/* * Copyright © 2002 Keith Packard, member of The XFree86 Project, Inc. * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #ifdef HAVE_XORG_CONFIG_H #include #else #ifdef HAVE_CONFIG_H #include #endif #endif #include "xf86.h" #include "os.h" #include "globals.h" #include "xf86Priv.h" #include "xf86DDC.h" #include "mipointer.h" #include "windowstr.h" #include "inputstr.h" #include #include #include "xf86Crtc.h" #include "xf86RandR12.h" typedef struct _xf86RandR12Info { int virtualX; int virtualY; int mmWidth; int mmHeight; int maxX; int maxY; int pointerX; int pointerY; Rotation rotation; /* current mode */ Rotation supported_rotations; /* driver supported */ /* Used to wrap EnterVT so we can re-probe the outputs when a laptop unsuspends * (actually, any time that we switch back into our VT). * * See https://bugs.freedesktop.org/show_bug.cgi?id=21554 */ xf86EnterVTProc *orig_EnterVT; Bool panning; ConstrainCursorHarderProcPtr orig_ConstrainCursorHarder; } XF86RandRInfoRec, *XF86RandRInfoPtr; #ifdef RANDR_12_INTERFACE static Bool xf86RandR12Init12(ScreenPtr pScreen); static Bool xf86RandR12CreateScreenResources12(ScreenPtr pScreen); #endif static int xf86RandR12Generation; static DevPrivateKeyRec xf86RandR12KeyRec; static DevPrivateKey xf86RandR12Key; #define XF86RANDRINFO(p) ((XF86RandRInfoPtr) \ dixLookupPrivate(&(p)->devPrivates, xf86RandR12Key)) static int xf86RandR12ModeRefresh(DisplayModePtr mode) { if (mode->VRefresh) return (int) (mode->VRefresh + 0.5); else return (int) (mode->Clock * 1000.0 / mode->HTotal / mode->VTotal + 0.5); } /* Adapt panning area; return TRUE if panning area was valid without adaption */ static int xf86RandR13VerifyPanningArea(xf86CrtcPtr crtc, int screenWidth, int screenHeight) { int ret = TRUE; if (crtc->version < 2) return FALSE; if (crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1) { /* Panning in X is disabled */ if (crtc->panningTotalArea.x1 || crtc->panningTotalArea.x2) /* Illegal configuration -> fail/disable */ ret = FALSE; crtc->panningTotalArea.x1 = crtc->panningTotalArea.x2 = 0; crtc->panningTrackingArea.x1 = crtc->panningTrackingArea.x2 = 0; crtc->panningBorder[0] = crtc->panningBorder[2] = 0; } else { /* Panning in X is enabled */ if (crtc->panningTotalArea.x1 < 0) { /* Panning region outside screen -> move inside */ crtc->panningTotalArea.x2 -= crtc->panningTotalArea.x1; crtc->panningTotalArea.x1 = 0; ret = FALSE; } if (crtc->panningTotalArea.x2 < crtc->panningTotalArea.x1 + crtc->mode.HDisplay) { /* Panning region smaller than displayed area -> crop to displayed area */ crtc->panningTotalArea.x2 = crtc->panningTotalArea.x1 + crtc->mode.HDisplay; ret = FALSE; } if (crtc->panningTotalArea.x2 > screenWidth) { /* Panning region larger than screen -> move inside, then crop to screen */ crtc->panningTotalArea.x1 -= crtc->panningTotalArea.x2 - screenWidth; crtc->panningTotalArea.x2 = screenWidth; ret = FALSE; if (crtc->panningTotalArea.x1 < 0) crtc->panningTotalArea.x1 = 0; } if (crtc->panningBorder[0] + crtc->panningBorder[2] > crtc->mode.HDisplay) { /* Borders too large -> set to 0 */ crtc->panningBorder[0] = crtc->panningBorder[2] = 0; ret = FALSE; } } if (crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1) { /* Panning in Y is disabled */ if (crtc->panningTotalArea.y1 || crtc->panningTotalArea.y2) /* Illegal configuration -> fail/disable */ ret = FALSE; crtc->panningTotalArea.y1 = crtc->panningTotalArea.y2 = 0; crtc->panningTrackingArea.y1 = crtc->panningTrackingArea.y2 = 0; crtc->panningBorder[1] = crtc->panningBorder[3] = 0; } else { /* Panning in Y is enabled */ if (crtc->panningTotalArea.y1 < 0) { /* Panning region outside screen -> move inside */ crtc->panningTotalArea.y2 -= crtc->panningTotalArea.y1; crtc->panningTotalArea.y1 = 0; ret = FALSE; } if (crtc->panningTotalArea.y2 < crtc->panningTotalArea.y1 + crtc->mode.VDisplay) { /* Panning region smaller than displayed area -> crop to displayed area */ crtc->panningTotalArea.y2 = crtc->panningTotalArea.y1 + crtc->mode.VDisplay; ret = FALSE; } if (crtc->panningTotalArea.y2 > screenHeight) { /* Panning region larger than screen -> move inside, then crop to screen */ crtc->panningTotalArea.y1 -= crtc->panningTotalArea.y2 - screenHeight; crtc->panningTotalArea.y2 = screenHeight; ret = FALSE; if (crtc->panningTotalArea.y1 < 0) crtc->panningTotalArea.y1 = 0; } if (crtc->panningBorder[1] + crtc->panningBorder[3] > crtc->mode.VDisplay) { /* Borders too large -> set to 0 */ crtc->panningBorder[1] = crtc->panningBorder[3] = 0; ret = FALSE; } } return ret; } /* * The heart of the panning operation: * * Given a frame buffer position (fb_x, fb_y), * and a crtc position (crtc_x, crtc_y), * and a transform matrix which maps frame buffer to crtc, * compute a panning position (pan_x, pan_y) that * makes the resulting transform line those two up */ static void xf86ComputeCrtcPan(Bool transform_in_use, struct pixman_f_transform *m, double screen_x, double screen_y, double crtc_x, double crtc_y, int old_pan_x, int old_pan_y, int *new_pan_x, int *new_pan_y) { if (transform_in_use) { /* * Given the current transform, M, the current position * on the Screen, S, and the desired position on the CRTC, * C, compute a translation, T, such that: * * M T S = C * * where T is of the form * * | 1 0 dx | * | 0 1 dy | * | 0 0 1 | * * M T S = * | M00 Sx + M01 Sy + M00 dx + M01 dy + M02 | | Cx F | * | M10 Sx + M11 Sy + M10 dx + M11 dy + M12 | = | Cy F | * | M20 Sx + M21 Sy + M20 dx + M21 dy + M22 | | F | * * R = M S * * Cx F = M00 dx + M01 dy + R0 * Cy F = M10 dx + M11 dy + R1 * F = M20 dx + M21 dy + R2 * * Zero out dx, then dy * * F (Cx M10 - Cy M00) = * (M10 M01 - M00 M11) dy + M10 R0 - M00 R1 * F (M10 - Cy M20) = * (M10 M21 - M20 M11) dy + M10 R2 - M20 R1 * * F (Cx M11 - Cy M01) = * (M11 M00 - M01 M10) dx + M11 R0 - M01 R1 * F (M11 - Cy M21) = * (M11 M20 - M21 M10) dx + M11 R2 - M21 R1 * * Make some temporaries * * T = | Cx M10 - Cy M00 | * | Cx M11 - Cy M01 | * * U = | M10 M01 - M00 M11 | * | M11 M00 - M01 M10 | * * Q = | M10 R0 - M00 R1 | * | M11 R0 - M01 R1 | * * P = | M10 - Cy M20 | * | M11 - Cy M21 | * * W = | M10 M21 - M20 M11 | * | M11 M20 - M21 M10 | * * V = | M10 R2 - M20 R1 | * | M11 R2 - M21 R1 | * * Rewrite: * * F T0 = U0 dy + Q0 * F P0 = W0 dy + V0 * F T1 = U1 dx + Q1 * F P1 = W1 dx + V1 * * Solve for F (two ways) * * F (W0 T0 - U0 P0) = W0 Q0 - U0 V0 * * W0 Q0 - U0 V0 * F = ------------- * W0 T0 - U0 P0 * * F (W1 T1 - U1 P1) = W1 Q1 - U1 V1 * * W1 Q1 - U1 V1 * F = ------------- * W1 T1 - U1 P1 * * We'll use which ever solution works (denominator != 0) * * Finally, solve for dx and dy: * * dx = (F T1 - Q1) / U1 * dx = (F P1 - V1) / W1 * * dy = (F T0 - Q0) / U0 * dy = (F P0 - V0) / W0 */ double r[3]; double q[2], u[2], t[2], v[2], w[2], p[2]; double f; struct pict_f_vector d; int i; /* Get the un-normalized crtc coordinates again */ for (i = 0; i < 3; i++) r[i] = m->m[i][0] * screen_x + m->m[i][1] * screen_y + m->m[i][2]; /* Combine values into temporaries */ for (i = 0; i < 2; i++) { q[i] = m->m[1][i] * r[0] - m->m[0][i] * r[1]; u[i] = m->m[1][i] * m->m[0][1 - i] - m->m[0][i] * m->m[1][1 - i]; t[i] = m->m[1][i] * crtc_x - m->m[0][i] * crtc_y; v[i] = m->m[1][i] * r[2] - m->m[2][i] * r[1]; w[i] = m->m[1][i] * m->m[2][1 - i] - m->m[2][i] * m->m[1][1 - i]; p[i] = m->m[1][i] - m->m[2][i] * crtc_y; } /* Find a way to compute f */ f = 0; for (i = 0; i < 2; i++) { double a = w[i] * q[i] - u[i] * v[i]; double b = w[i] * t[i] - u[i] * p[i]; if (b != 0) { f = a / b; break; } } /* Solve for the resulting transform vector */ for (i = 0; i < 2; i++) { if (u[i]) d.v[1 - i] = (t[i] * f - q[i]) / u[i]; else if (w[1]) d.v[1 - i] = (p[i] * f - v[i]) / w[i]; else d.v[1 - i] = 0; } *new_pan_x = old_pan_x - floor(d.v[0] + 0.5); *new_pan_y = old_pan_y - floor(d.v[1] + 0.5); } else { *new_pan_x = screen_x - crtc_x; *new_pan_y = screen_y - crtc_y; } } static void xf86RandR13Pan(xf86CrtcPtr crtc, int x, int y) { int newX, newY; int width, height; Bool panned = FALSE; if (crtc->version < 2) return; if (!crtc->enabled || (crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1 && crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1)) return; newX = crtc->x; newY = crtc->y; width = crtc->mode.HDisplay; height = crtc->mode.VDisplay; if ((crtc->panningTrackingArea.x2 <= crtc->panningTrackingArea.x1 || (x >= crtc->panningTrackingArea.x1 && x < crtc->panningTrackingArea.x2)) && (crtc->panningTrackingArea.y2 <= crtc->panningTrackingArea.y1 || (y >= crtc->panningTrackingArea.y1 && y < crtc->panningTrackingArea.y2))) { struct pict_f_vector c; /* * Pre-clip the mouse position to the panning area so that we don't * push the crtc outside. This doesn't deal with changes to the * panning values, only mouse position changes. */ if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) { if (x < crtc->panningTotalArea.x1) x = crtc->panningTotalArea.x1; if (x >= crtc->panningTotalArea.x2) x = crtc->panningTotalArea.x2 - 1; } if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) { if (y < crtc->panningTotalArea.y1) y = crtc->panningTotalArea.y1; if (y >= crtc->panningTotalArea.y2) y = crtc->panningTotalArea.y2 - 1; } c.v[0] = x; c.v[1] = y; c.v[2] = 1.0; if (crtc->transform_in_use) { pixman_f_transform_point(&crtc->f_framebuffer_to_crtc, &c); } else { c.v[0] -= crtc->x; c.v[1] -= crtc->y; } if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) { if (c.v[0] < crtc->panningBorder[0]) { c.v[0] = crtc->panningBorder[0]; panned = TRUE; } if (c.v[0] >= width - crtc->panningBorder[2]) { c.v[0] = width - crtc->panningBorder[2] - 1; panned = TRUE; } } if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) { if (c.v[1] < crtc->panningBorder[1]) { c.v[1] = crtc->panningBorder[1]; panned = TRUE; } if (c.v[1] >= height - crtc->panningBorder[3]) { c.v[1] = height - crtc->panningBorder[3] - 1; panned = TRUE; } } if (panned) xf86ComputeCrtcPan(crtc->transform_in_use, &crtc->f_framebuffer_to_crtc, x, y, c.v[0], c.v[1], newX, newY, &newX, &newY); } /* * Ensure that the crtc is within the panning region. * * XXX This computation only works when we do not have a transform * in use. */ if (!crtc->transform_in_use) { /* Validate against [xy]1 after [xy]2, to be sure that results are > 0 for [xy]1 > 0 */ if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) { if (newX > crtc->panningTotalArea.x2 - width) newX = crtc->panningTotalArea.x2 - width; if (newX < crtc->panningTotalArea.x1) newX = crtc->panningTotalArea.x1; } if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) { if (newY > crtc->panningTotalArea.y2 - height) newY = crtc->panningTotalArea.y2 - height; if (newY < crtc->panningTotalArea.y1) newY = crtc->panningTotalArea.y1; } } if (newX != crtc->x || newY != crtc->y) xf86CrtcSetOrigin(crtc, newX, newY); } static Bool xf86RandR12GetInfo(ScreenPtr pScreen, Rotation * rotations) { RRScreenSizePtr pSize; ScrnInfoPtr scrp = XF86SCRNINFO(pScreen); XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); DisplayModePtr mode; int refresh0 = 60; int maxX = 0, maxY = 0; *rotations = randrp->supported_rotations; if (randrp->virtualX == -1 || randrp->virtualY == -1) { randrp->virtualX = scrp->virtualX; randrp->virtualY = scrp->virtualY; } /* Re-probe the outputs for new monitors or modes */ if (scrp->vtSema) { xf86ProbeOutputModes(scrp, 0, 0); xf86SetScrnInfoModes(scrp); } for (mode = scrp->modes;; mode = mode->next) { int refresh = xf86RandR12ModeRefresh(mode); if (randrp->maxX == 0 || randrp->maxY == 0) { if (maxX < mode->HDisplay) maxX = mode->HDisplay; if (maxY < mode->VDisplay) maxY = mode->VDisplay; } if (mode == scrp->modes) refresh0 = refresh; pSize = RRRegisterSize(pScreen, mode->HDisplay, mode->VDisplay, randrp->mmWidth, randrp->mmHeight); if (!pSize) return FALSE; RRRegisterRate(pScreen, pSize, refresh); if (xf86ModesEqual(mode, scrp->currentMode)) { RRSetCurrentConfig(pScreen, randrp->rotation, refresh, pSize); } if (mode->next == scrp->modes) break; } if (randrp->maxX == 0 || randrp->maxY == 0) { randrp->maxX = maxX; randrp->maxY = maxY; } return TRUE; } static Bool xf86RandR12SetMode(ScreenPtr pScreen, DisplayModePtr mode, Bool useVirtual, int mmWidth, int mmHeight) { ScrnInfoPtr scrp = XF86SCRNINFO(pScreen); XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); int oldWidth = pScreen->width; int oldHeight = pScreen->height; int oldmmWidth = pScreen->mmWidth; int oldmmHeight = pScreen->mmHeight; WindowPtr pRoot = pScreen->root; DisplayModePtr currentMode = NULL; Bool ret = TRUE; if (pRoot) (*scrp->EnableDisableFBAccess) (pScreen->myNum, FALSE); if (useVirtual) { scrp->virtualX = randrp->virtualX; scrp->virtualY = randrp->virtualY; } else { scrp->virtualX = mode->HDisplay; scrp->virtualY = mode->VDisplay; } if (randrp->rotation & (RR_Rotate_90 | RR_Rotate_270)) { /* If the screen is rotated 90 or 270 degrees, swap the sizes. */ pScreen->width = scrp->virtualY; pScreen->height = scrp->virtualX; pScreen->mmWidth = mmHeight; pScreen->mmHeight = mmWidth; } else { pScreen->width = scrp->virtualX; pScreen->height = scrp->virtualY; pScreen->mmWidth = mmWidth; pScreen->mmHeight = mmHeight; } if (scrp->currentMode == mode) { /* Save current mode */ currentMode = scrp->currentMode; /* Reset, just so we ensure the drivers SwitchMode is called */ scrp->currentMode = NULL; } /* * We know that if the driver failed to SwitchMode to the rotated * version, then it should revert back to it's prior mode. */ if (!xf86SwitchMode(pScreen, mode)) { ret = FALSE; scrp->virtualX = pScreen->width = oldWidth; scrp->virtualY = pScreen->height = oldHeight; pScreen->mmWidth = oldmmWidth; pScreen->mmHeight = oldmmHeight; scrp->currentMode = currentMode; } /* * Make sure the layout is correct */ xf86ReconfigureLayout(); /* * Make sure the whole screen is visible */ xf86SetViewport(pScreen, pScreen->width, pScreen->height); xf86SetViewport(pScreen, 0, 0); if (pRoot) (*scrp->EnableDisableFBAccess) (pScreen->myNum, TRUE); return ret; } Bool xf86RandR12SetConfig(ScreenPtr pScreen, Rotation rotation, int rate, RRScreenSizePtr pSize) { ScrnInfoPtr scrp = XF86SCRNINFO(pScreen); XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); DisplayModePtr mode; int pos[MAXDEVICES][2]; Bool useVirtual = FALSE; int maxX = 0, maxY = 0; Rotation oldRotation = randrp->rotation; DeviceIntPtr dev; Bool view_adjusted = FALSE; randrp->rotation = rotation; if (randrp->virtualX == -1 || randrp->virtualY == -1) { randrp->virtualX = scrp->virtualX; randrp->virtualY = scrp->virtualY; } for (dev = inputInfo.devices; dev; dev = dev->next) { if (!IsMaster(dev) && !IsFloating(dev)) continue; miPointerGetPosition(dev, &pos[dev->id][0], &pos[dev->id][1]); } for (mode = scrp->modes;; mode = mode->next) { if (randrp->maxX == 0 || randrp->maxY == 0) { if (maxX < mode->HDisplay) maxX = mode->HDisplay; if (maxY < mode->VDisplay) maxY = mode->VDisplay; } if (mode->HDisplay == pSize->width && mode->VDisplay == pSize->height && (rate == 0 || xf86RandR12ModeRefresh(mode) == rate)) break; if (mode->next == scrp->modes) { if (pSize->width == randrp->virtualX && pSize->height == randrp->virtualY) { mode = scrp->modes; useVirtual = TRUE; break; } if (randrp->maxX == 0 || randrp->maxY == 0) { randrp->maxX = maxX; randrp->maxY = maxY; } return FALSE; } } if (randrp->maxX == 0 || randrp->maxY == 0) { randrp->maxX = maxX; randrp->maxY = maxY; } if (!xf86RandR12SetMode(pScreen, mode, useVirtual, pSize->mmWidth, pSize->mmHeight)) { randrp->rotation = oldRotation; return FALSE; } /* * Move the cursor back where it belongs; SwitchMode repositions it * FIXME: duplicated code, see modes/xf86RandR12.c */ for (dev = inputInfo.devices; dev; dev = dev->next) { if (!IsMaster(dev) && !IsFloating(dev)) continue; if (pScreen == miPointerGetScreen(dev)) { int px = pos[dev->id][0]; int py = pos[dev->id][1]; px = (px >= pScreen->width ? (pScreen->width - 1) : px); py = (py >= pScreen->height ? (pScreen->height - 1) : py); /* Setting the viewpoint makes only sense on one device */ if (!view_adjusted && IsMaster(dev)) { xf86SetViewport(pScreen, px, py); view_adjusted = TRUE; } (*pScreen->SetCursorPosition) (dev, pScreen, px, py, FALSE); } } return TRUE; } #define PANNING_ENABLED(crtc) \ ((crtc)->panningTotalArea.x2 > (crtc)->panningTotalArea.x1 || \ (crtc)->panningTotalArea.y2 > (crtc)->panningTotalArea.y1) static Bool xf86RandR12ScreenSetSize(ScreenPtr pScreen, CARD16 width, CARD16 height, CARD32 mmWidth, CARD32 mmHeight) { XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); ScrnInfoPtr pScrn = XF86SCRNINFO(pScreen); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); WindowPtr pRoot = pScreen->root; PixmapPtr pScrnPix; Bool ret = FALSE; Bool panning = FALSE; int c; if (xf86RandR12Key) { if (randrp->virtualX == -1 || randrp->virtualY == -1) { randrp->virtualX = pScrn->virtualX; randrp->virtualY = pScrn->virtualY; } } if (pRoot && pScrn->vtSema) (*pScrn->EnableDisableFBAccess) (pScreen->myNum, FALSE); /* Let the driver update virtualX and virtualY */ if (!(*config->funcs->resize) (pScrn, width, height)) goto finish; ret = TRUE; /* Update panning information */ for (c = 0; c < config->num_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; if (PANNING_ENABLED (crtc)) { if (crtc->panningTotalArea.x2 > crtc->panningTrackingArea.x1) crtc->panningTotalArea.x2 += width - pScreen->width; if (crtc->panningTotalArea.y2 > crtc->panningTrackingArea.y1) crtc->panningTotalArea.y2 += height - pScreen->height; if (crtc->panningTrackingArea.x2 > crtc->panningTrackingArea.x1) crtc->panningTrackingArea.x2 += width - pScreen->width; if (crtc->panningTrackingArea.y2 > crtc->panningTrackingArea.y1) crtc->panningTrackingArea.y2 += height - pScreen->height; xf86RandR13VerifyPanningArea(crtc, width, height); xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY); panning = TRUE; } } pScrnPix = (*pScreen->GetScreenPixmap) (pScreen); pScreen->width = pScrnPix->drawable.width = width; pScreen->height = pScrnPix->drawable.height = height; randrp->mmWidth = pScreen->mmWidth = mmWidth; randrp->mmHeight = pScreen->mmHeight = mmHeight; xf86SetViewport(pScreen, pScreen->width - 1, pScreen->height - 1); xf86SetViewport(pScreen, 0, 0); finish: update_desktop_dimensions(); if (pRoot && pScrn->vtSema) (*pScrn->EnableDisableFBAccess) (pScreen->myNum, TRUE); #if RANDR_12_INTERFACE if (xf86RandR12Key && pScreen->root && ret) RRScreenSizeNotify(pScreen); #endif return ret; } Rotation xf86RandR12GetRotation(ScreenPtr pScreen) { XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); return randrp->rotation; } Bool xf86RandR12CreateScreenResources(ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config; XF86RandRInfoPtr randrp; int c; int width, height; int mmWidth, mmHeight; #ifdef PANORAMIX /* XXX disable RandR when using Xinerama */ if (!noPanoramiXExtension) return TRUE; #endif config = XF86_CRTC_CONFIG_PTR(pScrn); randrp = XF86RANDRINFO(pScreen); /* * Compute size of screen */ width = 0; height = 0; for (c = 0; c < config->num_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; int crtc_width = crtc->x + xf86ModeWidth(&crtc->mode, crtc->rotation); int crtc_height = crtc->y + xf86ModeHeight(&crtc->mode, crtc->rotation); if (crtc->enabled) { if (crtc_width > width) width = crtc_width; if (crtc_height > height) height = crtc_height; if (crtc->panningTotalArea.x2 > width) width = crtc->panningTotalArea.x2; if (crtc->panningTotalArea.y2 > height) height = crtc->panningTotalArea.y2; } } if (width && height) { /* * Compute physical size of screen */ if (monitorResolution) { mmWidth = width * 25.4 / monitorResolution; mmHeight = height * 25.4 / monitorResolution; } else { xf86OutputPtr output = xf86CompatOutput(pScrn); if (output && output->conf_monitor && (output->conf_monitor->mon_width > 0 && output->conf_monitor->mon_height > 0)) { /* * Prefer user configured DisplaySize */ mmWidth = output->conf_monitor->mon_width; mmHeight = output->conf_monitor->mon_height; } else { /* * Otherwise, just set the screen to DEFAULT_DPI */ mmWidth = width * 25.4 / DEFAULT_DPI; mmHeight = height * 25.4 / DEFAULT_DPI; } } xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Setting screen physical size to %d x %d\n", mmWidth, mmHeight); /* * This is the initial setting of the screen size. * We have to pre-set it here, otherwise panning would be adapted * to the new screen size. */ pScreen->width = width; pScreen->height = height; xf86RandR12ScreenSetSize(pScreen, width, height, mmWidth, mmHeight); xf86ReconfigureLayout(); } if (xf86RandR12Key == NULL) return TRUE; if (randrp->virtualX == -1 || randrp->virtualY == -1) { randrp->virtualX = pScrn->virtualX; randrp->virtualY = pScrn->virtualY; } xf86CrtcSetScreenSubpixelOrder(pScreen); #if RANDR_12_INTERFACE if (xf86RandR12CreateScreenResources12(pScreen)) return TRUE; #endif return TRUE; } Bool xf86RandR12Init(ScreenPtr pScreen) { rrScrPrivPtr rp; XF86RandRInfoPtr randrp; #ifdef PANORAMIX /* XXX disable RandR when using Xinerama */ if (!noPanoramiXExtension) { if (xf86NumScreens == 1) noPanoramiXExtension = TRUE; else return TRUE; } #endif if (xf86RandR12Generation != serverGeneration) xf86RandR12Generation = serverGeneration; xf86RandR12Key = &xf86RandR12KeyRec; if (!dixRegisterPrivateKey(&xf86RandR12KeyRec, PRIVATE_SCREEN, 0)) return FALSE; randrp = malloc(sizeof(XF86RandRInfoRec)); if (!randrp) return FALSE; if (!RRScreenInit(pScreen)) { free(randrp); return FALSE; } rp = rrGetScrPriv(pScreen); rp->rrGetInfo = xf86RandR12GetInfo; rp->rrSetConfig = xf86RandR12SetConfig; randrp->virtualX = -1; randrp->virtualY = -1; randrp->mmWidth = pScreen->mmWidth; randrp->mmHeight = pScreen->mmHeight; randrp->rotation = RR_Rotate_0; /* initial rotated mode */ randrp->supported_rotations = RR_Rotate_0; randrp->maxX = randrp->maxY = 0; dixSetPrivate(&pScreen->devPrivates, xf86RandR12Key, randrp); #if RANDR_12_INTERFACE if (!xf86RandR12Init12(pScreen)) return FALSE; #endif return TRUE; } void xf86RandR12CloseScreen(ScreenPtr pScreen) { XF86RandRInfoPtr randrp; if (xf86RandR12Key == NULL) return; randrp = XF86RANDRINFO(pScreen); #if RANDR_12_INTERFACE xf86Screens[pScreen->myNum]->EnterVT = randrp->orig_EnterVT; pScreen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder; #endif free(randrp); } void xf86RandR12SetRotations(ScreenPtr pScreen, Rotation rotations) { XF86RandRInfoPtr randrp; #if RANDR_12_INTERFACE ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; int c; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); #endif if (xf86RandR12Key == NULL) return; randrp = XF86RANDRINFO(pScreen); #if RANDR_12_INTERFACE for (c = 0; c < config->num_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; RRCrtcSetRotations(crtc->randr_crtc, rotations); } #endif randrp->supported_rotations = rotations; } void xf86RandR12SetTransformSupport(ScreenPtr pScreen, Bool transforms) { XF86RandRInfoPtr randrp; #if RANDR_13_INTERFACE ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; int c; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); #endif if (xf86RandR12Key == NULL) return; randrp = XF86RANDRINFO(pScreen); #if RANDR_13_INTERFACE for (c = 0; c < config->num_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; RRCrtcSetTransformSupport(crtc->randr_crtc, transforms); } #endif } void xf86RandR12GetOriginalVirtualSize(ScrnInfoPtr pScrn, int *x, int *y) { ScreenPtr pScreen = screenInfo.screens[pScrn->scrnIndex]; if (xf86RandR12Generation != serverGeneration || XF86RANDRINFO(pScreen)->virtualX == -1) { *x = pScrn->virtualX; *y = pScrn->virtualY; } else { XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); *x = randrp->virtualX; *y = randrp->virtualY; } } #if RANDR_12_INTERFACE #define FLAG_BITS (RR_HSyncPositive | \ RR_HSyncNegative | \ RR_VSyncPositive | \ RR_VSyncNegative | \ RR_Interlace | \ RR_DoubleScan | \ RR_CSync | \ RR_CSyncPositive | \ RR_CSyncNegative | \ RR_HSkewPresent | \ RR_BCast | \ RR_PixelMultiplex | \ RR_DoubleClock | \ RR_ClockDivideBy2) static Bool xf86RandRModeMatches(RRModePtr randr_mode, DisplayModePtr mode) { #if 0 if (match_name) { /* check for same name */ int len = strlen(mode->name); if (randr_mode->mode.nameLength != len) return FALSE; if (memcmp(randr_mode->name, mode->name, len) != 0) return FALSE; } #endif /* check for same timings */ if (randr_mode->mode.dotClock / 1000 != mode->Clock) return FALSE; if (randr_mode->mode.width != mode->HDisplay) return FALSE; if (randr_mode->mode.hSyncStart != mode->HSyncStart) return FALSE; if (randr_mode->mode.hSyncEnd != mode->HSyncEnd) return FALSE; if (randr_mode->mode.hTotal != mode->HTotal) return FALSE; if (randr_mode->mode.hSkew != mode->HSkew) return FALSE; if (randr_mode->mode.height != mode->VDisplay) return FALSE; if (randr_mode->mode.vSyncStart != mode->VSyncStart) return FALSE; if (randr_mode->mode.vSyncEnd != mode->VSyncEnd) return FALSE; if (randr_mode->mode.vTotal != mode->VTotal) return FALSE; /* check for same flags (using only the XF86 valid flag bits) */ if ((randr_mode->mode.modeFlags & FLAG_BITS) != (mode->Flags & FLAG_BITS)) return FALSE; /* everything matches */ return TRUE; } static Bool xf86RandR12CrtcNotify(RRCrtcPtr randr_crtc) { ScreenPtr pScreen = randr_crtc->pScreen; ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); RRModePtr randr_mode = NULL; int x; int y; Rotation rotation; int numOutputs; RROutputPtr *randr_outputs; RROutputPtr randr_output; xf86CrtcPtr crtc = randr_crtc->devPrivate; xf86OutputPtr output; int i, j; DisplayModePtr mode = &crtc->mode; Bool ret; randr_outputs = malloc(config->num_output * sizeof(RROutputPtr)); if (!randr_outputs) return FALSE; x = crtc->x; y = crtc->y; rotation = crtc->rotation; numOutputs = 0; randr_mode = NULL; for (i = 0; i < config->num_output; i++) { output = config->output[i]; if (output->crtc == crtc) { randr_output = output->randr_output; randr_outputs[numOutputs++] = randr_output; /* * We make copies of modes, so pointer equality * isn't sufficient */ for (j = 0; j < randr_output->numModes + randr_output->numUserModes; j++) { RRModePtr m = (j < randr_output->numModes ? randr_output-> modes[j] : randr_output->userModes[j - randr_output-> numModes]); if (xf86RandRModeMatches(m, mode)) { randr_mode = m; break; } } } } ret = RRCrtcNotify(randr_crtc, randr_mode, x, y, rotation, crtc->transformPresent ? &crtc->transform : NULL, numOutputs, randr_outputs); free(randr_outputs); return ret; } /* * Convert a RandR mode to a DisplayMode */ static void xf86RandRModeConvert(ScrnInfoPtr scrn, RRModePtr randr_mode, DisplayModePtr mode) { memset(mode, 0, sizeof(DisplayModeRec)); mode->status = MODE_OK; mode->Clock = randr_mode->mode.dotClock / 1000; mode->HDisplay = randr_mode->mode.width; mode->HSyncStart = randr_mode->mode.hSyncStart; mode->HSyncEnd = randr_mode->mode.hSyncEnd; mode->HTotal = randr_mode->mode.hTotal; mode->HSkew = randr_mode->mode.hSkew; mode->VDisplay = randr_mode->mode.height; mode->VSyncStart = randr_mode->mode.vSyncStart; mode->VSyncEnd = randr_mode->mode.vSyncEnd; mode->VTotal = randr_mode->mode.vTotal; mode->VScan = 0; mode->Flags = randr_mode->mode.modeFlags & FLAG_BITS; xf86SetModeCrtc(mode, scrn->adjustFlags); } static Bool xf86RandR12CrtcSet(ScreenPtr pScreen, RRCrtcPtr randr_crtc, RRModePtr randr_mode, int x, int y, Rotation rotation, int num_randr_outputs, RROutputPtr * randr_outputs) { XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); xf86CrtcPtr crtc = randr_crtc->devPrivate; RRTransformPtr transform; Bool changed = FALSE; int o, ro; xf86CrtcPtr *save_crtcs; Bool save_enabled = crtc->enabled; if (!crtc->scrn->vtSema) return FALSE; save_crtcs = malloc(config->num_output * sizeof(xf86CrtcPtr)); if ((randr_mode != NULL) != crtc->enabled) changed = TRUE; else if (randr_mode && !xf86RandRModeMatches(randr_mode, &crtc->mode)) changed = TRUE; if (rotation != crtc->rotation) changed = TRUE; transform = RRCrtcGetTransform(randr_crtc); if ((transform != NULL) != crtc->transformPresent) changed = TRUE; else if (transform && memcmp(&transform->transform, &crtc->transform.transform, sizeof(transform->transform)) != 0) changed = TRUE; if (x != crtc->x || y != crtc->y) changed = TRUE; for (o = 0; o < config->num_output; o++) { xf86OutputPtr output = config->output[o]; xf86CrtcPtr new_crtc; save_crtcs[o] = output->crtc; if (output->crtc == crtc) new_crtc = NULL; else new_crtc = output->crtc; for (ro = 0; ro < num_randr_outputs; ro++) if (output->randr_output == randr_outputs[ro]) { new_crtc = crtc; break; } if (new_crtc != output->crtc) { changed = TRUE; output->crtc = new_crtc; } } for (ro = 0; ro < num_randr_outputs; ro++) if (randr_outputs[ro]->pendingProperties) changed = TRUE; /* XXX need device-independent mode setting code through an API */ if (changed) { crtc->enabled = randr_mode != NULL; if (randr_mode) { DisplayModeRec mode; RRTransformPtr transform = RRCrtcGetTransform(randr_crtc); xf86RandRModeConvert(pScrn, randr_mode, &mode); if (!xf86CrtcSetModeTransform (crtc, &mode, rotation, transform, x, y)) { crtc->enabled = save_enabled; for (o = 0; o < config->num_output; o++) { xf86OutputPtr output = config->output[o]; output->crtc = save_crtcs[o]; } free(save_crtcs); return FALSE; } xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height); xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY); randrp->panning = PANNING_ENABLED (crtc); /* * Save the last successful setting for EnterVT */ crtc->desiredMode = mode; crtc->desiredRotation = rotation; if (transform) { crtc->desiredTransform = *transform; crtc->desiredTransformPresent = TRUE; } else crtc->desiredTransformPresent = FALSE; crtc->desiredX = x; crtc->desiredY = y; } xf86DisableUnusedFunctions(pScrn); } free(save_crtcs); return xf86RandR12CrtcNotify(randr_crtc); } static Bool xf86RandR12CrtcSetGamma(ScreenPtr pScreen, RRCrtcPtr randr_crtc) { xf86CrtcPtr crtc = randr_crtc->devPrivate; if (crtc->funcs->gamma_set == NULL) return FALSE; if (!crtc->scrn->vtSema) return TRUE; /* Realloc local gamma if needed. */ if (randr_crtc->gammaSize != crtc->gamma_size) { CARD16 *tmp_ptr; tmp_ptr = realloc(crtc->gamma_red, 3 * crtc->gamma_size * sizeof(CARD16)); if (!tmp_ptr) return FALSE; crtc->gamma_red = tmp_ptr; crtc->gamma_green = crtc->gamma_red + crtc->gamma_size; crtc->gamma_blue = crtc->gamma_green + crtc->gamma_size; } crtc->gamma_size = randr_crtc->gammaSize; memcpy(crtc->gamma_red, randr_crtc->gammaRed, crtc->gamma_size * sizeof(CARD16)); memcpy(crtc->gamma_green, randr_crtc->gammaGreen, crtc->gamma_size * sizeof(CARD16)); memcpy(crtc->gamma_blue, randr_crtc->gammaBlue, crtc->gamma_size * sizeof(CARD16)); /* Only set it when the crtc is actually running. * Otherwise it will be set when it's activated. */ if (crtc->active) crtc->funcs->gamma_set(crtc, crtc->gamma_red, crtc->gamma_green, crtc->gamma_blue, crtc->gamma_size); return TRUE; } static Bool xf86RandR12CrtcGetGamma(ScreenPtr pScreen, RRCrtcPtr randr_crtc) { xf86CrtcPtr crtc = randr_crtc->devPrivate; if (!crtc->gamma_size) return FALSE; if (!crtc->gamma_red || !crtc->gamma_green || !crtc->gamma_blue) return FALSE; /* Realloc randr gamma if needed. */ if (randr_crtc->gammaSize != crtc->gamma_size) { CARD16 *tmp_ptr; tmp_ptr = realloc(randr_crtc->gammaRed, 3 * crtc->gamma_size * sizeof(CARD16)); if (!tmp_ptr) return FALSE; randr_crtc->gammaRed = tmp_ptr; randr_crtc->gammaGreen = randr_crtc->gammaRed + crtc->gamma_size; randr_crtc->gammaBlue = randr_crtc->gammaGreen + crtc->gamma_size; } randr_crtc->gammaSize = crtc->gamma_size; memcpy(randr_crtc->gammaRed, crtc->gamma_red, crtc->gamma_size * sizeof(CARD16)); memcpy(randr_crtc->gammaGreen, crtc->gamma_green, crtc->gamma_size * sizeof(CARD16)); memcpy(randr_crtc->gammaBlue, crtc->gamma_blue, crtc->gamma_size * sizeof(CARD16)); return TRUE; } static Bool xf86RandR12OutputSetProperty(ScreenPtr pScreen, RROutputPtr randr_output, Atom property, RRPropertyValuePtr value) { xf86OutputPtr output = randr_output->devPrivate; /* If we don't have any property handler, then we don't care what the * user is setting properties to. */ if (output->funcs->set_property == NULL) return TRUE; /* * This function gets called even when vtSema is FALSE, as * drivers will need to remember the correct value to apply * when the VT switch occurs */ return output->funcs->set_property(output, property, value); } static Bool xf86RandR13OutputGetProperty(ScreenPtr pScreen, RROutputPtr randr_output, Atom property) { xf86OutputPtr output = randr_output->devPrivate; if (output->funcs->get_property == NULL) return TRUE; /* Should be safe even w/o vtSema */ return output->funcs->get_property(output, property); } static Bool xf86RandR12OutputValidateMode(ScreenPtr pScreen, RROutputPtr randr_output, RRModePtr randr_mode) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86OutputPtr output = randr_output->devPrivate; DisplayModeRec mode; xf86RandRModeConvert(pScrn, randr_mode, &mode); /* * This function may be called when vtSema is FALSE, so * the underlying function must either avoid touching the hardware * or return FALSE when vtSema is FALSE */ if (output->funcs->mode_valid(output, &mode) != MODE_OK) return FALSE; return TRUE; } static void xf86RandR12ModeDestroy(ScreenPtr pScreen, RRModePtr randr_mode) { } /** * Given a list of xf86 modes and a RandR Output object, construct * RandR modes and assign them to the output */ static Bool xf86RROutputSetModes(RROutputPtr randr_output, DisplayModePtr modes) { DisplayModePtr mode; RRModePtr *rrmodes = NULL; int nmode = 0; int npreferred = 0; Bool ret = TRUE; int pref; for (mode = modes; mode; mode = mode->next) nmode++; if (nmode) { rrmodes = malloc(nmode * sizeof(RRModePtr)); if (!rrmodes) return FALSE; nmode = 0; for (pref = 1; pref >= 0; pref--) { for (mode = modes; mode; mode = mode->next) { if ((pref != 0) == ((mode->type & M_T_PREFERRED) != 0)) { xRRModeInfo modeInfo; RRModePtr rrmode; modeInfo.nameLength = strlen(mode->name); modeInfo.width = mode->HDisplay; modeInfo.dotClock = mode->Clock * 1000; modeInfo.hSyncStart = mode->HSyncStart; modeInfo.hSyncEnd = mode->HSyncEnd; modeInfo.hTotal = mode->HTotal; modeInfo.hSkew = mode->HSkew; modeInfo.height = mode->VDisplay; modeInfo.vSyncStart = mode->VSyncStart; modeInfo.vSyncEnd = mode->VSyncEnd; modeInfo.vTotal = mode->VTotal; modeInfo.modeFlags = mode->Flags; rrmode = RRModeGet(&modeInfo, mode->name); if (rrmode) { rrmodes[nmode++] = rrmode; npreferred += pref; } } } } } ret = RROutputSetModes(randr_output, rrmodes, nmode, npreferred); free(rrmodes); return ret; } /* * Mirror the current mode configuration to RandR */ static Bool xf86RandR12SetInfo12(ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); RROutputPtr *clones; RRCrtcPtr *crtcs; int ncrtc; int o, c, l; RRCrtcPtr randr_crtc; int nclone; clones = malloc(config->num_output * sizeof(RROutputPtr)); crtcs = malloc(config->num_crtc * sizeof(RRCrtcPtr)); for (o = 0; o < config->num_output; o++) { xf86OutputPtr output = config->output[o]; ncrtc = 0; for (c = 0; c < config->num_crtc; c++) if (output->possible_crtcs & (1 << c)) crtcs[ncrtc++] = config->crtc[c]->randr_crtc; if (output->crtc) randr_crtc = output->crtc->randr_crtc; else randr_crtc = NULL; if (!RROutputSetCrtcs(output->randr_output, crtcs, ncrtc)) { free(crtcs); free(clones); return FALSE; } RROutputSetPhysicalSize(output->randr_output, output->mm_width, output->mm_height); xf86RROutputSetModes(output->randr_output, output->probed_modes); switch (output->status) { case XF86OutputStatusConnected: RROutputSetConnection(output->randr_output, RR_Connected); break; case XF86OutputStatusDisconnected: RROutputSetConnection(output->randr_output, RR_Disconnected); break; case XF86OutputStatusUnknown: RROutputSetConnection(output->randr_output, RR_UnknownConnection); break; } RROutputSetSubpixelOrder(output->randr_output, output->subpixel_order); /* * Valid clones */ nclone = 0; for (l = 0; l < config->num_output; l++) { xf86OutputPtr clone = config->output[l]; if (l != o && (output->possible_clones & (1 << l))) clones[nclone++] = clone->randr_output; } if (!RROutputSetClones(output->randr_output, clones, nclone)) { free(crtcs); free(clones); return FALSE; } } free(crtcs); free(clones); return TRUE; } /* * Query the hardware for the current state, then mirror * that to RandR */ static Bool xf86RandR12GetInfo12(ScreenPtr pScreen, Rotation * rotations) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; if (!pScrn->vtSema) return TRUE; xf86ProbeOutputModes(pScrn, 0, 0); xf86SetScrnInfoModes(pScrn); return xf86RandR12SetInfo12(pScreen); } static Bool xf86RandR12CreateObjects12(ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); int c; int o; if (!RRInit()) return FALSE; /* * Configure crtcs */ for (c = 0; c < config->num_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; crtc->randr_crtc = RRCrtcCreate(pScreen, crtc); RRCrtcGammaSetSize(crtc->randr_crtc, 256); } /* * Configure outputs */ for (o = 0; o < config->num_output; o++) { xf86OutputPtr output = config->output[o]; output->randr_output = RROutputCreate(pScreen, output->name, strlen(output->name), output); if (output->funcs->create_resources != NULL) output->funcs->create_resources(output); RRPostPendingProperties(output->randr_output); } return TRUE; } static Bool xf86RandR12CreateScreenResources12(ScreenPtr pScreen) { int c; ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); if (xf86RandR12Key == NULL) return TRUE; for (c = 0; c < config->num_crtc; c++) xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc); RRScreenSetSizeRange(pScreen, config->minWidth, config->minHeight, config->maxWidth, config->maxHeight); return TRUE; } /* * Something happened within the screen configuration due * to DGA, VidMode or hot key. Tell RandR */ void xf86RandR12TellChanged(ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); int c; if (xf86RandR12Key == NULL) return; xf86RandR12SetInfo12(pScreen); for (c = 0; c < config->num_crtc; c++) xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc); RRTellChanged(pScreen); } static void xf86RandR12PointerMoved(int scrnIndex, int x, int y) { ScreenPtr pScreen = screenInfo.screens[scrnIndex]; ScrnInfoPtr pScrn = XF86SCRNINFO(pScreen); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn); XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); int c; randrp->pointerX = x; randrp->pointerY = y; for (c = 0; c < config->num_crtc; c++) xf86RandR13Pan(config->crtc[c], x, y); } static Bool xf86RandR13GetPanning(ScreenPtr pScreen, RRCrtcPtr randr_crtc, BoxPtr totalArea, BoxPtr trackingArea, INT16 *border) { xf86CrtcPtr crtc = randr_crtc->devPrivate; if (crtc->version < 2) return FALSE; if (totalArea) memcpy(totalArea, &crtc->panningTotalArea, sizeof(BoxRec)); if (trackingArea) memcpy(trackingArea, &crtc->panningTrackingArea, sizeof(BoxRec)); if (border) memcpy(border, crtc->panningBorder, 4 * sizeof(INT16)); return TRUE; } static Bool xf86RandR13SetPanning(ScreenPtr pScreen, RRCrtcPtr randr_crtc, BoxPtr totalArea, BoxPtr trackingArea, INT16 *border) { XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); xf86CrtcPtr crtc = randr_crtc->devPrivate; BoxRec oldTotalArea; BoxRec oldTrackingArea; INT16 oldBorder[4]; Bool oldPanning = randrp->panning; if (crtc->version < 2) return FALSE; memcpy(&oldTotalArea, &crtc->panningTotalArea, sizeof(BoxRec)); memcpy(&oldTrackingArea, &crtc->panningTrackingArea, sizeof(BoxRec)); memcpy(oldBorder, crtc->panningBorder, 4 * sizeof(INT16)); if (totalArea) memcpy(&crtc->panningTotalArea, totalArea, sizeof(BoxRec)); if (trackingArea) memcpy(&crtc->panningTrackingArea, trackingArea, sizeof(BoxRec)); if (border) memcpy(crtc->panningBorder, border, 4 * sizeof(INT16)); if (xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height)) { xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY); randrp->panning = PANNING_ENABLED (crtc); return TRUE; } else { /* Restore old settings */ memcpy(&crtc->panningTotalArea, &oldTotalArea, sizeof(BoxRec)); memcpy(&crtc->panningTrackingArea, &oldTrackingArea, sizeof(BoxRec)); memcpy(crtc->panningBorder, oldBorder, 4 * sizeof(INT16)); randrp->panning = oldPanning; return FALSE; } } /* * Compatibility with XF86VidMode's gamma changer. This necessarily clobbers * any per-crtc setup. You asked for it... */ static void gamma_to_ramp(float gamma, CARD16 *ramp, int size) { int i; for (i = 0; i < size; i++) { if (gamma == 1.0) ramp[i] = i << 8; else ramp[i] = (CARD16) (pow((double) i / (double) (size - 1), 1. / gamma) * (double) (size - 1) * 256); } } static int xf86RandR12ChangeGamma(int scrnIndex, Gamma gamma) { CARD16 *points, *red, *green, *blue; ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; RRCrtcPtr crtc = xf86CompatRRCrtc(pScrn); int size; if (!crtc) return Success; size = max(0, crtc->gammaSize); if (!size) return Success; points = calloc(size, 3 * sizeof(CARD16)); if (!points) return BadAlloc; red = points; green = points + size; blue = points + 2 * size; gamma_to_ramp(gamma.red, red, size); gamma_to_ramp(gamma.green, green, size); gamma_to_ramp(gamma.blue, blue, size); RRCrtcGammaSet(crtc, red, green, blue); free(points); pScrn->gamma = gamma; return Success; } static Bool xf86RandR12EnterVT(int screen_index, int flags) { ScreenPtr pScreen = screenInfo.screens[screen_index]; ScrnInfoPtr pScrn = xf86Screens[screen_index]; XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); rrScrPrivPtr rp = rrGetScrPriv(pScreen); Bool ret; int i; if (randrp->orig_EnterVT) { pScrn->EnterVT = randrp->orig_EnterVT; ret = pScrn->EnterVT(screen_index, flags); randrp->orig_EnterVT = pScrn->EnterVT; pScrn->EnterVT = xf86RandR12EnterVT; if (!ret) return FALSE; } /* reload gamma */ for (i = 0; i < rp->numCrtcs; i++) xf86RandR12CrtcSetGamma(pScreen, rp->crtcs[i]); return RRGetInfo(pScreen, TRUE); /* force a re-probe of outputs and notify clients about changes */ } static void xf86RandR13ConstrainCursorHarder(DeviceIntPtr dev, ScreenPtr screen, int mode, int *x, int *y) { XF86RandRInfoPtr randrp = XF86RANDRINFO(screen); if (randrp->panning) return; if (randrp->orig_ConstrainCursorHarder) { screen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder; screen->ConstrainCursorHarder(dev, screen, mode, x, y); screen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder; } } static Bool xf86RandR12Init12(ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; rrScrPrivPtr rp = rrGetScrPriv(pScreen); XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen); int i; rp->rrGetInfo = xf86RandR12GetInfo12; rp->rrScreenSetSize = xf86RandR12ScreenSetSize; rp->rrCrtcSet = xf86RandR12CrtcSet; rp->rrCrtcSetGamma = xf86RandR12CrtcSetGamma; rp->rrCrtcGetGamma = xf86RandR12CrtcGetGamma; rp->rrOutputSetProperty = xf86RandR12OutputSetProperty; rp->rrOutputValidateMode = xf86RandR12OutputValidateMode; #if RANDR_13_INTERFACE rp->rrOutputGetProperty = xf86RandR13OutputGetProperty; rp->rrGetPanning = xf86RandR13GetPanning; rp->rrSetPanning = xf86RandR13SetPanning; #endif rp->rrModeDestroy = xf86RandR12ModeDestroy; rp->rrSetConfig = NULL; pScrn->PointerMoved = xf86RandR12PointerMoved; pScrn->ChangeGamma = xf86RandR12ChangeGamma; randrp->orig_EnterVT = pScrn->EnterVT; pScrn->EnterVT = xf86RandR12EnterVT; randrp->panning = FALSE; randrp->orig_ConstrainCursorHarder = pScreen->ConstrainCursorHarder; pScreen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder; if (!xf86RandR12CreateObjects12(pScreen)) return FALSE; /* * Configure output modes */ if (!xf86RandR12SetInfo12(pScreen)) return FALSE; for (i = 0; i < rp->numCrtcs; i++) { xf86RandR12CrtcGetGamma(pScreen, rp->crtcs[i]); } return TRUE; } #endif Bool xf86RandR12PreInit(ScrnInfoPtr pScrn) { return TRUE; }