_MIN_MMAP 1024 /* * Skip list element, make sure the 'next' pointer is the last thing * in the structure, it will be allocated large enough to hold all * of the necessary pointers */ typedef struct _FcCacheSkip FcCacheSkip; struct _FcCacheSkip { FcCache *cache; int ref; intptr_t size; dev_t cache_dev; ino_t cache_ino; time_t cache_mtime; FcCacheSkip *next[1]; }; /* * The head of the skip list; pointers for every possible level * in the skip list, plus the largest level in the list */ #define FC_CACHE_MAX_LEVEL 16 static FcCacheSkip *fcCacheChains[FC_CACHE_MAX_LEVEL]; static int fcCacheMaxLevel; #if HAVE_RANDOM # define FcRandom() random() #else # if HAVE_LRAND48 # define FcRandom() lrand48() # else # if HAVE_RAND # define FcRandom() rand() # endif # endif #endif /* * Generate a random level number, distributed * so that each level is 1/4 as likely as the one before * * Note that level numbers run 1 <= level <= MAX_LEVEL */ static int random_level (void) { /* tricky bit -- each bit is '1' 75% of the time */ long int bits = FcRandom () | FcRandom (); int level = 0; while (++level < FC_CACHE_MAX_LEVEL) { if (bits & 1) break; bits >>= 1; } return level; } /* * Insert cache into the list */ static FcBool FcCacheInsert (FcCache *cache, struct stat *cache_stat) { FcCacheSkip **update[FC_CACHE_MAX_LEVEL]; FcCacheSkip *s, **next; int i, level; /* * Find links along each chain */ next = fcCacheChains; for (i = fcCacheMaxLevel; --i >= 0; ) { for (; (s = next[i]); next = s->next) if (s->cache > cache) break; update[i] = &next[i]; } /* * Create new list element */ level = random_level (); if (level > fcCacheMaxLevel) { level = fcCacheMaxLevel + 1; update[fcCacheMaxLevel] = &fcCacheChains[fcCacheMaxLevel]; fcCacheMaxLevel = level; } s = malloc (sizeof (FcCacheSkip) + (level - 1) * sizeof (FcCacheSkip *)); if (!s) return FcFalse; s->cache = cache; s->size = cache->size; s->ref = 1; if (cache_stat) { s->cache_dev = cache_stat->st_dev; s->cache_ino = cache_stat->st_ino; s->cache_mtime = cache_stat->st_mtime; } else { s->cache_dev = 0; s->cache_ino = 0; s->cache_mtime = 0; } /* * Insert into all fcCacheChains */ for (i = 0; i < level; i++) { s->next[i] = *update[i]; *update[i] = s; } return FcTrue; } static FcCacheSkip * FcCacheFindByAddr (void *object) { int i; FcCacheSkip **next = fcCacheChains; FcCacheSkip *s; /* * Walk chain pointers one level at a time */ for (i = fcCacheMaxLevel; --i >= 0;) while (next[i] && (char *) object >= ((char *) next[i]->cache + next[i]->size)) next = next[i]->next; /* * Here we are */ s = next[0]; if (s && (char *) object < ((char *) s->cache + s->size)) return s; return NULL; } static void FcCacheRemove (FcCache *cache) { FcCacheSkip **update[FC_CACHE_MAX_LEVEL]; FcCacheSkip *s, **next; int i; /* * Find links along each chain */ next = fcCacheChains; for (i = fcCacheMaxLevel; --i >= 0; ) { for (; (s = next[i]); next = s->next) if (s->cache >= cache) break; update[i] = &next[i]; } s = next[0]; for (i = 0; i < fcCacheMaxLevel && *update[i] == s; i++) *update[i] = s->next[i]; while (fcCacheMaxLevel > 0 && fcCacheChains[fcCacheMaxLevel - 1] == NULL) fcCacheMaxLevel--; free (s); } static FcCache * FcCacheFindByStat (struct stat *cache_stat) { FcCacheSkip *s; for (s = fcCacheChains[0]; s; s = s->next[0]) if (s->cache_dev == cache_stat->st_dev && s->cache_ino == cache_stat->st_ino && s->cache_mtime == cache_stat->st_mtime) { s->ref++; return s->cache; } return NULL; } static void FcDirCacheDispose (FcCache *cache) { switch (cache->magic) { case FC_CACHE_MAGIC_ALLOC: free (cache); break; case FC_CACHE_MAGIC_MMAP: #if defined(HAVE_MMAP) || defined(__CYGWIN__) munmap (cache, cache->size); #elif defined(_WIN32) UnmapViewOfFile (cache); #endif break; } FcCacheRemove (cache); } void FcCacheObjectReference (void *object) { FcCacheSkip *skip = FcCacheFindByAddr (object); if (skip) skip->ref++; } void FcCacheObjectDereference (void *object) { FcCacheSkip *skip = FcCacheFindByAddr (object); if (skip) { skip->ref--; if (skip->ref <= 0) FcDirCacheDispose (skip->cache); } } void FcCacheFini (void) { int i; for (i = 0; i < FC_CACHE_MAX_LEVEL; i++) assert (fcCacheChains[i] == NULL); assert (fcCacheMaxLevel == 0); } /* * Map a cache file into memory */ static FcCache * FcDirCacheMapFd (int fd, struct stat *fd_stat) { FcCache *cache; FcBool allocated = FcFalse; if (fd_stat->st_size < sizeof (FcCache)) return NULL; cache = FcCacheFindByStat (fd_stat); if (cache) return cache; /* * For small cache files, just read them into memory */ if (fd_stat->st_size >= FC_CACHE_MIN_MMAP) { #if defined(HAVE_MMAP) || defined(__CYGWIN__) cache = mmap (0, fd_stat->st_size, PROT_READ, MAP_SHARED, fd, 0); #elif defined(_WIN32) { HANDLE hFileMap; cache = NULL; hFileMap = CreateFileMapping((HANDLE) _get_osfhandle(fd), NULL, PAGE_READONLY, 0, 0, NULL); if (hFileMap != NULL) { cache = MapViewOfFile (hFileMap, FILE_MAP_READ, 0, 0, fd_stat->st_size); CloseHandle (hFileMap); } } #endif } if (!cache) { cache = malloc (fd_stat->st_size); if (!cache) return NULL; if (read (fd, cache, fd_stat->st_size) != fd_stat->st_size) { free (cache); return NULL; } allocated = FcTrue; } if (cache->magic != FC_CACHE_MAGIC_MMAP || cache->version < FC_CACHE_CONTENT_VERSION || cache->size != fd_stat->st_size || !FcCacheInsert (cache, fd_stat)) { if (allocated) free (cache); else { #if defined(HAVE_MMAP) || defined(__CYGWIN__) munmap (cache, fd_stat->st_size); #elif defined(_WIN32) UnmapViewOfFile (cache); #endif } return NULL; } /* Mark allocated caches so they're freed rather than unmapped */ if (allocated) cache->magic = FC_CACHE_MAGIC_ALLOC; return cache; } void FcDirCacheReference (FcCache *cache, int nref) { FcCacheSkip *skip = FcCacheFindByAddr (cache); if (skip) skip->ref += nref; } void FcDirCacheUnload (FcCache *cache) { FcCacheObjectDereference (cache); } static FcBool FcDirCacheMapHelper (int fd, struct stat *fd_stat, void *closure) { FcCache *cache = FcDirCacheMapFd (fd, fd_stat); if (!cache) return FcFalse; *((FcCache **) closure) = cache; return FcTrue; } FcCache * FcDirCacheLoad (const FcChar8 *dir, FcConfig *config, FcChar8 **cache_file) { FcCache *cache = NULL; if (!FcDirCacheProcess (config, dir, FcDirCacheMapHelper, &cache, cache_file)) return NULL; return cache; } FcCache * FcDirCacheLoadFile (const FcChar8 *cache_file, struct stat *file_stat) { int fd; FcCache *cache; fd = FcDirCacheOpenFile (cache_file, file_stat); if (fd < 0) return NULL; cache = FcDirCacheMapFd (fd, file_stat); close (fd); return cache; } /* * Validate a cache file by reading the header and checking * the magic number and the size field */ static FcBool FcDirCacheValidateHelper (int fd, struct stat *fd_stat, void *closure) { FcBool ret = FcTrue; FcCache c; if (read (fd, &c, sizeof (FcCache)) != sizeof (FcCache)) ret = FcFalse; else if (c.magic != FC_CACHE_MAGIC_MMAP) ret = FcFalse; else if (c.version < FC_CACHE_CONTENT_VERSION) ret = FcFalse; else if (fd_stat->st_size != c.size) ret = FcFalse; return ret; } static FcBool FcDirCacheValidConfig (const FcChar8 *dir, FcConfig *config) { return FcDirCacheProcess (config, dir, FcDirCacheValidateHelper, NULL, NULL); } FcBool FcDirCacheValid (const FcChar8 *dir) { FcConfig *config; config = FcConfigGetCurrent (); if (!config) return FcFalse; return FcDirCacheValidConfig (dir, config); } /* * Build a cache structure from the given contents */ FcCache * FcDirCacheBuild (FcFontSet *set, const FcChar8 *dir, FcStrSet *dirs) { FcSerialize *serialize = FcSerializeCreate (); FcCache *cache; int i; intptr_t cache_offset; intptr_t dirs_offset; FcChar8 *dir_serialize; intptr_t *dirs_serialize; FcFontSet *set_serialize; if (!serialize) return NULL; /* * Space for cache structure */ cache_offset = FcSerializeReserve (serialize, sizeof (FcCache)); /* * Directory name */ if (!FcStrSerializeAlloc (serialize, dir)) goto bail1; /* * Subdirs */ dirs_offset = FcSerializeAlloc (serialize, dirs, dirs->num * sizeof (FcChar8 *)); for (i = 0; i < dirs->num; i++) if (!FcStrSerializeAlloc (serialize, dirs->strs[i])) goto bail1; /* * Patterns */ if (!FcFontSetSerializeAlloc (serialize, set)) goto bail1; /* Serialize layout complete. Now allocate space and fill it */ cache = malloc (serialize->size); if (!cache) goto bail1; /* shut up valgrind */ memset (cache, 0, serialize->size); serialize->linear = cache; cache->magic = FC_CACHE_MAGIC_ALLOC; cache->version = FC_CACHE_CONTENT_VERSION; cache->size = serialize->size; /* * Serialize directory name */ dir_serialize = FcStrSerialize (serialize, dir); if (!dir_serialize) goto bail2; cache->dir = FcPtrToOffset (cache, dir_serialize); /* * Serialize sub dirs */ dirs_serialize = FcSerializePtr (serialize, dirs); if (!dirs_serialize) goto bail2; cache->dirs = FcPtrToOffset (cache, dirs_serialize); cache->dirs_count = dirs->num; for (i = 0; i < dirs->num; i++) { FcChar8 *d_serialize = FcStrSerialize (serialize, dirs->strs[i]); if (!d_serialize) goto bail2; dirs_serialize[i] = FcPtrToOffset (dirs_serialize, d_serialize); } /* * Serialize font set */ set_serialize = FcFontSetSerialize (serialize, set); if (!set_serialize) goto bail2; cache->set = FcPtrToOffset (cache, set_serialize); FcSerializeDestroy (serialize); FcCacheInsert (cache, NULL); return cache; bail2: free (cache); bail1: FcSerializeDestroy (serialize); return NULL; } #ifdef _WIN32 #define mkdir(path,mode) _mkdir(path) #endif static FcBool FcMakeDirectory (const FcChar8 *dir) { FcChar8 *parent; FcBool ret; if (strlen ((char *) dir) == 0) return FcFalse; parent = FcStrDirname (dir); if (!parent) return FcFalse; if (access ((char *) parent, W_OK|X_OK) == 0) ret = mkdir ((char *) dir, 0777) == 0; else if (access ((char *) parent, F_OK) == -1) ret = FcMakeDirectory (parent) && (mkdir ((char *) dir, 0777) == 0); else ret = FcFalse; FcStrFree (parent); return ret; } /* write serialized state to the cache file */ FcBool FcDirCacheWrite (FcCache *cache, FcConfig *config) { FcChar8 *dir = FcCacheDir (cache); FcChar8 cache_base[CACHEBASE_LEN]; FcChar8 *cache_hashed; int fd; FcAtomic *atomic; FcStrList *list; FcChar8 *cache_dir = NULL; FcChar8 *test_dir; int magic; int written; /* * Write it to the first directory in the list which is writable */ list = FcStrListCreate (config->cacheDirs); if (!list) return FcFalse; while ((test_dir = FcStrListNext (list))) { if (access ((char *) test_dir, W_OK|X_OK) == 0) { cache_dir = test_dir; break; } else { /* * If the directory doesn't exist, try to create it */ if (access ((char *) test_dir, F_OK) == -1) { if (FcMakeDirectory (test_dir)) { cache_dir = test_dir; break; } } } } FcStrListDone (list); if (!cache_dir) return FcFalse; FcDirCacheBasename (dir, cache_base); cache_hashed = FcStrPlus (cache_dir, cache_base); if (!cache_hashed) return FcFalse; if (FcDebug () & FC_DBG_CACHE) printf ("FcDirCacheWriteDir dir \"%s\" file \"%s\"\n", dir, cache_hashed); atomic = FcAtomicCreate ((FcChar8 *)cache_hashed); if (!atomic) goto bail1; if (!FcAtomicLock (atomic)) goto bail3; fd = open((char *)FcAtomicNewFile (atomic), O_RDWR | O_CREAT | O_BINARY, 0666); if (fd == -1) goto bail4; /* Temporarily switch magic to MMAP while writing to file */ magic = cache->magic; if (magic != FC_CACHE_MAGIC_MMAP) cache->magic = FC_CACHE_MAGIC_MMAP; /* * Write cache contents to file */ written = write (fd, cache, cache->size); /* Switch magic back */ if (magic != FC_CACHE_MAGIC_MMAP) cache->magic = magic; if (written != cache->size) { perror ("write cache"); goto bail5; } close(fd); if (!FcAtomicReplaceOrig(atomic)) goto bail4; FcStrFree (cache_hashed); FcAtomicUnlock (atomic); FcAtomicDestroy (atomic); return FcTrue; bail5: close (fd); bail4: FcAtomicUnlock (atomic); bail3: FcAtomicDestroy (atomic); bail1: FcStrFree (cache_hashed); return FcFalse; } /* * Hokey little macro trick to permit the definitions of C functions * with the same name as CPP macros */ #define args1(x) (x) #define args2(x,y) (x,y) const FcChar8 * FcCacheDir args1(const FcCache *c) { return FcCacheDir (c); } FcFontSet * FcCacheCopySet args1(const FcCache *c) { FcFontSet *old = FcCacheSet (c); FcFontSet *new = FcFontSetCreate (); int i; if (!new) return NULL; for (i = 0; i < old->nfont; i++) { FcPattern *font = FcFontSetFont (old, i); FcPatternReference (font); if (!FcFontSetAdd (new, font)) { FcFontSetDestroy (new); return NULL; } } return new; } const FcChar8 * FcCacheSubdir args2(const FcCache *c, int i) { return FcCacheSubdir (c, i); } int FcCacheNumSubdir args1(const FcCache *c) { return c->dirs_count; } int FcCacheNumFont args1(const FcCache *c) { return FcCacheSet(c)->nfont; } /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ #ifndef HIGHFIRST #define byteReverse(buf, len) /* Nothing */ #else /* * Note: this code is harmless on little-endian machines. */ void byteReverse(unsigned char *buf, unsigned longs) { FcChar32 t; do { t = (FcChar32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | ((unsigned) buf[1] << 8 | buf[0]); *(FcChar32 *) buf = t; buf += 4; } while (--longs); } #endif /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ static void MD5Init(struct MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void MD5Update(struct MD5Context *ctx, unsigned char *buf, unsigned len) { FcChar32 t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((FcChar32) len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *) ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (FcChar32 *) ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (FcChar32 *) ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ static void MD5Final(unsigned char digest[16], struct MD5Context *ctx) { unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (FcChar32 *) ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ ((FcChar32 *) ctx->in)[14] = ctx->bits[0]; ((FcChar32 *) ctx->in)[15] = ctx->bits[1]; MD5Transform(ctx->buf, (FcChar32 *) ctx->in); byteReverse((unsigned char *) ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform(FcChar32 buf[4], FcChar32 in[16]) { register FcChar32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #define __fccache__ #include "fcaliastail.h" #undef __fccache__