897 lines
40 KiB
C
897 lines
40 KiB
C
|
|
||
|
/*-
|
||
|
* morph3d.c - Shows 3D morphing objects
|
||
|
*
|
||
|
* Converted to GLUT by brianp on 1/1/98
|
||
|
*
|
||
|
* This program was inspired on a WindowsNT(R)'s screen saver. It was written
|
||
|
* from scratch and it was not based on any other source code.
|
||
|
*
|
||
|
* Porting it to xlock (the final objective of this code since the moment I
|
||
|
* decided to create it) was possible by comparing the original Mesa's gear
|
||
|
* demo with it's ported version, so thanks for Danny Sung for his indirect
|
||
|
* help (look at gear.c in xlock source tree). NOTE: At the moment this code
|
||
|
* was sent to Brian Paul for package inclusion, the XLock Version was not
|
||
|
* available. In fact, I'll wait it to appear on the next Mesa release (If you
|
||
|
* are reading this, it means THIS release) to send it for xlock package
|
||
|
* inclusion). It will probably there be a GLUT version too.
|
||
|
*
|
||
|
* Thanks goes also to Brian Paul for making it possible and inexpensive
|
||
|
* to use OpenGL at home.
|
||
|
*
|
||
|
* Since I'm not a native english speaker, my apologies for any gramatical
|
||
|
* mistake.
|
||
|
*
|
||
|
* My e-mail addresses are
|
||
|
*
|
||
|
* vianna@cat.cbpf.br
|
||
|
* and
|
||
|
* marcelo@venus.rdc.puc-rio.br
|
||
|
*
|
||
|
* Marcelo F. Vianna (Feb-13-1997)
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
This document is VERY incomplete, but tries to describe the mathematics used
|
||
|
in the program. At this moment it just describes how the polyhedra are
|
||
|
generated. On futhurer versions, this document will be probabbly improved.
|
||
|
|
||
|
Since I'm not a native english speaker, my apologies for any gramatical
|
||
|
mistake.
|
||
|
|
||
|
Marcelo Fernandes Vianna
|
||
|
- Undergraduate in Computer Engeneering at Catholic Pontifical University
|
||
|
- of Rio de Janeiro (PUC-Rio) Brasil.
|
||
|
- e-mail: vianna@cat.cbpf.br or marcelo@venus.rdc.puc-rio.br
|
||
|
- Feb-13-1997
|
||
|
|
||
|
POLYHEDRA GENERATION
|
||
|
|
||
|
For the purpose of this program it's not sufficient to know the polyhedra
|
||
|
vertexes coordinates. Since the morphing algorithm applies a nonlinear
|
||
|
transformation over the surfaces (faces) of the polyhedron, each face has
|
||
|
to be divided into smaller ones. The morphing algorithm needs to transform
|
||
|
each vertex of these smaller faces individually. It's a very time consoming
|
||
|
task.
|
||
|
|
||
|
In order to reduce calculation overload, and since all the macro faces of
|
||
|
the polyhedron are transformed by the same way, the generation is made by
|
||
|
creating only one face of the polyhedron, morphing it and then rotating it
|
||
|
around the polyhedron center.
|
||
|
|
||
|
What we need to know is the face radius of the polyhedron (the radius of
|
||
|
the inscribed sphere) and the angle between the center of two adjacent
|
||
|
faces using the center of the sphere as the angle's vertex.
|
||
|
|
||
|
The face radius of the regular polyhedra are known values which I decided
|
||
|
to not waste my time calculating. Following is a table of face radius for
|
||
|
the regular polyhedra with edge length = 1:
|
||
|
|
||
|
TETRAHEDRON : 1/(2*sqrt(2))/sqrt(3)
|
||
|
CUBE : 1/2
|
||
|
OCTAHEDRON : 1/sqrt(6)
|
||
|
DODECAHEDRON : T^2 * sqrt((T+2)/5) / 2 -> where T=(sqrt(5)+1)/2
|
||
|
ICOSAHEDRON : (3*sqrt(3)+sqrt(15))/12
|
||
|
|
||
|
I've not found any reference about the mentioned angles, so I needed to
|
||
|
calculate them, not a trivial task until I figured out how :)
|
||
|
Curiously these angles are the same for the tetrahedron and octahedron.
|
||
|
A way to obtain this value is inscribing the tetrahedron inside the cube
|
||
|
by matching their vertexes. So you'll notice that the remaining unmatched
|
||
|
vertexes are in the same straight line starting in the cube/tetrahedron
|
||
|
center and crossing the center of each tetrahedron's face. At this point
|
||
|
it's easy to obtain the bigger angle of the isosceles triangle formed by
|
||
|
the center of the cube and two opposite vertexes on the same cube face.
|
||
|
The edges of this triangle have the following lenghts: sqrt(2) for the base
|
||
|
and sqrt(3)/2 for the other two other edges. So the angle we want is:
|
||
|
+-----------------------------------------------------------+
|
||
|
| 2*ARCSIN(sqrt(2)/sqrt(3)) = 109.47122063449069174 degrees |
|
||
|
+-----------------------------------------------------------+
|
||
|
For the cube this angle is obvious, but just for formality it can be
|
||
|
easily obtained because we also know it's isosceles edge lenghts:
|
||
|
sqrt(2)/2 for the base and 1/2 for the other two edges. So the angle we
|
||
|
want is:
|
||
|
+-----------------------------------------------------------+
|
||
|
| 2*ARCSIN((sqrt(2)/2)/1) = 90.000000000000000000 degrees |
|
||
|
+-----------------------------------------------------------+
|
||
|
For the octahedron we use the same idea used for the tetrahedron, but now
|
||
|
we inscribe the cube inside the octahedron so that all cubes's vertexes
|
||
|
matches excatly the center of each octahedron's face. It's now clear that
|
||
|
this angle is the same of the thetrahedron one:
|
||
|
+-----------------------------------------------------------+
|
||
|
| 2*ARCSIN(sqrt(2)/sqrt(3)) = 109.47122063449069174 degrees |
|
||
|
+-----------------------------------------------------------+
|
||
|
For the dodecahedron it's a little bit harder because it's only relationship
|
||
|
with the cube is useless to us. So we need to solve the problem by another
|
||
|
way. The concept of Face radius also exists on 2D polygons with the name
|
||
|
Edge radius:
|
||
|
Edge Radius For Pentagon (ERp)
|
||
|
ERp = (1/2)/TAN(36 degrees) * VRp = 0.6881909602355867905
|
||
|
(VRp is the pentagon's vertex radio).
|
||
|
Face Radius For Dodecahedron
|
||
|
FRd = T^2 * sqrt((T+2)/5) / 2 = 1.1135163644116068404
|
||
|
Why we need ERp? Well, ERp and FRd segments forms a 90 degrees angle,
|
||
|
completing this triangle, the lesser angle is a half of the angle we are
|
||
|
looking for, so this angle is:
|
||
|
+-----------------------------------------------------------+
|
||
|
| 2*ARCTAN(ERp/FRd) = 63.434948822922009981 degrees |
|
||
|
+-----------------------------------------------------------+
|
||
|
For the icosahedron we can use the same method used for dodecahedron (well
|
||
|
the method used for dodecahedron may be used for all regular polyhedra)
|
||
|
Edge Radius For Triangle (this one is well known: 1/3 of the triangle height)
|
||
|
ERt = sin(60)/3 = sqrt(3)/6 = 0.2886751345948128655
|
||
|
Face Radius For Icosahedron
|
||
|
FRi= (3*sqrt(3)+sqrt(15))/12 = 0.7557613140761707538
|
||
|
So the angle is:
|
||
|
+-----------------------------------------------------------+
|
||
|
| 2*ARCTAN(ERt/FRi) = 41.810314895778596167 degrees |
|
||
|
+-----------------------------------------------------------+
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#ifndef _WIN32
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
#include <GL/glut.h>
|
||
|
#include <math.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#define Scale 0.3
|
||
|
|
||
|
#define VectMul(X1,Y1,Z1,X2,Y2,Z2) (Y1)*(Z2)-(Z1)*(Y2),(Z1)*(X2)-(X1)*(Z2),(X1)*(Y2)-(Y1)*(X2)
|
||
|
#define sqr(A) ((A)*(A))
|
||
|
|
||
|
/* Increasing this values produces better image quality, the price is speed. */
|
||
|
/* Very low values produces erroneous/incorrect plotting */
|
||
|
#define tetradivisions 23
|
||
|
#define cubedivisions 20
|
||
|
#define octadivisions 21
|
||
|
#define dodecadivisions 10
|
||
|
#define icodivisions 15
|
||
|
|
||
|
#define tetraangle 109.47122063449069174
|
||
|
#define cubeangle 90.000000000000000000
|
||
|
#define octaangle 109.47122063449069174
|
||
|
#define dodecaangle 63.434948822922009981
|
||
|
#define icoangle 41.810314895778596167
|
||
|
|
||
|
#ifndef Pi
|
||
|
#define Pi 3.1415926535897932385
|
||
|
#endif
|
||
|
#define SQRT2 1.4142135623730951455
|
||
|
#define SQRT3 1.7320508075688771932
|
||
|
#define SQRT5 2.2360679774997898051
|
||
|
#define SQRT6 2.4494897427831778813
|
||
|
#define SQRT15 3.8729833462074170214
|
||
|
#define cossec36_2 0.8506508083520399322
|
||
|
#define cos72 0.3090169943749474241
|
||
|
#define sin72 0.9510565162951535721
|
||
|
#define cos36 0.8090169943749474241
|
||
|
#define sin36 0.5877852522924731292
|
||
|
|
||
|
/*************************************************************************/
|
||
|
|
||
|
static int mono=0;
|
||
|
static int smooth=1;
|
||
|
static int anim=1;
|
||
|
static GLint WindH, WindW;
|
||
|
static GLfloat step=0;
|
||
|
static GLfloat seno;
|
||
|
static int object;
|
||
|
static int edgedivisions;
|
||
|
static void (*draw_object)( void );
|
||
|
static float Magnitude;
|
||
|
static float *MaterialColor[20];
|
||
|
|
||
|
static float front_shininess[] = {60.0};
|
||
|
static float front_specular[] = { 0.7, 0.7, 0.7, 1.0 };
|
||
|
static float ambient[] = { 0.0, 0.0, 0.0, 1.0 };
|
||
|
static float diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
|
||
|
static float position0[] = { 1.0, 1.0, 1.0, 0.0 };
|
||
|
static float position1[] = {-1.0,-1.0, 1.0, 0.0 };
|
||
|
static float lmodel_ambient[] = { 0.5, 0.5, 0.5, 1.0 };
|
||
|
static float lmodel_twoside[] = {GL_TRUE};
|
||
|
|
||
|
static float MaterialRed[] = { 0.7, 0.0, 0.0, 1.0 };
|
||
|
static float MaterialGreen[] = { 0.1, 0.5, 0.2, 1.0 };
|
||
|
static float MaterialBlue[] = { 0.0, 0.0, 0.7, 1.0 };
|
||
|
static float MaterialCyan[] = { 0.2, 0.5, 0.7, 1.0 };
|
||
|
static float MaterialYellow[] = { 0.7, 0.7, 0.0, 1.0 };
|
||
|
static float MaterialMagenta[] = { 0.6, 0.2, 0.5, 1.0 };
|
||
|
static float MaterialWhite[] = { 0.7, 0.7, 0.7, 1.0 };
|
||
|
static float MaterialGray[] = { 0.2, 0.2, 0.2, 1.0 };
|
||
|
|
||
|
#define TRIANGLE(Edge, Amp, Divisions, Z) \
|
||
|
{ \
|
||
|
GLfloat Xf,Yf,Xa,Yb,Xf2,Yf2; \
|
||
|
GLfloat Factor,Factor1,Factor2; \
|
||
|
GLfloat VertX,VertY,VertZ,NeiAX,NeiAY,NeiAZ,NeiBX,NeiBY,NeiBZ; \
|
||
|
GLfloat Ax,Ay,Bx; \
|
||
|
int Ri,Ti; \
|
||
|
GLfloat Vr=(Edge)*SQRT3/3; \
|
||
|
GLfloat AmpVr2=(Amp)/sqr(Vr); \
|
||
|
GLfloat Zf=(Edge)*(Z); \
|
||
|
\
|
||
|
Ax=(Edge)*(+0.5/(Divisions)), Ay=(Edge)*(-SQRT3/(2*Divisions)); \
|
||
|
Bx=(Edge)*(-0.5/(Divisions)); \
|
||
|
\
|
||
|
for (Ri=1; Ri<=(Divisions); Ri++) { \
|
||
|
glBegin(GL_TRIANGLE_STRIP); \
|
||
|
for (Ti=0; Ti<Ri; Ti++) { \
|
||
|
Xf=(float)(Ri-Ti)*Ax + (float)Ti*Bx; \
|
||
|
Yf=Vr+(float)(Ri-Ti)*Ay + (float)Ti*Ay; \
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-(((Xf2=sqr(Xf))+(Yf2=sqr(Yf)))*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
\
|
||
|
Xf=(float)(Ri-Ti-1)*Ax + (float)Ti*Bx; \
|
||
|
Yf=Vr+(float)(Ri-Ti-1)*Ay + (float)Ti*Ay; \
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-(((Xf2=sqr(Xf))+(Yf2=sqr(Yf)))*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
\
|
||
|
} \
|
||
|
Xf=(float)Ri*Bx; \
|
||
|
Yf=Vr+(float)Ri*Ay; \
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-(((Xf2=sqr(Xf))+(Yf2=sqr(Yf)))*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
glEnd(); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define SQUARE(Edge, Amp, Divisions, Z) \
|
||
|
{ \
|
||
|
int Xi,Yi; \
|
||
|
GLfloat Xf,Yf,Y,Xf2,Yf2,Y2,Xa,Yb; \
|
||
|
GLfloat Factor,Factor1,Factor2; \
|
||
|
GLfloat VertX,VertY,VertZ,NeiAX,NeiAY,NeiAZ,NeiBX,NeiBY,NeiBZ; \
|
||
|
GLfloat Zf=(Edge)*(Z); \
|
||
|
GLfloat AmpVr2=(Amp)/sqr((Edge)*SQRT2/2); \
|
||
|
\
|
||
|
for (Yi=0; Yi<(Divisions); Yi++) { \
|
||
|
Yf=-((Edge)/2.0) + ((float)Yi)/(Divisions)*(Edge); \
|
||
|
Yf2=sqr(Yf); \
|
||
|
Y=Yf+1.0/(Divisions)*(Edge); \
|
||
|
Y2=sqr(Y); \
|
||
|
glBegin(GL_QUAD_STRIP); \
|
||
|
for (Xi=0; Xi<=(Divisions); Xi++) { \
|
||
|
Xf=-((Edge)/2.0) + ((float)Xi)/(Divisions)*(Edge); \
|
||
|
Xf2=sqr(Xf); \
|
||
|
\
|
||
|
Xa=Xf+0.001; Yb=Y+0.001; \
|
||
|
Factor=1-((Xf2+Y2)*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Y2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Y; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Y-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
\
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-((Xf2+Yf2)*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
} \
|
||
|
glEnd(); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define PENTAGON(Edge, Amp, Divisions, Z) \
|
||
|
{ \
|
||
|
int Ri,Ti,Fi; \
|
||
|
GLfloat Xf,Yf,Xa,Yb,Xf2,Yf2; \
|
||
|
GLfloat x[6],y[6]; \
|
||
|
GLfloat Factor,Factor1,Factor2; \
|
||
|
GLfloat VertX,VertY,VertZ,NeiAX,NeiAY,NeiAZ,NeiBX,NeiBY,NeiBZ; \
|
||
|
GLfloat Zf=(Edge)*(Z); \
|
||
|
GLfloat AmpVr2=(Amp)/sqr((Edge)*cossec36_2); \
|
||
|
\
|
||
|
for(Fi=0;Fi<6;Fi++) { \
|
||
|
x[Fi]=-cos( Fi*2*Pi/5 + Pi/10 )/(Divisions)*cossec36_2*(Edge); \
|
||
|
y[Fi]=sin( Fi*2*Pi/5 + Pi/10 )/(Divisions)*cossec36_2*(Edge); \
|
||
|
} \
|
||
|
\
|
||
|
for (Ri=1; Ri<=(Divisions); Ri++) { \
|
||
|
for (Fi=0; Fi<5; Fi++) { \
|
||
|
glBegin(GL_TRIANGLE_STRIP); \
|
||
|
for (Ti=0; Ti<Ri; Ti++) { \
|
||
|
Xf=(float)(Ri-Ti)*x[Fi] + (float)Ti*x[Fi+1]; \
|
||
|
Yf=(float)(Ri-Ti)*y[Fi] + (float)Ti*y[Fi+1]; \
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-(((Xf2=sqr(Xf))+(Yf2=sqr(Yf)))*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
\
|
||
|
Xf=(float)(Ri-Ti-1)*x[Fi] + (float)Ti*x[Fi+1]; \
|
||
|
Yf=(float)(Ri-Ti-1)*y[Fi] + (float)Ti*y[Fi+1]; \
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-(((Xf2=sqr(Xf))+(Yf2=sqr(Yf)))*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
\
|
||
|
} \
|
||
|
Xf=(float)Ri*x[Fi+1]; \
|
||
|
Yf=(float)Ri*y[Fi+1]; \
|
||
|
Xa=Xf+0.001; Yb=Yf+0.001; \
|
||
|
Factor=1-(((Xf2=sqr(Xf))+(Yf2=sqr(Yf)))*AmpVr2); \
|
||
|
Factor1=1-((sqr(Xa)+Yf2)*AmpVr2); \
|
||
|
Factor2=1-((Xf2+sqr(Yb))*AmpVr2); \
|
||
|
VertX=Factor*Xf; VertY=Factor*Yf; VertZ=Factor*Zf; \
|
||
|
NeiAX=Factor1*Xa-VertX; NeiAY=Factor1*Yf-VertY; NeiAZ=Factor1*Zf-VertZ; \
|
||
|
NeiBX=Factor2*Xf-VertX; NeiBY=Factor2*Yb-VertY; NeiBZ=Factor2*Zf-VertZ; \
|
||
|
glNormal3f(VectMul(NeiAX, NeiAY, NeiAZ, NeiBX, NeiBY, NeiBZ)); \
|
||
|
glVertex3f(VertX, VertY, VertZ); \
|
||
|
glEnd(); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
static void draw_tetra( void )
|
||
|
{
|
||
|
GLuint list;
|
||
|
|
||
|
list = glGenLists( 1 );
|
||
|
glNewList( list, GL_COMPILE );
|
||
|
TRIANGLE(2,seno,edgedivisions,0.5/SQRT6);
|
||
|
glEndList();
|
||
|
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[0]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-tetraangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[1]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+tetraangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[2]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+tetraangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[3]);
|
||
|
glCallList(list);
|
||
|
|
||
|
glDeleteLists(list,1);
|
||
|
}
|
||
|
|
||
|
static void draw_cube( void )
|
||
|
{
|
||
|
GLuint list;
|
||
|
|
||
|
list = glGenLists( 1 );
|
||
|
glNewList( list, GL_COMPILE );
|
||
|
SQUARE(2, seno, edgedivisions, 0.5)
|
||
|
glEndList();
|
||
|
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[0]);
|
||
|
glCallList(list);
|
||
|
glRotatef(cubeangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[1]);
|
||
|
glCallList(list);
|
||
|
glRotatef(cubeangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[2]);
|
||
|
glCallList(list);
|
||
|
glRotatef(cubeangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[3]);
|
||
|
glCallList(list);
|
||
|
glRotatef(cubeangle,0,1,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[4]);
|
||
|
glCallList(list);
|
||
|
glRotatef(2*cubeangle,0,1,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[5]);
|
||
|
glCallList(list);
|
||
|
|
||
|
glDeleteLists(list,1);
|
||
|
}
|
||
|
|
||
|
static void draw_octa( void )
|
||
|
{
|
||
|
GLuint list;
|
||
|
|
||
|
list = glGenLists( 1 );
|
||
|
glNewList( list, GL_COMPILE );
|
||
|
TRIANGLE(2,seno,edgedivisions,1/SQRT6);
|
||
|
glEndList();
|
||
|
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[0]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-180+octaangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[1]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-octaangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[2]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-octaangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[3]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[4]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-180+octaangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[5]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-octaangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[6]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-octaangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[7]);
|
||
|
glCallList(list);
|
||
|
|
||
|
glDeleteLists(list,1);
|
||
|
}
|
||
|
|
||
|
static void draw_dodeca( void )
|
||
|
{
|
||
|
GLuint list;
|
||
|
|
||
|
#define TAU ((SQRT5+1)/2)
|
||
|
|
||
|
list = glGenLists( 1 );
|
||
|
glNewList( list, GL_COMPILE );
|
||
|
PENTAGON(1,seno,edgedivisions,sqr(TAU) * sqrt((TAU+2)/5) / 2);
|
||
|
glEndList();
|
||
|
|
||
|
glPushMatrix();
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[0]);
|
||
|
glCallList(list);
|
||
|
glRotatef(180,0,0,1);
|
||
|
glPushMatrix();
|
||
|
glRotatef(-dodecaangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[1]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(-dodecaangle,cos72,sin72,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[2]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(-dodecaangle,cos72,-sin72,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[3]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(dodecaangle,cos36,-sin36,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[4]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(dodecaangle,cos36,sin36,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[5]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[6]);
|
||
|
glCallList(list);
|
||
|
glRotatef(180,0,0,1);
|
||
|
glPushMatrix();
|
||
|
glRotatef(-dodecaangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[7]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(-dodecaangle,cos72,sin72,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[8]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(-dodecaangle,cos72,-sin72,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[9]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(dodecaangle,cos36,-sin36,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[10]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(dodecaangle,cos36,sin36,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[11]);
|
||
|
glCallList(list);
|
||
|
|
||
|
glDeleteLists(list,1);
|
||
|
}
|
||
|
|
||
|
static void draw_ico( void )
|
||
|
{
|
||
|
GLuint list;
|
||
|
|
||
|
list = glGenLists( 1 );
|
||
|
glNewList( list, GL_COMPILE );
|
||
|
TRIANGLE(1.5,seno,edgedivisions,(3*SQRT3+SQRT15)/12);
|
||
|
glEndList();
|
||
|
|
||
|
glPushMatrix();
|
||
|
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[0]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-icoangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[1]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[2]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[3]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[4]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[5]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-icoangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[6]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[7]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[8]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-icoangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[9]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[10]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-icoangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[11]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[12]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[13]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[14]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[15]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-icoangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[16]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[17]);
|
||
|
glCallList(list);
|
||
|
glPushMatrix();
|
||
|
glRotatef(180,0,1,0);
|
||
|
glRotatef(-180+icoangle,0.5,-SQRT3/2,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[18]);
|
||
|
glCallList(list);
|
||
|
glPopMatrix();
|
||
|
glRotatef(180,0,0,1);
|
||
|
glRotatef(-icoangle,1,0,0);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, MaterialColor[19]);
|
||
|
glCallList(list);
|
||
|
|
||
|
glDeleteLists(list,1);
|
||
|
}
|
||
|
|
||
|
static void draw ( void ) {
|
||
|
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
|
||
|
|
||
|
glPushMatrix();
|
||
|
|
||
|
glTranslatef( 0.0, 0.0, -10.0 );
|
||
|
glScalef( Scale*WindH/WindW, Scale, Scale );
|
||
|
glTranslatef(2.5*WindW/WindH*sin(step*1.11),2.5*cos(step*1.25*1.11),0);
|
||
|
glRotatef(step*100,1,0,0);
|
||
|
glRotatef(step*95,0,1,0);
|
||
|
glRotatef(step*90,0,0,1);
|
||
|
|
||
|
seno=(sin(step)+1.0/3.0)*(4.0/5.0)*Magnitude;
|
||
|
|
||
|
draw_object();
|
||
|
|
||
|
glPopMatrix();
|
||
|
|
||
|
glFlush();
|
||
|
|
||
|
glutSwapBuffers();
|
||
|
|
||
|
}
|
||
|
|
||
|
static void idle_( void )
|
||
|
{
|
||
|
static double t0 = -1.;
|
||
|
double dt, t = glutGet(GLUT_ELAPSED_TIME) / 1000.0;
|
||
|
if (t0 < 0.0)
|
||
|
t0 = t;
|
||
|
dt = t - t0;
|
||
|
t0 = t;
|
||
|
|
||
|
step += dt;
|
||
|
|
||
|
glutPostRedisplay();
|
||
|
}
|
||
|
|
||
|
static void reshape( int width, int height )
|
||
|
{
|
||
|
glViewport(0, 0, WindW=(GLint)width, WindH=(GLint)height);
|
||
|
glMatrixMode(GL_PROJECTION);
|
||
|
glLoadIdentity();
|
||
|
glFrustum( -1.0, 1.0, -1.0, 1.0, 5.0, 15.0 );
|
||
|
glMatrixMode(GL_MODELVIEW);
|
||
|
}
|
||
|
|
||
|
static void pinit(void);
|
||
|
|
||
|
static void key( unsigned char k, int x, int y )
|
||
|
{
|
||
|
(void) x;
|
||
|
(void) y;
|
||
|
switch (k) {
|
||
|
case '1': object=1; break;
|
||
|
case '2': object=2; break;
|
||
|
case '3': object=3; break;
|
||
|
case '4': object=4; break;
|
||
|
case '5': object=5; break;
|
||
|
case ' ': mono^=1; break;
|
||
|
case 's': smooth^=1; break;
|
||
|
case 'a':
|
||
|
anim^=1;
|
||
|
if (anim)
|
||
|
glutIdleFunc( idle_ );
|
||
|
else
|
||
|
glutIdleFunc(NULL);
|
||
|
break;
|
||
|
case 27:
|
||
|
exit(0);
|
||
|
}
|
||
|
pinit();
|
||
|
glutPostRedisplay();
|
||
|
}
|
||
|
|
||
|
static void pinit(void)
|
||
|
{
|
||
|
switch(object) {
|
||
|
case 1:
|
||
|
draw_object=draw_tetra;
|
||
|
MaterialColor[0]=MaterialRed;
|
||
|
MaterialColor[1]=MaterialGreen;
|
||
|
MaterialColor[2]=MaterialBlue;
|
||
|
MaterialColor[3]=MaterialWhite;
|
||
|
edgedivisions=tetradivisions;
|
||
|
Magnitude=2.5;
|
||
|
break;
|
||
|
case 2:
|
||
|
draw_object=draw_cube;
|
||
|
MaterialColor[0]=MaterialRed;
|
||
|
MaterialColor[1]=MaterialGreen;
|
||
|
MaterialColor[2]=MaterialCyan;
|
||
|
MaterialColor[3]=MaterialMagenta;
|
||
|
MaterialColor[4]=MaterialYellow;
|
||
|
MaterialColor[5]=MaterialBlue;
|
||
|
edgedivisions=cubedivisions;
|
||
|
Magnitude=2.0;
|
||
|
break;
|
||
|
case 3:
|
||
|
draw_object=draw_octa;
|
||
|
MaterialColor[0]=MaterialRed;
|
||
|
MaterialColor[1]=MaterialGreen;
|
||
|
MaterialColor[2]=MaterialBlue;
|
||
|
MaterialColor[3]=MaterialWhite;
|
||
|
MaterialColor[4]=MaterialCyan;
|
||
|
MaterialColor[5]=MaterialMagenta;
|
||
|
MaterialColor[6]=MaterialGray;
|
||
|
MaterialColor[7]=MaterialYellow;
|
||
|
edgedivisions=octadivisions;
|
||
|
Magnitude=2.5;
|
||
|
break;
|
||
|
case 4:
|
||
|
draw_object=draw_dodeca;
|
||
|
MaterialColor[ 0]=MaterialRed;
|
||
|
MaterialColor[ 1]=MaterialGreen;
|
||
|
MaterialColor[ 2]=MaterialCyan;
|
||
|
MaterialColor[ 3]=MaterialBlue;
|
||
|
MaterialColor[ 4]=MaterialMagenta;
|
||
|
MaterialColor[ 5]=MaterialYellow;
|
||
|
MaterialColor[ 6]=MaterialGreen;
|
||
|
MaterialColor[ 7]=MaterialCyan;
|
||
|
MaterialColor[ 8]=MaterialRed;
|
||
|
MaterialColor[ 9]=MaterialMagenta;
|
||
|
MaterialColor[10]=MaterialBlue;
|
||
|
MaterialColor[11]=MaterialYellow;
|
||
|
edgedivisions=dodecadivisions;
|
||
|
Magnitude=2.0;
|
||
|
break;
|
||
|
case 5:
|
||
|
draw_object=draw_ico;
|
||
|
MaterialColor[ 0]=MaterialRed;
|
||
|
MaterialColor[ 1]=MaterialGreen;
|
||
|
MaterialColor[ 2]=MaterialBlue;
|
||
|
MaterialColor[ 3]=MaterialCyan;
|
||
|
MaterialColor[ 4]=MaterialYellow;
|
||
|
MaterialColor[ 5]=MaterialMagenta;
|
||
|
MaterialColor[ 6]=MaterialRed;
|
||
|
MaterialColor[ 7]=MaterialGreen;
|
||
|
MaterialColor[ 8]=MaterialBlue;
|
||
|
MaterialColor[ 9]=MaterialWhite;
|
||
|
MaterialColor[10]=MaterialCyan;
|
||
|
MaterialColor[11]=MaterialYellow;
|
||
|
MaterialColor[12]=MaterialMagenta;
|
||
|
MaterialColor[13]=MaterialRed;
|
||
|
MaterialColor[14]=MaterialGreen;
|
||
|
MaterialColor[15]=MaterialBlue;
|
||
|
MaterialColor[16]=MaterialCyan;
|
||
|
MaterialColor[17]=MaterialYellow;
|
||
|
MaterialColor[18]=MaterialMagenta;
|
||
|
MaterialColor[19]=MaterialGray;
|
||
|
edgedivisions=icodivisions;
|
||
|
Magnitude=2.5;
|
||
|
break;
|
||
|
}
|
||
|
if (mono) {
|
||
|
int loop;
|
||
|
for (loop=0; loop<20; loop++) MaterialColor[loop]=MaterialGray;
|
||
|
}
|
||
|
if (smooth) {
|
||
|
glShadeModel( GL_SMOOTH );
|
||
|
} else {
|
||
|
glShadeModel( GL_FLAT );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
static void INIT(void)
|
||
|
{
|
||
|
printf("Morph 3D - Shows morphing platonic polyhedra\n");
|
||
|
printf("Author: Marcelo Fernandes Vianna (vianna@cat.cbpf.br)\n\n");
|
||
|
printf(" [1] - Tetrahedron\n");
|
||
|
printf(" [2] - Hexahedron (Cube)\n");
|
||
|
printf(" [3] - Octahedron\n");
|
||
|
printf(" [4] - Dodecahedron\n");
|
||
|
printf(" [5] - Icosahedron\n");
|
||
|
printf("[SPACE] - Toggle colored faces\n");
|
||
|
printf("[RETURN] - Toggle smooth/flat shading\n");
|
||
|
printf(" [ESC] - Quit\n");
|
||
|
|
||
|
object=1;
|
||
|
|
||
|
glutInitWindowPosition(0,0);
|
||
|
glutInitWindowSize(640,480);
|
||
|
|
||
|
glutInitDisplayMode( GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGB );
|
||
|
|
||
|
if (glutCreateWindow("Morph 3D - Shows morphing platonic polyhedra") <= 0) {
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
glClearDepth(1.0);
|
||
|
glClearColor( 0.0, 0.0, 0.0, 1.0 );
|
||
|
glColor3f( 1.0, 1.0, 1.0 );
|
||
|
|
||
|
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
|
||
|
glFlush();
|
||
|
glutSwapBuffers();
|
||
|
|
||
|
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
|
||
|
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
|
||
|
glLightfv(GL_LIGHT0, GL_POSITION, position0);
|
||
|
glLightfv(GL_LIGHT1, GL_AMBIENT, ambient);
|
||
|
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse);
|
||
|
glLightfv(GL_LIGHT1, GL_POSITION, position1);
|
||
|
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
|
||
|
glLightModelfv(GL_LIGHT_MODEL_TWO_SIDE, lmodel_twoside);
|
||
|
glEnable(GL_LIGHTING);
|
||
|
glEnable(GL_LIGHT0);
|
||
|
glEnable(GL_LIGHT1);
|
||
|
glEnable(GL_DEPTH_TEST);
|
||
|
glEnable(GL_NORMALIZE);
|
||
|
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, front_shininess);
|
||
|
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, front_specular);
|
||
|
|
||
|
glHint(GL_FOG_HINT, GL_FASTEST);
|
||
|
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
|
||
|
glHint(GL_POLYGON_SMOOTH_HINT, GL_FASTEST);
|
||
|
|
||
|
pinit();
|
||
|
|
||
|
glutReshapeFunc( reshape );
|
||
|
glutKeyboardFunc( key );
|
||
|
glutIdleFunc( idle_ );
|
||
|
glutDisplayFunc( draw );
|
||
|
glutMainLoop();
|
||
|
|
||
|
}
|
||
|
|
||
|
int main(int argc, char **argv)
|
||
|
{
|
||
|
INIT();
|
||
|
return(0);
|
||
|
}
|