/** * \file xf86drm.c * User-level interface to DRM device * * \author Rickard E. (Rik) Faith * \author Kevin E. Martin */ /* * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define stat_t struct stat #include #include #include #ifdef HAVE_SYS_MKDEV_H # include /* defines major(), minor(), and makedev() on Solaris */ #endif #include /* Not all systems have MAP_FAILED defined */ #ifndef MAP_FAILED #define MAP_FAILED ((void *)-1) #endif #include "xf86drm.h" #include "libdrm_macros.h" #include "util_math.h" #ifdef __OpenBSD__ #define DRM_PRIMARY_MINOR_NAME "drm" #define DRM_CONTROL_MINOR_NAME "drmC" #define DRM_RENDER_MINOR_NAME "drmR" #else #define DRM_PRIMARY_MINOR_NAME "card" #define DRM_CONTROL_MINOR_NAME "controlD" #define DRM_RENDER_MINOR_NAME "renderD" #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #define DRM_MAJOR 145 #endif #ifdef __NetBSD__ #define DRM_MAJOR 34 #endif #ifdef __OpenBSD__ #ifdef __i386__ #define DRM_MAJOR 88 #else #define DRM_MAJOR 87 #endif #endif /* __OpenBSD__ */ #ifndef DRM_MAJOR #define DRM_MAJOR 226 /* Linux */ #endif #ifdef __OpenBSD__ #define X_PRIVSEP #endif #define DRM_MSG_VERBOSITY 3 #define memclear(s) memset(&s, 0, sizeof(s)) static drmServerInfoPtr drm_server_info; void drmSetServerInfo(drmServerInfoPtr info) { drm_server_info = info; } /** * Output a message to stderr. * * \param format printf() like format string. * * \internal * This function is a wrapper around vfprintf(). */ static int DRM_PRINTFLIKE(1, 0) drmDebugPrint(const char *format, va_list ap) { return vfprintf(stderr, format, ap); } void drmMsg(const char *format, ...) { va_list ap; const char *env; if (((env = getenv("LIBGL_DEBUG")) && strstr(env, "verbose")) || (drm_server_info && drm_server_info->debug_print)) { va_start(ap, format); if (drm_server_info) { drm_server_info->debug_print(format,ap); } else { drmDebugPrint(format, ap); } va_end(ap); } } static void *drmHashTable = NULL; /* Context switch callbacks */ void *drmGetHashTable(void) { return drmHashTable; } void *drmMalloc(int size) { return calloc(1, size); } void drmFree(void *pt) { free(pt); } /** * Call ioctl, restarting if it is interupted */ int drmIoctl(int fd, unsigned long request, void *arg) { int ret; do { ret = ioctl(fd, request, arg); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); return ret; } static unsigned long drmGetKeyFromFd(int fd) { stat_t st; st.st_rdev = 0; fstat(fd, &st); return st.st_rdev; } drmHashEntry *drmGetEntry(int fd) { unsigned long key = drmGetKeyFromFd(fd); void *value; drmHashEntry *entry; if (!drmHashTable) drmHashTable = drmHashCreate(); if (drmHashLookup(drmHashTable, key, &value)) { entry = drmMalloc(sizeof(*entry)); entry->fd = fd; entry->f = NULL; entry->tagTable = drmHashCreate(); drmHashInsert(drmHashTable, key, entry); } else { entry = value; } return entry; } /** * Compare two busid strings * * \param first * \param second * * \return 1 if matched. * * \internal * This function compares two bus ID strings. It understands the older * PCI:b:d:f format and the newer pci:oooo:bb:dd.f format. In the format, o is * domain, b is bus, d is device, f is function. */ static int drmMatchBusID(const char *id1, const char *id2, int pci_domain_ok) { /* First, check if the IDs are exactly the same */ if (strcasecmp(id1, id2) == 0) return 1; /* Try to match old/new-style PCI bus IDs. */ if (strncasecmp(id1, "pci", 3) == 0) { unsigned int o1, b1, d1, f1; unsigned int o2, b2, d2, f2; int ret; ret = sscanf(id1, "pci:%04x:%02x:%02x.%u", &o1, &b1, &d1, &f1); if (ret != 4) { o1 = 0; ret = sscanf(id1, "PCI:%u:%u:%u", &b1, &d1, &f1); if (ret != 3) return 0; } ret = sscanf(id2, "pci:%04x:%02x:%02x.%u", &o2, &b2, &d2, &f2); if (ret != 4) { o2 = 0; ret = sscanf(id2, "PCI:%u:%u:%u", &b2, &d2, &f2); if (ret != 3) return 0; } /* If domains aren't properly supported by the kernel interface, * just ignore them, which sucks less than picking a totally random * card with "open by name" */ if (!pci_domain_ok) o1 = o2 = 0; if ((o1 != o2) || (b1 != b2) || (d1 != d2) || (f1 != f2)) return 0; else return 1; } return 0; } /** * Handles error checking for chown call. * * \param path to file. * \param id of the new owner. * \param id of the new group. * * \return zero if success or -1 if failure. * * \internal * Checks for failure. If failure was caused by signal call chown again. * If any other failure happened then it will output error mesage using * drmMsg() call. */ #if !defined(UDEV) static int chown_check_return(const char *path, uid_t owner, gid_t group) { int rv; do { rv = chown(path, owner, group); } while (rv != 0 && errno == EINTR); if (rv == 0) return 0; drmMsg("Failed to change owner or group for file %s! %d: %s\n", path, errno, strerror(errno)); return -1; } #endif #ifdef X_PRIVSEP static int _priv_open_device(const char *path) { drmMsg("_priv_open_device\n"); return open(path, O_RDWR, 0); } int priv_open_device(const char *) __attribute__((weak, alias ("_priv_open_device"))); #endif /** * Open the DRM device, creating it if necessary. * * \param dev major and minor numbers of the device. * \param minor minor number of the device. * * \return a file descriptor on success, or a negative value on error. * * \internal * Assembles the device name from \p minor and opens it, creating the device * special file node with the major and minor numbers specified by \p dev and * parent directory if necessary and was called by root. */ static int drmOpenDevice(dev_t dev, int minor, int type) { stat_t st; const char *dev_name; char buf[64]; int fd; mode_t devmode = DRM_DEV_MODE, serv_mode; gid_t serv_group; #if !defined(UDEV) int isroot = !geteuid(); uid_t user = DRM_DEV_UID; gid_t group = DRM_DEV_GID; #endif switch (type) { case DRM_NODE_PRIMARY: dev_name = DRM_DEV_NAME; break; case DRM_NODE_CONTROL: dev_name = DRM_CONTROL_DEV_NAME; break; case DRM_NODE_RENDER: dev_name = DRM_RENDER_DEV_NAME; break; default: return -EINVAL; }; sprintf(buf, dev_name, DRM_DIR_NAME, minor); drmMsg("drmOpenDevice: node name is %s\n", buf); if (drm_server_info && drm_server_info->get_perms) { drm_server_info->get_perms(&serv_group, &serv_mode); devmode = serv_mode ? serv_mode : DRM_DEV_MODE; devmode &= ~(S_IXUSR|S_IXGRP|S_IXOTH); } #ifndef __OpenBSD__ #if !defined(UDEV) if (stat(DRM_DIR_NAME, &st)) { if (!isroot) return DRM_ERR_NOT_ROOT; mkdir(DRM_DIR_NAME, DRM_DEV_DIRMODE); chown_check_return(DRM_DIR_NAME, 0, 0); /* root:root */ chmod(DRM_DIR_NAME, DRM_DEV_DIRMODE); } /* Check if the device node exists and create it if necessary. */ if (stat(buf, &st)) { if (!isroot) return DRM_ERR_NOT_ROOT; remove(buf); mknod(buf, S_IFCHR | devmode, dev); } if (drm_server_info && drm_server_info->get_perms) { group = ((int)serv_group >= 0) ? serv_group : DRM_DEV_GID; chown_check_return(buf, user, group); chmod(buf, devmode); } #else /* if we modprobed then wait for udev */ { int udev_count = 0; wait_for_udev: if (stat(DRM_DIR_NAME, &st)) { usleep(20); udev_count++; if (udev_count == 50) return -1; goto wait_for_udev; } if (stat(buf, &st)) { usleep(20); udev_count++; if (udev_count == 50) return -1; goto wait_for_udev; } } #endif #endif /* __OpenBSD__ */ #ifndef X_PRIVSEP fd = open(buf, O_RDWR, 0); #else fd = priv_open_device(buf); #endif drmMsg("drmOpenDevice: open result is %d, (%s)\n", fd, fd < 0 ? strerror(errno) : "OK"); if (fd >= 0) return fd; #if !defined(UDEV) && !defined(__OpenBSD__) /* Check if the device node is not what we expect it to be, and recreate it * and try again if so. */ if (st.st_rdev != dev) { if (!isroot) return DRM_ERR_NOT_ROOT; remove(buf); mknod(buf, S_IFCHR | devmode, dev); if (drm_server_info && drm_server_info->get_perms) { chown_check_return(buf, user, group); chmod(buf, devmode); } } fd = open(buf, O_RDWR, 0); drmMsg("drmOpenDevice: open result is %d, (%s)\n", fd, fd < 0 ? strerror(errno) : "OK"); if (fd >= 0) return fd; drmMsg("drmOpenDevice: Open failed\n"); remove(buf); #endif return -errno; } /** * Open the DRM device * * \param minor device minor number. * \param create allow to create the device if set. * * \return a file descriptor on success, or a negative value on error. * * \internal * Calls drmOpenDevice() if \p create is set, otherwise assembles the device * name from \p minor and opens it. */ static int drmOpenMinor(int minor, int create, int type) { int fd; char buf[64]; const char *dev_name; if (create) return drmOpenDevice(makedev(DRM_MAJOR, minor), minor, type); switch (type) { case DRM_NODE_PRIMARY: dev_name = DRM_DEV_NAME; break; case DRM_NODE_CONTROL: dev_name = DRM_CONTROL_DEV_NAME; break; case DRM_NODE_RENDER: dev_name = DRM_RENDER_DEV_NAME; break; default: return -EINVAL; }; sprintf(buf, dev_name, DRM_DIR_NAME, minor); #ifndef X_PRIVSEP fd = open(buf, O_RDWR, 0); #else fd = priv_open_device(buf); #endif if (fd >= 0) return fd; return -errno; } /** * Determine whether the DRM kernel driver has been loaded. * * \return 1 if the DRM driver is loaded, 0 otherwise. * * \internal * Determine the presence of the kernel driver by attempting to open the 0 * minor and get version information. For backward compatibility with older * Linux implementations, /proc/dri is also checked. */ int drmAvailable(void) { drmVersionPtr version; int retval = 0; int fd; if ((fd = drmOpenMinor(0, 1, DRM_NODE_PRIMARY)) < 0) { #ifdef __linux__ /* Try proc for backward Linux compatibility */ if (!access("/proc/dri/0", R_OK)) return 1; #endif return 0; } if ((version = drmGetVersion(fd))) { retval = 1; drmFreeVersion(version); } close(fd); return retval; } static int drmGetMinorBase(int type) { switch (type) { case DRM_NODE_PRIMARY: return 0; case DRM_NODE_CONTROL: return 64; case DRM_NODE_RENDER: return 128; default: return -1; }; } static int drmGetMinorType(int minor) { int type = minor >> 6; if (minor < 0) return -1; switch (type) { case DRM_NODE_PRIMARY: case DRM_NODE_CONTROL: case DRM_NODE_RENDER: return type; default: return -1; } } static const char *drmGetMinorName(int type) { switch (type) { case DRM_NODE_PRIMARY: return DRM_PRIMARY_MINOR_NAME; case DRM_NODE_CONTROL: return DRM_CONTROL_MINOR_NAME; case DRM_NODE_RENDER: return DRM_RENDER_MINOR_NAME; default: return NULL; } } /** * Open the device by bus ID. * * \param busid bus ID. * \param type device node type. * * \return a file descriptor on success, or a negative value on error. * * \internal * This function attempts to open every possible minor (up to DRM_MAX_MINOR), * comparing the device bus ID with the one supplied. * * \sa drmOpenMinor() and drmGetBusid(). */ static int drmOpenByBusid(const char *busid, int type) { int i, pci_domain_ok = 1; int fd; const char *buf; drmSetVersion sv; int base = drmGetMinorBase(type); if (base < 0) return -1; drmMsg("drmOpenByBusid: Searching for BusID %s\n", busid); for (i = base; i < base + DRM_MAX_MINOR; i++) { fd = drmOpenMinor(i, 1, type); drmMsg("drmOpenByBusid: drmOpenMinor returns %d\n", fd); if (fd >= 0) { /* We need to try for 1.4 first for proper PCI domain support * and if that fails, we know the kernel is busted */ sv.drm_di_major = 1; sv.drm_di_minor = 4; sv.drm_dd_major = -1; /* Don't care */ sv.drm_dd_minor = -1; /* Don't care */ if (drmSetInterfaceVersion(fd, &sv)) { #ifndef __alpha__ pci_domain_ok = 0; #endif sv.drm_di_major = 1; sv.drm_di_minor = 1; sv.drm_dd_major = -1; /* Don't care */ sv.drm_dd_minor = -1; /* Don't care */ drmMsg("drmOpenByBusid: Interface 1.4 failed, trying 1.1\n"); drmSetInterfaceVersion(fd, &sv); } buf = drmGetBusid(fd); drmMsg("drmOpenByBusid: drmGetBusid reports %s\n", buf); if (buf && drmMatchBusID(buf, busid, pci_domain_ok)) { drmFreeBusid(buf); return fd; } if (buf) drmFreeBusid(buf); close(fd); } } return -1; } /** * Open the device by name. * * \param name driver name. * \param type the device node type. * * \return a file descriptor on success, or a negative value on error. * * \internal * This function opens the first minor number that matches the driver name and * isn't already in use. If it's in use it then it will already have a bus ID * assigned. * * \sa drmOpenMinor(), drmGetVersion() and drmGetBusid(). */ static int drmOpenByName(const char *name, int type) { int i; int fd; drmVersionPtr version; char * id; int base = drmGetMinorBase(type); if (base < 0) return -1; /* * Open the first minor number that matches the driver name and isn't * already in use. If it's in use it will have a busid assigned already. */ for (i = base; i < base + DRM_MAX_MINOR; i++) { if ((fd = drmOpenMinor(i, 1, type)) >= 0) { if ((version = drmGetVersion(fd))) { if (!strcmp(version->name, name)) { drmFreeVersion(version); id = drmGetBusid(fd); drmMsg("drmGetBusid returned '%s'\n", id ? id : "NULL"); if (!id || !*id) { if (id) drmFreeBusid(id); return fd; } else { drmFreeBusid(id); } } else { drmFreeVersion(version); } } close(fd); } } #ifdef __linux__ /* Backward-compatibility /proc support */ for (i = 0; i < 8; i++) { char proc_name[64], buf[512]; char *driver, *pt, *devstring; int retcode; sprintf(proc_name, "/proc/dri/%d/name", i); if ((fd = open(proc_name, 0, 0)) >= 0) { retcode = read(fd, buf, sizeof(buf)-1); close(fd); if (retcode) { buf[retcode-1] = '\0'; for (driver = pt = buf; *pt && *pt != ' '; ++pt) ; if (*pt) { /* Device is next */ *pt = '\0'; if (!strcmp(driver, name)) { /* Match */ for (devstring = ++pt; *pt && *pt != ' '; ++pt) ; if (*pt) { /* Found busid */ return drmOpenByBusid(++pt, type); } else { /* No busid */ return drmOpenDevice(strtol(devstring, NULL, 0),i, type); } } } } } } #endif return -1; } /** * Open the DRM device. * * Looks up the specified name and bus ID, and opens the device found. The * entry in /dev/dri is created if necessary and if called by root. * * \param name driver name. Not referenced if bus ID is supplied. * \param busid bus ID. Zero if not known. * * \return a file descriptor on success, or a negative value on error. * * \internal * It calls drmOpenByBusid() if \p busid is specified or drmOpenByName() * otherwise. */ int drmOpen(const char *name, const char *busid) { return drmOpenWithType(name, busid, DRM_NODE_PRIMARY); } /** * Open the DRM device with specified type. * * Looks up the specified name and bus ID, and opens the device found. The * entry in /dev/dri is created if necessary and if called by root. * * \param name driver name. Not referenced if bus ID is supplied. * \param busid bus ID. Zero if not known. * \param type the device node type to open, PRIMARY, CONTROL or RENDER * * \return a file descriptor on success, or a negative value on error. * * \internal * It calls drmOpenByBusid() if \p busid is specified or drmOpenByName() * otherwise. */ int drmOpenWithType(const char *name, const char *busid, int type) { if (!drmAvailable() && name != NULL && drm_server_info && drm_server_info->load_module) { /* try to load the kernel module */ if (!drm_server_info->load_module(name)) { drmMsg("[drm] failed to load kernel module \"%s\"\n", name); return -1; } } if (busid) { int fd = drmOpenByBusid(busid, type); if (fd >= 0) return fd; } if (name) return drmOpenByName(name, type); return -1; } int drmOpenControl(int minor) { return drmOpenMinor(minor, 0, DRM_NODE_CONTROL); } int drmOpenRender(int minor) { return drmOpenMinor(minor, 0, DRM_NODE_RENDER); } /** * Free the version information returned by drmGetVersion(). * * \param v pointer to the version information. * * \internal * It frees the memory pointed by \p %v as well as all the non-null strings * pointers in it. */ void drmFreeVersion(drmVersionPtr v) { if (!v) return; drmFree(v->name); drmFree(v->date); drmFree(v->desc); drmFree(v); } /** * Free the non-public version information returned by the kernel. * * \param v pointer to the version information. * * \internal * Used by drmGetVersion() to free the memory pointed by \p %v as well as all * the non-null strings pointers in it. */ static void drmFreeKernelVersion(drm_version_t *v) { if (!v) return; drmFree(v->name); drmFree(v->date); drmFree(v->desc); drmFree(v); } /** * Copy version information. * * \param d destination pointer. * \param s source pointer. * * \internal * Used by drmGetVersion() to translate the information returned by the ioctl * interface in a private structure into the public structure counterpart. */ static void drmCopyVersion(drmVersionPtr d, const drm_version_t *s) { d->version_major = s->version_major; d->version_minor = s->version_minor; d->version_patchlevel = s->version_patchlevel; d->name_len = s->name_len; d->name = strdup(s->name); d->date_len = s->date_len; d->date = strdup(s->date); d->desc_len = s->desc_len; d->desc = strdup(s->desc); } /** * Query the driver version information. * * \param fd file descriptor. * * \return pointer to a drmVersion structure which should be freed with * drmFreeVersion(). * * \note Similar information is available via /proc/dri. * * \internal * It gets the version information via successive DRM_IOCTL_VERSION ioctls, * first with zeros to get the string lengths, and then the actually strings. * It also null-terminates them since they might not be already. */ drmVersionPtr drmGetVersion(int fd) { drmVersionPtr retval; drm_version_t *version = drmMalloc(sizeof(*version)); memclear(*version); if (drmIoctl(fd, DRM_IOCTL_VERSION, version)) { drmFreeKernelVersion(version); return NULL; } if (version->name_len) version->name = drmMalloc(version->name_len + 1); if (version->date_len) version->date = drmMalloc(version->date_len + 1); if (version->desc_len) version->desc = drmMalloc(version->desc_len + 1); if (drmIoctl(fd, DRM_IOCTL_VERSION, version)) { drmMsg("DRM_IOCTL_VERSION: %s\n", strerror(errno)); drmFreeKernelVersion(version); return NULL; } /* The results might not be null-terminated strings, so terminate them. */ if (version->name_len) version->name[version->name_len] = '\0'; if (version->date_len) version->date[version->date_len] = '\0'; if (version->desc_len) version->desc[version->desc_len] = '\0'; retval = drmMalloc(sizeof(*retval)); drmCopyVersion(retval, version); drmFreeKernelVersion(version); return retval; } /** * Get version information for the DRM user space library. * * This version number is driver independent. * * \param fd file descriptor. * * \return version information. * * \internal * This function allocates and fills a drm_version structure with a hard coded * version number. */ drmVersionPtr drmGetLibVersion(int fd) { drm_version_t *version = drmMalloc(sizeof(*version)); /* Version history: * NOTE THIS MUST NOT GO ABOVE VERSION 1.X due to drivers needing it * revision 1.0.x = original DRM interface with no drmGetLibVersion * entry point and many drm extensions * revision 1.1.x = added drmCommand entry points for device extensions * added drmGetLibVersion to identify libdrm.a version * revision 1.2.x = added drmSetInterfaceVersion * modified drmOpen to handle both busid and name * revision 1.3.x = added server + memory manager */ version->version_major = 1; version->version_minor = 3; version->version_patchlevel = 0; return (drmVersionPtr)version; } int drmGetCap(int fd, uint64_t capability, uint64_t *value) { struct drm_get_cap cap; int ret; memclear(cap); cap.capability = capability; ret = drmIoctl(fd, DRM_IOCTL_GET_CAP, &cap); if (ret) return ret; *value = cap.value; return 0; } int drmSetClientCap(int fd, uint64_t capability, uint64_t value) { struct drm_set_client_cap cap; memclear(cap); cap.capability = capability; cap.value = value; return drmIoctl(fd, DRM_IOCTL_SET_CLIENT_CAP, &cap); } /** * Free the bus ID information. * * \param busid bus ID information string as given by drmGetBusid(). * * \internal * This function is just frees the memory pointed by \p busid. */ void drmFreeBusid(const char *busid) { drmFree((void *)busid); } /** * Get the bus ID of the device. * * \param fd file descriptor. * * \return bus ID string. * * \internal * This function gets the bus ID via successive DRM_IOCTL_GET_UNIQUE ioctls to * get the string length and data, passing the arguments in a drm_unique * structure. */ char *drmGetBusid(int fd) { drm_unique_t u; memclear(u); if (drmIoctl(fd, DRM_IOCTL_GET_UNIQUE, &u)) return NULL; u.unique = drmMalloc(u.unique_len + 1); if (drmIoctl(fd, DRM_IOCTL_GET_UNIQUE, &u)) return NULL; u.unique[u.unique_len] = '\0'; return u.unique; } /** * Set the bus ID of the device. * * \param fd file descriptor. * \param busid bus ID string. * * \return zero on success, negative on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_SET_UNIQUE ioctl, passing * the arguments in a drm_unique structure. */ int drmSetBusid(int fd, const char *busid) { drm_unique_t u; memclear(u); u.unique = (char *)busid; u.unique_len = strlen(busid); if (drmIoctl(fd, DRM_IOCTL_SET_UNIQUE, &u)) { return -errno; } return 0; } int drmGetMagic(int fd, drm_magic_t * magic) { drm_auth_t auth; memclear(auth); *magic = 0; if (drmIoctl(fd, DRM_IOCTL_GET_MAGIC, &auth)) return -errno; *magic = auth.magic; return 0; } int drmAuthMagic(int fd, drm_magic_t magic) { drm_auth_t auth; memclear(auth); auth.magic = magic; if (drmIoctl(fd, DRM_IOCTL_AUTH_MAGIC, &auth)) return -errno; return 0; } /** * Specifies a range of memory that is available for mapping by a * non-root process. * * \param fd file descriptor. * \param offset usually the physical address. The actual meaning depends of * the \p type parameter. See below. * \param size of the memory in bytes. * \param type type of the memory to be mapped. * \param flags combination of several flags to modify the function actions. * \param handle will be set to a value that may be used as the offset * parameter for mmap(). * * \return zero on success or a negative value on error. * * \par Mapping the frame buffer * For the frame buffer * - \p offset will be the physical address of the start of the frame buffer, * - \p size will be the size of the frame buffer in bytes, and * - \p type will be DRM_FRAME_BUFFER. * * \par * The area mapped will be uncached. If MTRR support is available in the * kernel, the frame buffer area will be set to write combining. * * \par Mapping the MMIO register area * For the MMIO register area, * - \p offset will be the physical address of the start of the register area, * - \p size will be the size of the register area bytes, and * - \p type will be DRM_REGISTERS. * \par * The area mapped will be uncached. * * \par Mapping the SAREA * For the SAREA, * - \p offset will be ignored and should be set to zero, * - \p size will be the desired size of the SAREA in bytes, * - \p type will be DRM_SHM. * * \par * A shared memory area of the requested size will be created and locked in * kernel memory. This area may be mapped into client-space by using the handle * returned. * * \note May only be called by root. * * \internal * This function is a wrapper around the DRM_IOCTL_ADD_MAP ioctl, passing * the arguments in a drm_map structure. */ int drmAddMap(int fd, drm_handle_t offset, drmSize size, drmMapType type, drmMapFlags flags, drm_handle_t *handle) { drm_map_t map; memclear(map); map.offset = offset; map.size = size; map.type = type; map.flags = flags; if (drmIoctl(fd, DRM_IOCTL_ADD_MAP, &map)) return -errno; if (handle) *handle = (drm_handle_t)(uintptr_t)map.handle; return 0; } int drmRmMap(int fd, drm_handle_t handle) { drm_map_t map; memclear(map); map.handle = (void *)(uintptr_t)handle; if(drmIoctl(fd, DRM_IOCTL_RM_MAP, &map)) return -errno; return 0; } /** * Make buffers available for DMA transfers. * * \param fd file descriptor. * \param count number of buffers. * \param size size of each buffer. * \param flags buffer allocation flags. * \param agp_offset offset in the AGP aperture * * \return number of buffers allocated, negative on error. * * \internal * This function is a wrapper around DRM_IOCTL_ADD_BUFS ioctl. * * \sa drm_buf_desc. */ int drmAddBufs(int fd, int count, int size, drmBufDescFlags flags, int agp_offset) { drm_buf_desc_t request; memclear(request); request.count = count; request.size = size; request.flags = flags; request.agp_start = agp_offset; if (drmIoctl(fd, DRM_IOCTL_ADD_BUFS, &request)) return -errno; return request.count; } int drmMarkBufs(int fd, double low, double high) { drm_buf_info_t info; int i; memclear(info); if (drmIoctl(fd, DRM_IOCTL_INFO_BUFS, &info)) return -EINVAL; if (!info.count) return -EINVAL; if (!(info.list = drmMalloc(info.count * sizeof(*info.list)))) return -ENOMEM; if (drmIoctl(fd, DRM_IOCTL_INFO_BUFS, &info)) { int retval = -errno; drmFree(info.list); return retval; } for (i = 0; i < info.count; i++) { info.list[i].low_mark = low * info.list[i].count; info.list[i].high_mark = high * info.list[i].count; if (drmIoctl(fd, DRM_IOCTL_MARK_BUFS, &info.list[i])) { int retval = -errno; drmFree(info.list); return retval; } } drmFree(info.list); return 0; } /** * Free buffers. * * \param fd file descriptor. * \param count number of buffers to free. * \param list list of buffers to be freed. * * \return zero on success, or a negative value on failure. * * \note This function is primarily used for debugging. * * \internal * This function is a wrapper around the DRM_IOCTL_FREE_BUFS ioctl, passing * the arguments in a drm_buf_free structure. */ int drmFreeBufs(int fd, int count, int *list) { drm_buf_free_t request; memclear(request); request.count = count; request.list = list; if (drmIoctl(fd, DRM_IOCTL_FREE_BUFS, &request)) return -errno; return 0; } /** * Close the device. * * \param fd file descriptor. * * \internal * This function closes the file descriptor. */ int drmClose(int fd) { unsigned long key = drmGetKeyFromFd(fd); drmHashEntry *entry = drmGetEntry(fd); drmHashDestroy(entry->tagTable); entry->fd = 0; entry->f = NULL; entry->tagTable = NULL; drmHashDelete(drmHashTable, key); drmFree(entry); return close(fd); } /** * Map a region of memory. * * \param fd file descriptor. * \param handle handle returned by drmAddMap(). * \param size size in bytes. Must match the size used by drmAddMap(). * \param address will contain the user-space virtual address where the mapping * begins. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper for mmap(). */ int drmMap(int fd, drm_handle_t handle, drmSize size, drmAddressPtr address) { static unsigned long pagesize_mask = 0; if (fd < 0) return -EINVAL; if (!pagesize_mask) pagesize_mask = getpagesize() - 1; size = (size + pagesize_mask) & ~pagesize_mask; *address = drm_mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, handle); if (*address == MAP_FAILED) return -errno; return 0; } /** * Unmap mappings obtained with drmMap(). * * \param address address as given by drmMap(). * \param size size in bytes. Must match the size used by drmMap(). * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper for munmap(). */ int drmUnmap(drmAddress address, drmSize size) { return drm_munmap(address, size); } drmBufInfoPtr drmGetBufInfo(int fd) { drm_buf_info_t info; drmBufInfoPtr retval; int i; memclear(info); if (drmIoctl(fd, DRM_IOCTL_INFO_BUFS, &info)) return NULL; if (info.count) { if (!(info.list = drmMalloc(info.count * sizeof(*info.list)))) return NULL; if (drmIoctl(fd, DRM_IOCTL_INFO_BUFS, &info)) { drmFree(info.list); return NULL; } retval = drmMalloc(sizeof(*retval)); retval->count = info.count; retval->list = drmMalloc(info.count * sizeof(*retval->list)); for (i = 0; i < info.count; i++) { retval->list[i].count = info.list[i].count; retval->list[i].size = info.list[i].size; retval->list[i].low_mark = info.list[i].low_mark; retval->list[i].high_mark = info.list[i].high_mark; } drmFree(info.list); return retval; } return NULL; } /** * Map all DMA buffers into client-virtual space. * * \param fd file descriptor. * * \return a pointer to a ::drmBufMap structure. * * \note The client may not use these buffers until obtaining buffer indices * with drmDMA(). * * \internal * This function calls the DRM_IOCTL_MAP_BUFS ioctl and copies the returned * information about the buffers in a drm_buf_map structure into the * client-visible data structures. */ drmBufMapPtr drmMapBufs(int fd) { drm_buf_map_t bufs; drmBufMapPtr retval; int i; memclear(bufs); if (drmIoctl(fd, DRM_IOCTL_MAP_BUFS, &bufs)) return NULL; if (!bufs.count) return NULL; if (!(bufs.list = drmMalloc(bufs.count * sizeof(*bufs.list)))) return NULL; if (drmIoctl(fd, DRM_IOCTL_MAP_BUFS, &bufs)) { drmFree(bufs.list); return NULL; } retval = drmMalloc(sizeof(*retval)); retval->count = bufs.count; retval->list = drmMalloc(bufs.count * sizeof(*retval->list)); for (i = 0; i < bufs.count; i++) { retval->list[i].idx = bufs.list[i].idx; retval->list[i].total = bufs.list[i].total; retval->list[i].used = 0; retval->list[i].address = bufs.list[i].address; } drmFree(bufs.list); return retval; } /** * Unmap buffers allocated with drmMapBufs(). * * \return zero on success, or negative value on failure. * * \internal * Calls munmap() for every buffer stored in \p bufs and frees the * memory allocated by drmMapBufs(). */ int drmUnmapBufs(drmBufMapPtr bufs) { int i; for (i = 0; i < bufs->count; i++) { drm_munmap(bufs->list[i].address, bufs->list[i].total); } drmFree(bufs->list); drmFree(bufs); return 0; } #define DRM_DMA_RETRY 16 /** * Reserve DMA buffers. * * \param fd file descriptor. * \param request * * \return zero on success, or a negative value on failure. * * \internal * Assemble the arguments into a drm_dma structure and keeps issuing the * DRM_IOCTL_DMA ioctl until success or until maximum number of retries. */ int drmDMA(int fd, drmDMAReqPtr request) { drm_dma_t dma; int ret, i = 0; dma.context = request->context; dma.send_count = request->send_count; dma.send_indices = request->send_list; dma.send_sizes = request->send_sizes; dma.flags = request->flags; dma.request_count = request->request_count; dma.request_size = request->request_size; dma.request_indices = request->request_list; dma.request_sizes = request->request_sizes; dma.granted_count = 0; do { ret = ioctl( fd, DRM_IOCTL_DMA, &dma ); } while ( ret && errno == EAGAIN && i++ < DRM_DMA_RETRY ); if ( ret == 0 ) { request->granted_count = dma.granted_count; return 0; } else { return -errno; } } /** * Obtain heavyweight hardware lock. * * \param fd file descriptor. * \param context context. * \param flags flags that determine the sate of the hardware when the function * returns. * * \return always zero. * * \internal * This function translates the arguments into a drm_lock structure and issue * the DRM_IOCTL_LOCK ioctl until the lock is successfully acquired. */ int drmGetLock(int fd, drm_context_t context, drmLockFlags flags) { drm_lock_t lock; memclear(lock); lock.context = context; lock.flags = 0; if (flags & DRM_LOCK_READY) lock.flags |= _DRM_LOCK_READY; if (flags & DRM_LOCK_QUIESCENT) lock.flags |= _DRM_LOCK_QUIESCENT; if (flags & DRM_LOCK_FLUSH) lock.flags |= _DRM_LOCK_FLUSH; if (flags & DRM_LOCK_FLUSH_ALL) lock.flags |= _DRM_LOCK_FLUSH_ALL; if (flags & DRM_HALT_ALL_QUEUES) lock.flags |= _DRM_HALT_ALL_QUEUES; if (flags & DRM_HALT_CUR_QUEUES) lock.flags |= _DRM_HALT_CUR_QUEUES; while (drmIoctl(fd, DRM_IOCTL_LOCK, &lock)) ; return 0; } /** * Release the hardware lock. * * \param fd file descriptor. * \param context context. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_UNLOCK ioctl, passing the * argument in a drm_lock structure. */ int drmUnlock(int fd, drm_context_t context) { drm_lock_t lock; memclear(lock); lock.context = context; return drmIoctl(fd, DRM_IOCTL_UNLOCK, &lock); } drm_context_t *drmGetReservedContextList(int fd, int *count) { drm_ctx_res_t res; drm_ctx_t *list; drm_context_t * retval; int i; memclear(res); if (drmIoctl(fd, DRM_IOCTL_RES_CTX, &res)) return NULL; if (!res.count) return NULL; if (!(list = drmMalloc(res.count * sizeof(*list)))) return NULL; if (!(retval = drmMalloc(res.count * sizeof(*retval)))) { drmFree(list); return NULL; } res.contexts = list; if (drmIoctl(fd, DRM_IOCTL_RES_CTX, &res)) return NULL; for (i = 0; i < res.count; i++) retval[i] = list[i].handle; drmFree(list); *count = res.count; return retval; } void drmFreeReservedContextList(drm_context_t *pt) { drmFree(pt); } /** * Create context. * * Used by the X server during GLXContext initialization. This causes * per-context kernel-level resources to be allocated. * * \param fd file descriptor. * \param handle is set on success. To be used by the client when requesting DMA * dispatch with drmDMA(). * * \return zero on success, or a negative value on failure. * * \note May only be called by root. * * \internal * This function is a wrapper around the DRM_IOCTL_ADD_CTX ioctl, passing the * argument in a drm_ctx structure. */ int drmCreateContext(int fd, drm_context_t *handle) { drm_ctx_t ctx; memclear(ctx); if (drmIoctl(fd, DRM_IOCTL_ADD_CTX, &ctx)) return -errno; *handle = ctx.handle; return 0; } int drmSwitchToContext(int fd, drm_context_t context) { drm_ctx_t ctx; memclear(ctx); ctx.handle = context; if (drmIoctl(fd, DRM_IOCTL_SWITCH_CTX, &ctx)) return -errno; return 0; } int drmSetContextFlags(int fd, drm_context_t context, drm_context_tFlags flags) { drm_ctx_t ctx; /* * Context preserving means that no context switches are done between DMA * buffers from one context and the next. This is suitable for use in the * X server (which promises to maintain hardware context), or in the * client-side library when buffers are swapped on behalf of two threads. */ memclear(ctx); ctx.handle = context; if (flags & DRM_CONTEXT_PRESERVED) ctx.flags |= _DRM_CONTEXT_PRESERVED; if (flags & DRM_CONTEXT_2DONLY) ctx.flags |= _DRM_CONTEXT_2DONLY; if (drmIoctl(fd, DRM_IOCTL_MOD_CTX, &ctx)) return -errno; return 0; } int drmGetContextFlags(int fd, drm_context_t context, drm_context_tFlagsPtr flags) { drm_ctx_t ctx; memclear(ctx); ctx.handle = context; if (drmIoctl(fd, DRM_IOCTL_GET_CTX, &ctx)) return -errno; *flags = 0; if (ctx.flags & _DRM_CONTEXT_PRESERVED) *flags |= DRM_CONTEXT_PRESERVED; if (ctx.flags & _DRM_CONTEXT_2DONLY) *flags |= DRM_CONTEXT_2DONLY; return 0; } /** * Destroy context. * * Free any kernel-level resources allocated with drmCreateContext() associated * with the context. * * \param fd file descriptor. * \param handle handle given by drmCreateContext(). * * \return zero on success, or a negative value on failure. * * \note May only be called by root. * * \internal * This function is a wrapper around the DRM_IOCTL_RM_CTX ioctl, passing the * argument in a drm_ctx structure. */ int drmDestroyContext(int fd, drm_context_t handle) { drm_ctx_t ctx; memclear(ctx); ctx.handle = handle; if (drmIoctl(fd, DRM_IOCTL_RM_CTX, &ctx)) return -errno; return 0; } int drmCreateDrawable(int fd, drm_drawable_t *handle) { drm_draw_t draw; memclear(draw); if (drmIoctl(fd, DRM_IOCTL_ADD_DRAW, &draw)) return -errno; *handle = draw.handle; return 0; } int drmDestroyDrawable(int fd, drm_drawable_t handle) { drm_draw_t draw; memclear(draw); draw.handle = handle; if (drmIoctl(fd, DRM_IOCTL_RM_DRAW, &draw)) return -errno; return 0; } int drmUpdateDrawableInfo(int fd, drm_drawable_t handle, drm_drawable_info_type_t type, unsigned int num, void *data) { drm_update_draw_t update; memclear(update); update.handle = handle; update.type = type; update.num = num; update.data = (unsigned long long)(unsigned long)data; if (drmIoctl(fd, DRM_IOCTL_UPDATE_DRAW, &update)) return -errno; return 0; } /** * Acquire the AGP device. * * Must be called before any of the other AGP related calls. * * \param fd file descriptor. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_ACQUIRE ioctl. */ int drmAgpAcquire(int fd) { if (drmIoctl(fd, DRM_IOCTL_AGP_ACQUIRE, NULL)) return -errno; return 0; } /** * Release the AGP device. * * \param fd file descriptor. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_RELEASE ioctl. */ int drmAgpRelease(int fd) { if (drmIoctl(fd, DRM_IOCTL_AGP_RELEASE, NULL)) return -errno; return 0; } /** * Set the AGP mode. * * \param fd file descriptor. * \param mode AGP mode. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_ENABLE ioctl, passing the * argument in a drm_agp_mode structure. */ int drmAgpEnable(int fd, unsigned long mode) { drm_agp_mode_t m; memclear(m); m.mode = mode; if (drmIoctl(fd, DRM_IOCTL_AGP_ENABLE, &m)) return -errno; return 0; } /** * Allocate a chunk of AGP memory. * * \param fd file descriptor. * \param size requested memory size in bytes. Will be rounded to page boundary. * \param type type of memory to allocate. * \param address if not zero, will be set to the physical address of the * allocated memory. * \param handle on success will be set to a handle of the allocated memory. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_ALLOC ioctl, passing the * arguments in a drm_agp_buffer structure. */ int drmAgpAlloc(int fd, unsigned long size, unsigned long type, unsigned long *address, drm_handle_t *handle) { drm_agp_buffer_t b; memclear(b); *handle = DRM_AGP_NO_HANDLE; b.size = size; b.type = type; if (drmIoctl(fd, DRM_IOCTL_AGP_ALLOC, &b)) return -errno; if (address != 0UL) *address = b.physical; *handle = b.handle; return 0; } /** * Free a chunk of AGP memory. * * \param fd file descriptor. * \param handle handle to the allocated memory, as given by drmAgpAllocate(). * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_FREE ioctl, passing the * argument in a drm_agp_buffer structure. */ int drmAgpFree(int fd, drm_handle_t handle) { drm_agp_buffer_t b; memclear(b); b.handle = handle; if (drmIoctl(fd, DRM_IOCTL_AGP_FREE, &b)) return -errno; return 0; } /** * Bind a chunk of AGP memory. * * \param fd file descriptor. * \param handle handle to the allocated memory, as given by drmAgpAllocate(). * \param offset offset in bytes. It will round to page boundary. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_BIND ioctl, passing the * argument in a drm_agp_binding structure. */ int drmAgpBind(int fd, drm_handle_t handle, unsigned long offset) { drm_agp_binding_t b; memclear(b); b.handle = handle; b.offset = offset; if (drmIoctl(fd, DRM_IOCTL_AGP_BIND, &b)) return -errno; return 0; } /** * Unbind a chunk of AGP memory. * * \param fd file descriptor. * \param handle handle to the allocated memory, as given by drmAgpAllocate(). * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_UNBIND ioctl, passing * the argument in a drm_agp_binding structure. */ int drmAgpUnbind(int fd, drm_handle_t handle) { drm_agp_binding_t b; memclear(b); b.handle = handle; if (drmIoctl(fd, DRM_IOCTL_AGP_UNBIND, &b)) return -errno; return 0; } /** * Get AGP driver major version number. * * \param fd file descriptor. * * \return major version number on success, or a negative value on failure.. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ int drmAgpVersionMajor(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return -errno; return i.agp_version_major; } /** * Get AGP driver minor version number. * * \param fd file descriptor. * * \return minor version number on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ int drmAgpVersionMinor(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return -errno; return i.agp_version_minor; } /** * Get AGP mode. * * \param fd file descriptor. * * \return mode on success, or zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned long drmAgpGetMode(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.mode; } /** * Get AGP aperture base. * * \param fd file descriptor. * * \return aperture base on success, zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned long drmAgpBase(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.aperture_base; } /** * Get AGP aperture size. * * \param fd file descriptor. * * \return aperture size on success, zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned long drmAgpSize(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.aperture_size; } /** * Get used AGP memory. * * \param fd file descriptor. * * \return memory used on success, or zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned long drmAgpMemoryUsed(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.memory_used; } /** * Get available AGP memory. * * \param fd file descriptor. * * \return memory available on success, or zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned long drmAgpMemoryAvail(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.memory_allowed; } /** * Get hardware vendor ID. * * \param fd file descriptor. * * \return vendor ID on success, or zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned int drmAgpVendorId(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.id_vendor; } /** * Get hardware device ID. * * \param fd file descriptor. * * \return zero on success, or zero on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_AGP_INFO ioctl, getting the * necessary information in a drm_agp_info structure. */ unsigned int drmAgpDeviceId(int fd) { drm_agp_info_t i; memclear(i); if (drmIoctl(fd, DRM_IOCTL_AGP_INFO, &i)) return 0; return i.id_device; } int drmScatterGatherAlloc(int fd, unsigned long size, drm_handle_t *handle) { drm_scatter_gather_t sg; memclear(sg); *handle = 0; sg.size = size; if (drmIoctl(fd, DRM_IOCTL_SG_ALLOC, &sg)) return -errno; *handle = sg.handle; return 0; } int drmScatterGatherFree(int fd, drm_handle_t handle) { drm_scatter_gather_t sg; memclear(sg); sg.handle = handle; if (drmIoctl(fd, DRM_IOCTL_SG_FREE, &sg)) return -errno; return 0; } /** * Wait for VBLANK. * * \param fd file descriptor. * \param vbl pointer to a drmVBlank structure. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_WAIT_VBLANK ioctl. */ int drmWaitVBlank(int fd, drmVBlankPtr vbl) { struct timespec timeout, cur; int ret; ret = clock_gettime(CLOCK_MONOTONIC, &timeout); if (ret < 0) { fprintf(stderr, "clock_gettime failed: %s\n", strerror(errno)); goto out; } timeout.tv_sec++; do { ret = ioctl(fd, DRM_IOCTL_WAIT_VBLANK, vbl); vbl->request.type &= ~DRM_VBLANK_RELATIVE; if (ret && errno == EINTR) { clock_gettime(CLOCK_MONOTONIC, &cur); /* Timeout after 1s */ if (cur.tv_sec > timeout.tv_sec + 1 || (cur.tv_sec == timeout.tv_sec && cur.tv_nsec >= timeout.tv_nsec)) { errno = EBUSY; ret = -1; break; } } } while (ret && errno == EINTR); out: return ret; } int drmError(int err, const char *label) { switch (err) { case DRM_ERR_NO_DEVICE: fprintf(stderr, "%s: no device\n", label); break; case DRM_ERR_NO_ACCESS: fprintf(stderr, "%s: no access\n", label); break; case DRM_ERR_NOT_ROOT: fprintf(stderr, "%s: not root\n", label); break; case DRM_ERR_INVALID: fprintf(stderr, "%s: invalid args\n", label); break; default: if (err < 0) err = -err; fprintf( stderr, "%s: error %d (%s)\n", label, err, strerror(err) ); break; } return 1; } /** * Install IRQ handler. * * \param fd file descriptor. * \param irq IRQ number. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_CONTROL ioctl, passing the * argument in a drm_control structure. */ int drmCtlInstHandler(int fd, int irq) { drm_control_t ctl; memclear(ctl); ctl.func = DRM_INST_HANDLER; ctl.irq = irq; if (drmIoctl(fd, DRM_IOCTL_CONTROL, &ctl)) return -errno; return 0; } /** * Uninstall IRQ handler. * * \param fd file descriptor. * * \return zero on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_CONTROL ioctl, passing the * argument in a drm_control structure. */ int drmCtlUninstHandler(int fd) { drm_control_t ctl; memclear(ctl); ctl.func = DRM_UNINST_HANDLER; ctl.irq = 0; if (drmIoctl(fd, DRM_IOCTL_CONTROL, &ctl)) return -errno; return 0; } int drmFinish(int fd, int context, drmLockFlags flags) { drm_lock_t lock; memclear(lock); lock.context = context; if (flags & DRM_LOCK_READY) lock.flags |= _DRM_LOCK_READY; if (flags & DRM_LOCK_QUIESCENT) lock.flags |= _DRM_LOCK_QUIESCENT; if (flags & DRM_LOCK_FLUSH) lock.flags |= _DRM_LOCK_FLUSH; if (flags & DRM_LOCK_FLUSH_ALL) lock.flags |= _DRM_LOCK_FLUSH_ALL; if (flags & DRM_HALT_ALL_QUEUES) lock.flags |= _DRM_HALT_ALL_QUEUES; if (flags & DRM_HALT_CUR_QUEUES) lock.flags |= _DRM_HALT_CUR_QUEUES; if (drmIoctl(fd, DRM_IOCTL_FINISH, &lock)) return -errno; return 0; } /** * Get IRQ from bus ID. * * \param fd file descriptor. * \param busnum bus number. * \param devnum device number. * \param funcnum function number. * * \return IRQ number on success, or a negative value on failure. * * \internal * This function is a wrapper around the DRM_IOCTL_IRQ_BUSID ioctl, passing the * arguments in a drm_irq_busid structure. */ int drmGetInterruptFromBusID(int fd, int busnum, int devnum, int funcnum) { drm_irq_busid_t p; memclear(p); p.busnum = busnum; p.devnum = devnum; p.funcnum = funcnum; if (drmIoctl(fd, DRM_IOCTL_IRQ_BUSID, &p)) return -errno; return p.irq; } int drmAddContextTag(int fd, drm_context_t context, void *tag) { drmHashEntry *entry = drmGetEntry(fd); if (drmHashInsert(entry->tagTable, context, tag)) { drmHashDelete(entry->tagTable, context); drmHashInsert(entry->tagTable, context, tag); } return 0; } int drmDelContextTag(int fd, drm_context_t context) { drmHashEntry *entry = drmGetEntry(fd); return drmHashDelete(entry->tagTable, context); } void *drmGetContextTag(int fd, drm_context_t context) { drmHashEntry *entry = drmGetEntry(fd); void *value; if (drmHashLookup(entry->tagTable, context, &value)) return NULL; return value; } int drmAddContextPrivateMapping(int fd, drm_context_t ctx_id, drm_handle_t handle) { drm_ctx_priv_map_t map; memclear(map); map.ctx_id = ctx_id; map.handle = (void *)(uintptr_t)handle; if (drmIoctl(fd, DRM_IOCTL_SET_SAREA_CTX, &map)) return -errno; return 0; } int drmGetContextPrivateMapping(int fd, drm_context_t ctx_id, drm_handle_t *handle) { drm_ctx_priv_map_t map; memclear(map); map.ctx_id = ctx_id; if (drmIoctl(fd, DRM_IOCTL_GET_SAREA_CTX, &map)) return -errno; if (handle) *handle = (drm_handle_t)(uintptr_t)map.handle; return 0; } int drmGetMap(int fd, int idx, drm_handle_t *offset, drmSize *size, drmMapType *type, drmMapFlags *flags, drm_handle_t *handle, int *mtrr) { drm_map_t map; memclear(map); map.offset = idx; if (drmIoctl(fd, DRM_IOCTL_GET_MAP, &map)) return -errno; *offset = map.offset; *size = map.size; *type = map.type; *flags = map.flags; *handle = (unsigned long)map.handle; *mtrr = map.mtrr; return 0; } int drmGetClient(int fd, int idx, int *auth, int *pid, int *uid, unsigned long *magic, unsigned long *iocs) { drm_client_t client; memclear(client); client.idx = idx; if (drmIoctl(fd, DRM_IOCTL_GET_CLIENT, &client)) return -errno; *auth = client.auth; *pid = client.pid; *uid = client.uid; *magic = client.magic; *iocs = client.iocs; return 0; } int drmGetStats(int fd, drmStatsT *stats) { drm_stats_t s; unsigned i; memclear(s); if (drmIoctl(fd, DRM_IOCTL_GET_STATS, &s)) return -errno; stats->count = 0; memset(stats, 0, sizeof(*stats)); if (s.count > sizeof(stats->data)/sizeof(stats->data[0])) return -1; #define SET_VALUE \ stats->data[i].long_format = "%-20.20s"; \ stats->data[i].rate_format = "%8.8s"; \ stats->data[i].isvalue = 1; \ stats->data[i].verbose = 0 #define SET_COUNT \ stats->data[i].long_format = "%-20.20s"; \ stats->data[i].rate_format = "%5.5s"; \ stats->data[i].isvalue = 0; \ stats->data[i].mult_names = "kgm"; \ stats->data[i].mult = 1000; \ stats->data[i].verbose = 0 #define SET_BYTE \ stats->data[i].long_format = "%-20.20s"; \ stats->data[i].rate_format = "%5.5s"; \ stats->data[i].isvalue = 0; \ stats->data[i].mult_names = "KGM"; \ stats->data[i].mult = 1024; \ stats->data[i].verbose = 0 stats->count = s.count; for (i = 0; i < s.count; i++) { stats->data[i].value = s.data[i].value; switch (s.data[i].type) { case _DRM_STAT_LOCK: stats->data[i].long_name = "Lock"; stats->data[i].rate_name = "Lock"; SET_VALUE; break; case _DRM_STAT_OPENS: stats->data[i].long_name = "Opens"; stats->data[i].rate_name = "O"; SET_COUNT; stats->data[i].verbose = 1; break; case _DRM_STAT_CLOSES: stats->data[i].long_name = "Closes"; stats->data[i].rate_name = "Lock"; SET_COUNT; stats->data[i].verbose = 1; break; case _DRM_STAT_IOCTLS: stats->data[i].long_name = "Ioctls"; stats->data[i].rate_name = "Ioc/s"; SET_COUNT; break; case _DRM_STAT_LOCKS: stats->data[i].long_name = "Locks"; stats->data[i].rate_name = "Lck/s"; SET_COUNT; break; case _DRM_STAT_UNLOCKS: stats->data[i].long_name = "Unlocks"; stats->data[i].rate_name = "Unl/s"; SET_COUNT; break; case _DRM_STAT_IRQ: stats->data[i].long_name = "IRQs"; stats->data[i].rate_name = "IRQ/s"; SET_COUNT; break; case _DRM_STAT_PRIMARY: stats->data[i].long_name = "Primary Bytes"; stats->data[i].rate_name = "PB/s"; SET_BYTE; break; case _DRM_STAT_SECONDARY: stats->data[i].long_name = "Secondary Bytes"; stats->data[i].rate_name = "SB/s"; SET_BYTE; break; case _DRM_STAT_DMA: stats->data[i].long_name = "DMA"; stats->data[i].rate_name = "DMA/s"; SET_COUNT; break; case _DRM_STAT_SPECIAL: stats->data[i].long_name = "Special DMA"; stats->data[i].rate_name = "dma/s"; SET_COUNT; break; case _DRM_STAT_MISSED: stats->data[i].long_name = "Miss"; stats->data[i].rate_name = "Ms/s"; SET_COUNT; break; case _DRM_STAT_VALUE: stats->data[i].long_name = "Value"; stats->data[i].rate_name = "Value"; SET_VALUE; break; case _DRM_STAT_BYTE: stats->data[i].long_name = "Bytes"; stats->data[i].rate_name = "B/s"; SET_BYTE; break; case _DRM_STAT_COUNT: default: stats->data[i].long_name = "Count"; stats->data[i].rate_name = "Cnt/s"; SET_COUNT; break; } } return 0; } /** * Issue a set-version ioctl. * * \param fd file descriptor. * \param drmCommandIndex command index * \param data source pointer of the data to be read and written. * \param size size of the data to be read and written. * * \return zero on success, or a negative value on failure. * * \internal * It issues a read-write ioctl given by * \code DRM_COMMAND_BASE + drmCommandIndex \endcode. */ int drmSetInterfaceVersion(int fd, drmSetVersion *version) { int retcode = 0; drm_set_version_t sv; memclear(sv); sv.drm_di_major = version->drm_di_major; sv.drm_di_minor = version->drm_di_minor; sv.drm_dd_major = version->drm_dd_major; sv.drm_dd_minor = version->drm_dd_minor; if (drmIoctl(fd, DRM_IOCTL_SET_VERSION, &sv)) { retcode = -errno; } version->drm_di_major = sv.drm_di_major; version->drm_di_minor = sv.drm_di_minor; version->drm_dd_major = sv.drm_dd_major; version->drm_dd_minor = sv.drm_dd_minor; return retcode; } /** * Send a device-specific command. * * \param fd file descriptor. * \param drmCommandIndex command index * * \return zero on success, or a negative value on failure. * * \internal * It issues a ioctl given by * \code DRM_COMMAND_BASE + drmCommandIndex \endcode. */ int drmCommandNone(int fd, unsigned long drmCommandIndex) { unsigned long request; request = DRM_IO( DRM_COMMAND_BASE + drmCommandIndex); if (drmIoctl(fd, request, NULL)) { return -errno; } return 0; } /** * Send a device-specific read command. * * \param fd file descriptor. * \param drmCommandIndex command index * \param data destination pointer of the data to be read. * \param size size of the data to be read. * * \return zero on success, or a negative value on failure. * * \internal * It issues a read ioctl given by * \code DRM_COMMAND_BASE + drmCommandIndex \endcode. */ int drmCommandRead(int fd, unsigned long drmCommandIndex, void *data, unsigned long size) { unsigned long request; request = DRM_IOC( DRM_IOC_READ, DRM_IOCTL_BASE, DRM_COMMAND_BASE + drmCommandIndex, size); if (drmIoctl(fd, request, data)) { return -errno; } return 0; } /** * Send a device-specific write command. * * \param fd file descriptor. * \param drmCommandIndex command index * \param data source pointer of the data to be written. * \param size size of the data to be written. * * \return zero on success, or a negative value on failure. * * \internal * It issues a write ioctl given by * \code DRM_COMMAND_BASE + drmCommandIndex \endcode. */ int drmCommandWrite(int fd, unsigned long drmCommandIndex, void *data, unsigned long size) { unsigned long request; request = DRM_IOC( DRM_IOC_WRITE, DRM_IOCTL_BASE, DRM_COMMAND_BASE + drmCommandIndex, size); if (drmIoctl(fd, request, data)) { return -errno; } return 0; } /** * Send a device-specific read-write command. * * \param fd file descriptor. * \param drmCommandIndex command index * \param data source pointer of the data to be read and written. * \param size size of the data to be read and written. * * \return zero on success, or a negative value on failure. * * \internal * It issues a read-write ioctl given by * \code DRM_COMMAND_BASE + drmCommandIndex \endcode. */ int drmCommandWriteRead(int fd, unsigned long drmCommandIndex, void *data, unsigned long size) { unsigned long request; request = DRM_IOC( DRM_IOC_READ|DRM_IOC_WRITE, DRM_IOCTL_BASE, DRM_COMMAND_BASE + drmCommandIndex, size); if (drmIoctl(fd, request, data)) return -errno; return 0; } #define DRM_MAX_FDS 16 static struct { char *BusID; int fd; int refcount; int type; } connection[DRM_MAX_FDS]; static int nr_fds = 0; int drmOpenOnce(void *unused, const char *BusID, int *newlyopened) { return drmOpenOnceWithType(BusID, newlyopened, DRM_NODE_PRIMARY); } int drmOpenOnceWithType(const char *BusID, int *newlyopened, int type) { int i; int fd; for (i = 0; i < nr_fds; i++) if ((strcmp(BusID, connection[i].BusID) == 0) && (connection[i].type == type)) { connection[i].refcount++; *newlyopened = 0; return connection[i].fd; } fd = drmOpenWithType(NULL, BusID, type); if (fd < 0 || nr_fds == DRM_MAX_FDS) return fd; connection[nr_fds].BusID = strdup(BusID); connection[nr_fds].fd = fd; connection[nr_fds].refcount = 1; connection[nr_fds].type = type; *newlyopened = 1; if (0) fprintf(stderr, "saved connection %d for %s %d\n", nr_fds, connection[nr_fds].BusID, strcmp(BusID, connection[nr_fds].BusID)); nr_fds++; return fd; } void drmCloseOnce(int fd) { int i; for (i = 0; i < nr_fds; i++) { if (fd == connection[i].fd) { if (--connection[i].refcount == 0) { drmClose(connection[i].fd); free(connection[i].BusID); if (i < --nr_fds) connection[i] = connection[nr_fds]; return; } } } } int drmSetMaster(int fd) { #ifndef __OpenBSD__ return drmIoctl(fd, DRM_IOCTL_SET_MASTER, NULL); #endif return 0; } int drmDropMaster(int fd) { #ifndef __OpenBSD__ return drmIoctl(fd, DRM_IOCTL_DROP_MASTER, NULL); #endif return 0; } char *drmGetDeviceNameFromFd(int fd) { char name[128]; struct stat sbuf; dev_t d; int i; /* The whole drmOpen thing is a fiasco and we need to find a way * back to just using open(2). For now, however, lets just make * things worse with even more ad hoc directory walking code to * discover the device file name. */ fstat(fd, &sbuf); d = sbuf.st_rdev; for (i = 0; i < DRM_MAX_MINOR; i++) { snprintf(name, sizeof name, DRM_DEV_NAME, DRM_DIR_NAME, i); if (stat(name, &sbuf) == 0 && sbuf.st_rdev == d) break; } if (i == DRM_MAX_MINOR) return NULL; return strdup(name); } int drmGetNodeTypeFromFd(int fd) { struct stat sbuf; int maj, min, type; if (fstat(fd, &sbuf)) return -1; maj = major(sbuf.st_rdev); min = minor(sbuf.st_rdev); if (maj != DRM_MAJOR || !S_ISCHR(sbuf.st_mode)) { errno = EINVAL; return -1; } type = drmGetMinorType(min); if (type == -1) errno = ENODEV; return type; } int drmPrimeHandleToFD(int fd, uint32_t handle, uint32_t flags, int *prime_fd) { struct drm_prime_handle args; int ret; memclear(args); args.fd = -1; args.handle = handle; args.flags = flags; ret = drmIoctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args); if (ret) return ret; *prime_fd = args.fd; return 0; } int drmPrimeFDToHandle(int fd, int prime_fd, uint32_t *handle) { struct drm_prime_handle args; int ret; memclear(args); args.fd = prime_fd; ret = drmIoctl(fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args); if (ret) return ret; *handle = args.handle; return 0; } static char *drmGetMinorNameForFD(int fd, int type) { #ifdef __linux__ DIR *sysdir; struct dirent *pent, *ent; struct stat sbuf; const char *name = drmGetMinorName(type); int len; char dev_name[64], buf[64]; long name_max; int maj, min; if (!name) return NULL; len = strlen(name); if (fstat(fd, &sbuf)) return NULL; maj = major(sbuf.st_rdev); min = minor(sbuf.st_rdev); if (maj != DRM_MAJOR || !S_ISCHR(sbuf.st_mode)) return NULL; snprintf(buf, sizeof(buf), "/sys/dev/char/%d:%d/device/drm", maj, min); sysdir = opendir(buf); if (!sysdir) return NULL; name_max = fpathconf(dirfd(sysdir), _PC_NAME_MAX); if (name_max == -1) goto out_close_dir; pent = malloc(offsetof(struct dirent, d_name) + name_max + 1); if (pent == NULL) goto out_close_dir; while (readdir_r(sysdir, pent, &ent) == 0 && ent != NULL) { if (strncmp(ent->d_name, name, len) == 0) { snprintf(dev_name, sizeof(dev_name), DRM_DIR_NAME "/%s", ent->d_name); free(pent); closedir(sysdir); return strdup(dev_name); } } free(pent); out_close_dir: closedir(sysdir); #else #warning "Missing implementation of drmGetMinorNameForFD" #endif return NULL; } char *drmGetPrimaryDeviceNameFromFd(int fd) { return drmGetMinorNameForFD(fd, DRM_NODE_PRIMARY); } char *drmGetRenderDeviceNameFromFd(int fd) { return drmGetMinorNameForFD(fd, DRM_NODE_RENDER); } static int drmParseSubsystemType(int maj, int min) { #ifdef __linux__ char path[PATH_MAX + 1]; char link[PATH_MAX + 1] = ""; char *name; snprintf(path, PATH_MAX, "/sys/dev/char/%d:%d/device/subsystem", maj, min); if (readlink(path, link, PATH_MAX) < 0) return -errno; name = strrchr(link, '/'); if (!name) return -EINVAL; if (strncmp(name, "/pci", 4) == 0) return DRM_BUS_PCI; return -EINVAL; #else #warning "Missing implementation of drmParseSubsystemType" return -EINVAL; #endif } static int drmParsePciBusInfo(int maj, int min, drmPciBusInfoPtr info) { #ifdef __linux__ char path[PATH_MAX + 1]; char data[128 + 1]; char *str; int domain, bus, dev, func; int fd, ret; snprintf(path, PATH_MAX, "/sys/dev/char/%d:%d/device/uevent", maj, min); fd = open(path, O_RDONLY); if (fd < 0) return -errno; ret = read(fd, data, sizeof(data)); data[128] = '\0'; close(fd); if (ret < 0) return -errno; #define TAG "PCI_SLOT_NAME=" str = strstr(data, TAG); if (str == NULL) return -EINVAL; if (sscanf(str, TAG "%04x:%02x:%02x.%1u", &domain, &bus, &dev, &func) != 4) return -EINVAL; #undef TAG info->domain = domain; info->bus = bus; info->dev = dev; info->func = func; return 0; #else #warning "Missing implementation of drmParsePciBusInfo" return -EINVAL; #endif } static int drmCompareBusInfo(drmDevicePtr a, drmDevicePtr b) { if (a == NULL || b == NULL) return -1; if (a->bustype != b->bustype) return -1; switch (a->bustype) { case DRM_BUS_PCI: return memcmp(a->businfo.pci, b->businfo.pci, sizeof(drmPciBusInfo)); default: break; } return -1; } static int drmGetNodeType(const char *name) { if (strncmp(name, DRM_PRIMARY_MINOR_NAME, sizeof(DRM_PRIMARY_MINOR_NAME) - 1) == 0) return DRM_NODE_PRIMARY; if (strncmp(name, DRM_CONTROL_MINOR_NAME, sizeof(DRM_CONTROL_MINOR_NAME ) - 1) == 0) return DRM_NODE_CONTROL; if (strncmp(name, DRM_RENDER_MINOR_NAME, sizeof(DRM_RENDER_MINOR_NAME) - 1) == 0) return DRM_NODE_RENDER; return -EINVAL; } static int drmGetMaxNodeName(void) { return sizeof(DRM_DIR_NAME) + MAX3(sizeof(DRM_PRIMARY_MINOR_NAME), sizeof(DRM_CONTROL_MINOR_NAME), sizeof(DRM_RENDER_MINOR_NAME)) + 3 /* lenght of the node number */; } static int drmParsePciDeviceInfo(const char *d_name, drmPciDeviceInfoPtr device) { #ifdef __linux__ char path[PATH_MAX + 1]; unsigned char config[64]; int fd, ret; snprintf(path, PATH_MAX, "/sys/class/drm/%s/device/config", d_name); fd = open(path, O_RDONLY); if (fd < 0) return -errno; ret = read(fd, config, sizeof(config)); close(fd); if (ret < 0) return -errno; device->vendor_id = config[0] | (config[1] << 8); device->device_id = config[2] | (config[3] << 8); device->revision_id = config[8]; device->subvendor_id = config[44] | (config[45] << 8); device->subdevice_id = config[46] | (config[47] << 8); return 0; #else #warning "Missing implementation of drmParsePciDeviceInfo" return -EINVAL; #endif } void drmFreeDevice(drmDevicePtr *device) { if (device == NULL) return; free(*device); *device = NULL; } void drmFreeDevices(drmDevicePtr devices[], int count) { int i; if (devices == NULL) return; for (i = 0; i < count && devices[i] != NULL; i++) drmFreeDevice(&devices[i]); } static int drmProcessPciDevice(drmDevicePtr *device, const char *d_name, const char *node, int node_type, int maj, int min, bool fetch_deviceinfo) { const int max_node_str = drmGetMaxNodeName(); int ret, i; char *addr; *device = calloc(1, sizeof(drmDevice) + (DRM_NODE_MAX * (sizeof(void *) + max_node_str)) + sizeof(drmPciBusInfo) + sizeof(drmPciDeviceInfo)); if (!*device) return -ENOMEM; addr = (char*)*device; (*device)->bustype = DRM_BUS_PCI; (*device)->available_nodes = 1 << node_type; addr += sizeof(drmDevice); (*device)->nodes = (char**)addr; addr += DRM_NODE_MAX * sizeof(void *); for (i = 0; i < DRM_NODE_MAX; i++) { (*device)->nodes[i] = addr; addr += max_node_str; } memcpy((*device)->nodes[node_type], node, max_node_str); (*device)->businfo.pci = (drmPciBusInfoPtr)addr; ret = drmParsePciBusInfo(maj, min, (*device)->businfo.pci); if (ret) goto free_device; // Fetch the device info if the user has requested it if (fetch_deviceinfo) { addr += sizeof(drmPciBusInfo); (*device)->deviceinfo.pci = (drmPciDeviceInfoPtr)addr; ret = drmParsePciDeviceInfo(d_name, (*device)->deviceinfo.pci); if (ret) goto free_device; } return 0; free_device: free(*device); *device = NULL; return ret; } static void drmFoldDuplicatedDevices(drmDevicePtr local_devices[], int count) { int node_type, i, j; for (i = 0; i < count; i++) { for (j = i + 1; j < count; j++) { if (drmCompareBusInfo(local_devices[i], local_devices[j]) == 0) { local_devices[i]->available_nodes |= local_devices[j]->available_nodes; node_type = log2(local_devices[j]->available_nodes); memcpy(local_devices[i]->nodes[node_type], local_devices[j]->nodes[node_type], drmGetMaxNodeName()); drmFreeDevice(&local_devices[j]); } } } } /** * Get information about the opened drm device * * \param fd file descriptor of the drm device * \param device the address of a drmDevicePtr where the information * will be allocated in stored * * \return zero on success, negative error code otherwise. */ int drmGetDevice(int fd, drmDevicePtr *device) { drmDevicePtr *local_devices; drmDevicePtr d; DIR *sysdir; struct dirent *dent; struct stat sbuf; char node[PATH_MAX + 1]; int node_type, subsystem_type; int maj, min; int ret, i, node_count; int max_count = 16; if (fd == -1 || device == NULL) return -EINVAL; if (fstat(fd, &sbuf)) return -errno; maj = major(sbuf.st_rdev); min = minor(sbuf.st_rdev); if (maj != DRM_MAJOR || !S_ISCHR(sbuf.st_mode)) return -EINVAL; subsystem_type = drmParseSubsystemType(maj, min); local_devices = calloc(max_count, sizeof(drmDevicePtr)); if (local_devices == NULL) return -ENOMEM; sysdir = opendir(DRM_DIR_NAME); if (!sysdir) { ret = -errno; goto free_locals; } i = 0; while ((dent = readdir(sysdir))) { node_type = drmGetNodeType(dent->d_name); if (node_type < 0) continue; snprintf(node, PATH_MAX, "%s/%s", DRM_DIR_NAME, dent->d_name); if (stat(node, &sbuf)) continue; maj = major(sbuf.st_rdev); min = minor(sbuf.st_rdev); if (maj != DRM_MAJOR || !S_ISCHR(sbuf.st_mode)) continue; if (drmParseSubsystemType(maj, min) != subsystem_type) continue; switch (subsystem_type) { case DRM_BUS_PCI: ret = drmProcessPciDevice(&d, dent->d_name, node, node_type, maj, min, true); if (ret) goto free_devices; break; default: fprintf(stderr, "The subsystem type is not supported yet\n"); continue; } if (i >= max_count) { drmDevicePtr *temp; max_count += 16; temp = realloc(local_devices, max_count * sizeof(drmDevicePtr)); if (!temp) goto free_devices; local_devices = temp; } local_devices[i] = d; i++; } node_count = i; /* Fold nodes into a single device if they share the same bus info */ drmFoldDuplicatedDevices(local_devices, node_count); *device = local_devices[0]; for (i = 1; i < node_count && local_devices[i]; i++) drmFreeDevice(&local_devices[i]); closedir(sysdir); free(local_devices); return 0; free_devices: drmFreeDevices(local_devices, i); closedir(sysdir); free_locals: free(local_devices); return ret; } /** * Get drm devices on the system * * \param devices the array of devices with drmDevicePtr elements * can be NULL to get the device number first * \param max_devices the maximum number of devices for the array * * \return on error - negative error code, * if devices is NULL - total number of devices available on the system, * alternatively the number of devices stored in devices[], which is * capped by the max_devices. */ int drmGetDevices(drmDevicePtr devices[], int max_devices) { drmDevicePtr *local_devices; drmDevicePtr device; DIR *sysdir; struct dirent *dent; struct stat sbuf; char node[PATH_MAX + 1]; int node_type, subsystem_type; int maj, min; int ret, i, node_count, device_count; int max_count = 16; local_devices = calloc(max_count, sizeof(drmDevicePtr)); if (local_devices == NULL) return -ENOMEM; sysdir = opendir(DRM_DIR_NAME); if (!sysdir) { ret = -errno; goto free_locals; } i = 0; while ((dent = readdir(sysdir))) { node_type = drmGetNodeType(dent->d_name); if (node_type < 0) continue; snprintf(node, PATH_MAX, "%s/%s", DRM_DIR_NAME, dent->d_name); if (stat(node, &sbuf)) continue; maj = major(sbuf.st_rdev); min = minor(sbuf.st_rdev); if (maj != DRM_MAJOR || !S_ISCHR(sbuf.st_mode)) continue; subsystem_type = drmParseSubsystemType(maj, min); if (subsystem_type < 0) continue; switch (subsystem_type) { case DRM_BUS_PCI: ret = drmProcessPciDevice(&device, dent->d_name, node, node_type, maj, min, devices != NULL); if (ret) goto free_devices; break; default: fprintf(stderr, "The subsystem type is not supported yet\n"); continue; } if (i >= max_count) { drmDevicePtr *temp; max_count += 16; temp = realloc(local_devices, max_count * sizeof(drmDevicePtr)); if (!temp) goto free_devices; local_devices = temp; } local_devices[i] = device; i++; } node_count = i; /* Fold nodes into a single device if they share the same bus info */ drmFoldDuplicatedDevices(local_devices, node_count); device_count = 0; for (i = 0; i < node_count && local_devices[i]; i++) { if ((devices != NULL) && (device_count < max_devices)) devices[device_count] = local_devices[i]; else drmFreeDevice(&local_devices[i]); device_count++; } closedir(sysdir); free(local_devices); return device_count; free_devices: drmFreeDevices(local_devices, i); closedir(sysdir); free_locals: free(local_devices); return ret; }