xenocara/xserver/hw/xfree86/os-support/bus/Pci.c

1418 lines
41 KiB
C
Raw Normal View History

2006-11-26 11:13:41 -07:00
/*
* Pci.c - New server PCI access functions
*
* The XFree86 server PCI access functions have been reimplemented as a
* framework that allows each supported platform/OS to have their own
* platform/OS specific pci driver.
*
* All of the public PCI access functions exported to the other parts of
* the server are declared in Pci.h and defined herein. These include:
* pciInit() - Initialize PCI access functions
* pciFindFirst() - Find a PCI device by dev/vend id
* pciFindNext() - Find another PCI device by dev/vend id
* pciReadLong() - Read a 32 bit value from a device's cfg space
* pciReadWord() - Read a 16 bit value from a device's cfg space
* pciReadByte() - Read an 8 bit value from a device's cfg space
* pciWriteLong() - Write a 32 bit value to a device's cfg space
* pciWriteWord() - Write a 16 bit value to a device's cfg space
* pciWriteByte() - Write an 8 bit value to a device's cfg space
* pciSetBitsLong() - Write a 32 bit value against a mask
* pciSetBitsByte() - Write an 8 bit value against a mask
* pciTag() - Return tag for a given PCI bus, device, &
* function
* pciDomTag() - Return tag for a given PCI domain, bus,
* device & function
* pciBusAddrToHostAddr() - Convert a PCI address to a host address
* pciHostAddrToBusAddr() - Convert a host address to a PCI address
* pciGetBaseSize() - Returns the number of bits in a PCI base
* addr mapping
* xf86MapPciMem() - Like xf86MapVidMem() except function expects
* a PCI address and a PCITAG that identifies
* a PCI device
* xf86ReadPciBIOS() - Like xf86ReadBIOS() but can handle PCI/host
* address translation and BIOS decode enabling
* xf86scanpci() - Return info about all PCI devices
* xf86GetPciDomain() - Return domain number from a PCITAG
* xf86MapDomainMemory() - Like xf86MapPciMem() but can handle
* domain/host address translation
* xf86MapDomainIO() - Maps PCI I/O spaces
* xf86ReadDomainMemory() - Like xf86ReadPciBIOS() but can handle
* domain/host address translation
*
* The actual PCI backend driver is selected by the pciInit() function
* (see below) using either compile time definitions, run-time checks,
* or both.
*
* Certain generic functions are provided that make the implementation
* of certain well behaved platforms (e.g. those supporting PCI config
* mechanism 1 or some thing close to it) very easy.
*
* Less well behaved platforms/OS's can roll their own functions.
*
* To add support for another platform/OS, add a call to fooPciInit() within
* pciInit() below under the correct compile time definition or run-time
* conditional.
*
* The fooPciInit() procedure must do three things:
* 1) Initialize the pciBusTable[] for all primary PCI buses including
* the per domain PCI access functions (readLong, writeLong,
* addrBusToHost, and addrHostToBus).
*
* 2) Add entries to pciBusTable[] for configured secondary buses. This
* step may be skipped if a platform is using the generic findFirst/
* findNext functions because these procedures will automatically
* discover and add secondary buses dynamically.
*
* 3) Overide default settings for global PCI access functions if
* required. These include pciFindFirstFP, pciFindNextFP,
* Of course, if you choose not to use one of the generic
* functions, you will need to provide a platform specifc replacement.
*
* Gary Barton
* Concurrent Computer Corporation
* garyb@gate.net
*
*/
/*
* Copyright 1998 by Concurrent Computer Corporation
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of Concurrent Computer
* Corporation not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. Concurrent Computer Corporation makes no representations
* about the suitability of this software for any purpose. It is
* provided "as is" without express or implied warranty.
*
* CONCURRENT COMPUTER CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL CONCURRENT COMPUTER CORPORATION BE
* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* Copyright 1998 by Metro Link Incorporated
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of Metro Link
* Incorporated not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. Metro Link Incorporated makes no representations
* about the suitability of this software for any purpose. It is
* provided "as is" without express or implied warranty.
*
* METRO LINK INCORPORATED DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL METRO LINK INCORPORATED BE
* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* This software is derived from the original XFree86 PCI code
* which includes the following copyright notices as well:
*
* Copyright 1995 by Robin Cutshaw <robin@XFree86.Org>
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the names of the above listed copyright holder(s)
* not be used in advertising or publicity pertaining to distribution of
* the software without specific, written prior permission. The above listed
* copyright holder(s) make(s) no representations about the suitability of this
* software for any purpose. It is provided "as is" without express or
* implied warranty.
*
* THE ABOVE LISTED COPYRIGHT HOLDER(S) DISCLAIM(S) ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL THE ABOVE LISTED COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* This code is also based heavily on the code in FreeBSD-current, which was
* written by Wolfgang Stanglmeier, and contains the following copyright:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Copyright (c) 1999-2003 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the copyright holder(s)
* and author(s) shall not be used in advertising or otherwise to promote
* the sale, use or other dealings in this Software without prior written
* authorization from the copyright holder(s) and author(s).
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include <errno.h>
#include <signal.h>
#include <X11/Xarch.h>
#include "compiler.h"
#include "xf86.h"
#include "xf86Priv.h"
#define XF86_OS_PRIVS
#include "xf86_OSproc.h"
#include "Pci.h"
#define PCI_MFDEV_SUPPORT 1 /* Include PCI multifunction device support */
#define PCI_BRIDGE_SUPPORT 1 /* Include support for PCI-to-PCI bridges */
/*
* Global data
*/
static int pciInitialized = 0;
CARD32 pciDevid; /* Requested device/vendor ID (after mask) */
CARD32 pciDevidMask; /* Bit mask applied (AND) before comparison */
/* of real devid's with requested */
int pciBusNum; /* Bus Number of current device */
int pciDevNum; /* Device number of current device */
int pciFuncNum; /* Function number of current device */
PCITAG pciDeviceTag; /* Tag for current device */
pciBusInfo_t *pciBusInfo[MAX_PCI_BUSES] = { NULL, };
_X_EXPORT int pciNumBuses = 0; /* Actual number of PCI buses */
int pciMaxBusNum = MAX_PCI_BUSES;
static Bool inProbe = FALSE;
2007-11-24 10:55:21 -07:00
static pciConfigPtr *pci_devp = NULL;
2006-11-26 11:13:41 -07:00
static int readPciBios( PCITAG Tag, CARD8* tmp, ADDRESS hostbase,
unsigned char * buf, int len, PciBiosType BiosType );
static int (*pciOSHandleBIOS)(PCITAG Tag, int basereg, unsigned char *buf, int len);
2007-11-24 10:55:21 -07:00
int xf86MaxPciDevs = 0;
2006-11-26 11:13:41 -07:00
/*
* Platform specific PCI function pointers.
*
* NOTE: A platform/OS specific pci init procedure can override these defaults
* by setting them to the appropriate platform dependent functions.
*/
PCITAG (*pciFindFirstFP)(void) = pciGenFindFirst;
PCITAG (*pciFindNextFP)(void) = pciGenFindNext;
/*
* pciInit - choose correct platform/OS specific PCI init routine
*/
void
pciInit()
{
if (pciInitialized)
return;
pciInitialized = 1;
/* XXX */
#if defined(DEBUGPCI)
if (DEBUGPCI >= xf86Verbose)
xf86Verbose = DEBUGPCI;
#endif
ARCH_PCI_INIT();
#if defined(ARCH_PCI_OS_INIT)
if (pciNumBuses <= 0)
ARCH_PCI_OS_INIT();
#endif
2007-11-24 10:55:21 -07:00
if (xf86MaxPciDevs == 0) {
xf86Msg(X_WARNING,
"OS did not count PCI devices, guessing wildly\n");
xf86MaxPciDevs = MAX_PCI_DEVICES;
}
if (pci_devp)
xfree(pci_devp);
pci_devp = xnfcalloc(xf86MaxPciDevs + 1, sizeof(pciConfigPtr));
2006-11-26 11:13:41 -07:00
}
void pciSetOSBIOSPtr(int (*bios_fn)(PCITAG Tag, int basereg, unsigned char * buf, int len))
{
pciOSHandleBIOS = bios_fn;
}
_X_EXPORT PCITAG
pciFindFirst(CARD32 id, CARD32 mask)
{
#ifdef DEBUGPCI
ErrorF("pciFindFirst(0x%lx, 0x%lx), pciInit = %d\n", id, mask, pciInitialized);
#endif
pciInit();
pciDevid = id & mask;
pciDevidMask = mask;
return((*pciFindFirstFP)());
}
_X_EXPORT PCITAG
pciFindNext(void)
{
#ifdef DEBUGPCI
ErrorF("pciFindNext(), pciInit = %d\n", pciInitialized);
#endif
pciInit();
return((*pciFindNextFP)());
}
_X_EXPORT CARD32
pciReadLong(PCITAG tag, int offset)
{
int bus = PCI_BUS_FROM_TAG(tag);
#ifdef DEBUGPCI
ErrorF("pciReadLong(0x%lx, %d)\n", tag, offset);
#endif
pciInit();
if ((bus >= 0) && ((bus < pciNumBuses) || inProbe) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciReadLong) {
CARD32 rv = (*pciBusInfo[bus]->funcs->pciReadLong)(tag, offset);
PCITRACE(1, ("pciReadLong: tag=0x%x [b=%d,d=%d,f=%d] returns 0x%08x\n",
tag, bus, PCI_DEV_FROM_TAG(tag), PCI_FUNC_FROM_TAG(tag), rv));
return(rv);
}
return(PCI_NOT_FOUND);
}
_X_EXPORT CARD16
pciReadWord(PCITAG tag, int offset)
{
CARD32 tmp;
int shift = (offset & 3) * 8;
int aligned_offset = offset & ~3;
int bus = PCI_BUS_FROM_TAG(tag);
if (shift != 0 && shift != 16)
FatalError("pciReadWord: Alignment error: Cannot read 16 bits "
"at offset %d\n", offset);
pciInit();
if ((bus >= 0) && ((bus < pciNumBuses) || inProbe) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciReadWord) {
CARD32 rv = (*pciBusInfo[bus]->funcs->pciReadWord)(tag, offset);
return(rv);
} else {
tmp = pciReadLong(tag, aligned_offset);
return((CARD16)((tmp >> shift) & 0xffff));
}
}
_X_EXPORT CARD8
pciReadByte(PCITAG tag, int offset)
{
CARD32 tmp;
int shift = (offset & 3) * 8;
int aligned_offset = offset & ~3;
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && ((bus < pciNumBuses) || inProbe) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciReadByte) {
CARD8 rv = (*pciBusInfo[bus]->funcs->pciReadByte)(tag, offset);
return(rv);
} else {
tmp = pciReadLong(tag, aligned_offset);
return((CARD8)((tmp >> shift) & 0xff));
}
}
_X_EXPORT void
pciWriteLong(PCITAG tag, int offset, CARD32 val)
{
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciWriteLong)
(*pciBusInfo[bus]->funcs->pciWriteLong)(tag, offset, val);
}
_X_EXPORT void
pciWriteWord(PCITAG tag, int offset, CARD16 val)
{
CARD32 tmp;
int aligned_offset = offset & ~3;
int shift = (offset & 3) * 8;
int bus = PCI_BUS_FROM_TAG(tag);
if (shift != 0 && shift != 16)
FatalError("pciWriteWord: Alignment Error: Cannot read 16 bits "
"from offset %d\n", offset);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciWriteWord) {
(*pciBusInfo[bus]->funcs->pciWriteWord)(tag, offset, val);
} else {
tmp = pciReadLong(tag, aligned_offset);
tmp &= ~(0xffffL << shift);
tmp |= (((CARD32)val) << shift);
pciWriteLong(tag, aligned_offset, tmp);
}
}
_X_EXPORT void
pciWriteByte(PCITAG tag, int offset, CARD8 val)
{
CARD32 tmp;
int aligned_offset = offset & ~3;
int shift = (offset & 3) *8 ;
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciWriteByte) {
(*pciBusInfo[bus]->funcs->pciWriteByte)(tag, offset, val);
} else {
tmp = pciReadLong(tag, aligned_offset);
tmp &= ~(0xffL << shift);
tmp |= (((CARD32)val) << shift);
pciWriteLong(tag, aligned_offset, tmp);
}
}
_X_EXPORT void
pciSetBitsLong(PCITAG tag, int offset, CARD32 mask, CARD32 val)
{
int bus = PCI_BUS_FROM_TAG(tag);
#ifdef DEBUGPCI
ErrorF("pciReadLong(0x%lx, %d)\n", tag, offset);
#endif
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciSetBitsLong) {
(*pciBusInfo[bus]->funcs->pciSetBitsLong)(tag, offset, mask, val);
}
}
void
pciSetBitsByte(PCITAG tag, int offset, CARD8 mask, CARD8 val)
{
CARD32 tmp_mask, tmp_val;
int aligned_offset = offset & ~3;
int shift = (offset & 3) *8 ;
tmp_mask = mask << shift;
tmp_val = val << shift;
pciSetBitsLong(tag, aligned_offset, tmp_mask, tmp_val);
}
_X_EXPORT ADDRESS
pciBusAddrToHostAddr(PCITAG tag, PciAddrType type, ADDRESS addr)
{
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciAddrBusToHost)
return (*pciBusInfo[bus]->funcs->pciAddrBusToHost)(tag, type, addr);
else
return(addr);
}
_X_EXPORT ADDRESS
pciHostAddrToBusAddr(PCITAG tag, PciAddrType type, ADDRESS addr)
{
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciAddrHostToBus)
return (*pciBusInfo[bus]->funcs->pciAddrHostToBus)(tag, type, addr);
else
return(addr);
}
/*
* pciGetBaseSize() returns the size of a PCI base address mapping in bits.
* The index identifies the base register: 0-5 are the six standard registers,
* and 6 is the ROM base register. If destructive is TRUE, it will write
* to the base address register to get an accurate result. Otherwise it
* makes a conservative guess based on the alignment of the already allocated
* address. If the result is accurate (ie, not an over-estimate), this is
* indicated by setting *min to TRUE (when min is non-NULL). This happens
* when either the destructive flag is set, the information is supplied by
* the OS if the OS supports this.
*/
int
pciGetBaseSize(PCITAG tag, int index, Bool destructive, Bool *min)
{
int offset;
CARD32 addr1;
CARD32 addr2;
CARD32 mask1;
CARD32 mask2;
int bits = 0;
/*
* Eventually a function for this should be added to pciBusFuncs_t, but for
* now we'll just use a simple method based on the alignment of the already
* allocated address.
*/
/*
* silently ignore bogus index values. Valid values are 0-6. 0-5 are
* the 6 base address registers, and 6 is the ROM base address register.
*/
if (index < 0 || index > 6)
return 0;
pciInit();
if (xf86GetPciSizeFromOS(tag, index, &bits)) {
if (min)
*min = TRUE;
return bits;
}
if (min)
*min = destructive;
/* Get the PCI offset */
if (index == 6)
offset = PCI_MAP_ROM_REG;
else
offset = PCI_MAP_REG_START + (index << 2);
addr1 = pciReadLong(tag, offset);
/*
* Check if this is the second part of a 64 bit address.
* XXX need to check how endianness affects 64 bit addresses.
*/
if (index > 0 && index < 6) {
addr2 = pciReadLong(tag, offset - 4);
if (PCI_MAP_IS_MEM(addr2) && PCI_MAP_IS64BITMEM(addr2))
return 0;
}
if (destructive) {
pciWriteLong(tag, offset, 0xffffffff);
mask1 = pciReadLong(tag, offset);
pciWriteLong(tag, offset, addr1);
} else {
mask1 = addr1;
}
/* Check if this is the first part of a 64 bit address. */
if (index < 5 && PCI_MAP_IS_MEM(mask1) && PCI_MAP_IS64BITMEM(mask1)) {
if (PCIGETMEMORY(mask1) == 0) {
addr2 = pciReadLong(tag, offset + 4);
if (destructive) {
pciWriteLong(tag, offset + 4, 0xffffffff);
mask2 = pciReadLong(tag, offset + 4);
pciWriteLong(tag, offset + 4, addr2);
} else {
mask2 = addr2;
}
if (mask2 == 0)
return 0;
bits = 32;
while ((mask2 & 1) == 0) {
bits++;
mask2 >>= 1;
}
if (bits > 32)
return bits;
}
}
if (index < 6)
if (PCI_MAP_IS_MEM(mask1))
mask1 = PCIGETMEMORY(mask1);
else
mask1 = PCIGETIO(mask1);
else
mask1 = PCIGETROM(mask1);
if (mask1 == 0)
return 0;
bits = 0;
while ((mask1 & 1) == 0) {
bits++;
mask1 >>= 1;
}
/* I/O maps can be no larger than 8 bits */
if ((index < 6) && PCI_MAP_IS_IO(addr1) && bits > 8)
bits = 8;
/* ROM maps can be no larger than 24 bits */
if (index == 6 && bits > 24)
bits = 24;
return bits;
}
_X_EXPORT PCITAG
pciTag(int busnum, int devnum, int funcnum)
{
return(PCI_MAKE_TAG(busnum,devnum,funcnum));
}
_X_EXPORT PCITAG
pciDomTag(int domnum, int busnum, int devnum, int funcnum)
{
return(PCI_MAKE_TAG(PCI_MAKE_BUS(domnum,busnum),devnum,funcnum));
}
#if defined(PCI_MFDEV_SUPPORT)
Bool
pciMfDev(int busnum, int devnum)
{
PCITAG tag0, tag1;
CARD32 id0, id1, val;
/* Detect a multi-function device that complies to the PCI 2.0 spec */
tag0 = PCI_MAKE_TAG(busnum, devnum, 0);
id0 = pciReadLong(tag0, PCI_ID_REG);
if ((CARD16)(id0 + 1) <= (CARD16)1UL)
return FALSE;
val = pciReadLong(tag0, PCI_HEADER_MISC) & 0x00ff0000;
if ((val != 0x00ff0000) && (val & PCI_HEADER_MULTIFUNCTION))
return TRUE;
/*
* Now, to find non-compliant devices...
* If there is a valid ID for function 1 and the ID for func 0 and 1
* are different, or the base0 values of func 0 and 1 are differend,
* then assume there is a multi-function device.
*/
tag1 = PCI_MAKE_TAG(busnum, devnum, 1);
id1 = pciReadLong(tag1, PCI_ID_REG);
if ((CARD16)(id1 + 1) <= (CARD16)1UL)
return FALSE;
/* Vendor IDs should match */
if ((id0 ^ id1) & 0x0000ffff)
return FALSE;
if ((id0 != id1) ||
/* Note the following test is valid for header types 0, 1 and 2 */
(pciReadLong(tag0, PCI_MAP_REG_START) !=
pciReadLong(tag1, PCI_MAP_REG_START)))
return TRUE;
return FALSE;
}
#endif
/*
* Generic find/read/write functions
*/
PCITAG
pciGenFindNext(void)
{
CARD32 devid, tmp;
int sec_bus, pri_bus;
static int previousBus = 0;
Bool speculativeProbe = FALSE;
unsigned char base_class, sub_class;
#ifdef DEBUGPCI
ErrorF("pciGenFindNext\n");
#endif
for (;;) {
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciBusNum %d\n", pciBusNum);
#endif
if (pciBusNum == -1) {
/*
* Start at top of the order
*/
if (pciNumBuses <= 0)
return(PCI_NOT_FOUND);
/* Skip ahead to the first bus defined by pciInit() */
for (pciBusNum = 0; !pciBusInfo[pciBusNum]; ++pciBusNum);
pciFuncNum = 0;
pciDevNum = 0;
previousBus = pciBusNum; /* make sure previousBus exists */
} else {
#ifdef PCI_MFDEV_SUPPORT
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciFuncNum %d\n", pciFuncNum);
#endif
/*
* Somewhere in middle of order. Determine who's
* next up
*/
if (pciFuncNum == 0) {
/*
* Is current dev a multifunction device?
*/
if (!speculativeProbe && pciMfDev(pciBusNum, pciDevNum))
/* Probe for other functions */
pciFuncNum = 1;
else
/*
* No more functions this device. Next
* device please
*/
pciDevNum ++;
} else if (++pciFuncNum >= 8) {
/* No more functions for this device. Next device please */
pciFuncNum = 0;
pciDevNum ++;
}
#else
pciDevNum ++;
#endif
if (pciDevNum >= 32 ||
!pciBusInfo[pciBusNum] ||
pciDevNum >= pciBusInfo[pciBusNum]->numDevices) {
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: next bus\n");
#endif
/*
* No more devices for this bus. Next bus please
*/
if (speculativeProbe) {
NextSpeculativeBus:
xfree(pciBusInfo[pciBusNum]);
pciBusInfo[pciBusNum] = NULL;
speculativeProbe = FALSE;
}
if (++pciBusNum >= pciMaxBusNum) {
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: out of buses\n");
#endif
/* No more buses. All done for now */
return(PCI_NOT_FOUND);
}
pciDevNum = 0;
}
}
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciBusInfo[%d] = 0x%lx\n", pciBusNum, pciBusInfo[pciBusNum]);
#endif
if (!pciBusInfo[pciBusNum]) {
pciBusInfo[pciBusNum] = xnfalloc(sizeof(pciBusInfo_t));
*pciBusInfo[pciBusNum] = *pciBusInfo[previousBus];
speculativeProbe = TRUE;
}
/*
* At this point, pciBusNum, pciDevNum, and pciFuncNum have been
* advanced to the next device. Compute the tag, and read the
* device/vendor ID field.
*/
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: [%d, %d, %d]\n", pciBusNum, pciDevNum, pciFuncNum);
#endif
pciDeviceTag = PCI_MAKE_TAG(pciBusNum, pciDevNum, pciFuncNum);
inProbe = TRUE;
devid = pciReadLong(pciDeviceTag, PCI_ID_REG);
inProbe = FALSE;
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciDeviceTag = 0x%lx, devid = 0x%lx\n", pciDeviceTag, devid);
#endif
if ((CARD16)(devid + 1U) <= (CARD16)1UL)
continue; /* Nobody home. Next device please */
/*
* Some devices mis-decode configuration cycles in such a way as to
* create phantom buses.
*/
if (speculativeProbe && (pciDevNum == 0) && (pciFuncNum == 0) &&
(PCI_BUS_NO_DOMAIN(pciBusNum) > 0)) {
for (;;) {
if (++pciDevNum >= pciBusInfo[pciBusNum]->numDevices)
goto NextSpeculativeBus;
if (devid !=
pciReadLong(PCI_MAKE_TAG(pciBusNum, pciDevNum, 0),
PCI_ID_REG))
break;
}
pciDevNum = 0;
}
if (pciNumBuses <= pciBusNum)
pciNumBuses = pciBusNum + 1;
speculativeProbe = FALSE;
previousBus = pciBusNum;
#ifdef PCI_BRIDGE_SUPPORT
/*
* Before checking for a specific devid, look for enabled
* PCI to PCI bridge devices. If one is found, create and
* initialize a bus info record (if one does not already exist).
*/
tmp = pciReadLong(pciDeviceTag, PCI_CLASS_REG);
base_class = PCI_CLASS_EXTRACT(tmp);
sub_class = PCI_SUBCLASS_EXTRACT(tmp);
if ((base_class == PCI_CLASS_BRIDGE) &&
((sub_class == PCI_SUBCLASS_BRIDGE_PCI) ||
(sub_class == PCI_SUBCLASS_BRIDGE_CARDBUS))) {
tmp = pciReadLong(pciDeviceTag, PCI_PCI_BRIDGE_BUS_REG);
sec_bus = PCI_SECONDARY_BUS_EXTRACT(tmp, pciDeviceTag);
pri_bus = PCI_PRIMARY_BUS_EXTRACT(tmp, pciDeviceTag);
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pri_bus %d sec_bus %d\n",
pri_bus, sec_bus);
#endif
if (pciBusNum != pri_bus) {
/* Some bridges do not implement the primary bus register */
if ((PCI_BUS_NO_DOMAIN(pri_bus) != 0) ||
(sub_class != PCI_SUBCLASS_BRIDGE_CARDBUS))
xf86Msg(X_WARNING,
"pciGenFindNext: primary bus mismatch on PCI"
" bridge 0x%08lx (0x%02x, 0x%02x)\n",
pciDeviceTag, pciBusNum, pri_bus);
pri_bus = pciBusNum;
}
if ((pri_bus < sec_bus) && (sec_bus < pciMaxBusNum) &&
pciBusInfo[pri_bus]) {
/*
* Found a secondary PCI bus
*/
if (!pciBusInfo[sec_bus]) {
pciBusInfo[sec_bus] = xnfalloc(sizeof(pciBusInfo_t));
/* Copy parents settings... */
*pciBusInfo[sec_bus] = *pciBusInfo[pri_bus];
}
/* ...but not everything same as parent */
pciBusInfo[sec_bus]->primary_bus = pri_bus;
pciBusInfo[sec_bus]->secondary = TRUE;
pciBusInfo[sec_bus]->numDevices = 32;
if (pciNumBuses <= sec_bus)
pciNumBuses = sec_bus + 1;
}
}
#endif
/*
* Does this device match the requested devid after
* applying mask?
*/
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciDevidMask = 0x%lx, pciDevid = 0x%lx\n", pciDevidMask, pciDevid);
#endif
if ((devid & pciDevidMask) == pciDevid)
/* Yes - Return it. Otherwise, next device */
return(pciDeviceTag); /* got a match */
} /* for */
/*NOTREACHED*/
}
PCITAG
pciGenFindFirst(void)
{
/* Reset PCI bus number to start from top */
pciBusNum = -1;
return pciGenFindNext();
}
CARD32
pciByteSwap(CARD32 u)
{
#if X_BYTE_ORDER == X_BIG_ENDIAN
return lswapl(u);
#else /* !BIG_ENDIAN */
return(u);
#endif
}
ADDRESS
pciAddrNOOP(PCITAG tag, PciAddrType type, ADDRESS addr)
{
return(addr);
}
_X_EXPORT pciConfigPtr *
xf86scanpci(int flags)
{
pciConfigPtr devp;
pciBusInfo_t *busp;
int idx = 0, i;
PCITAG tag;
static Bool done = FALSE;
/*
* if we haven't found PCI devices checking for pci_devp may
* result in an endless recursion if platform/OS specific PCI
* bus probing code calls this function from with in it.
*/
if (done || (pci_devp && pci_devp[0]))
2006-11-26 11:13:41 -07:00
return pci_devp;
done = TRUE;
pciInit();
#ifdef XF86SCANPCI_WRAPPER
XF86SCANPCI_WRAPPER(SCANPCI_INIT);
#endif
tag = pciFindFirst(0,0); /* 0 mask means match any valid device */
/* Check if no devices, return now */
if (tag == PCI_NOT_FOUND) {
#ifdef XF86SCANPCI_WRAPPER
XF86SCANPCI_WRAPPER(SCANPCI_TERM);
#endif
return NULL;
}
#ifdef DEBUGPCI
ErrorF("xf86scanpci: tag = 0x%lx\n", tag);
#endif
#ifndef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: PCI scan (all values are in hex)\n");
#endif
while (idx < xf86MaxPciDevs && tag != PCI_NOT_FOUND) {
devp = xcalloc(1, sizeof(pciDevice));
if (!devp) {
xf86Msg(X_ERROR,
"xf86scanpci: Out of memory after %d devices!!\n", idx);
return (pciConfigPtr *)NULL;
}
/* Identify pci device by bus, dev, func, and tag */
devp->tag = tag;
devp->busnum = PCI_BUS_FROM_TAG(tag);
devp->devnum = PCI_DEV_FROM_TAG(tag);
devp->funcnum = PCI_FUNC_FROM_TAG(tag);
/* Read config space for this device */
for (i = 0; i < 17; i++) /* PCI hdr plus 1st dev spec dword */
devp->cfgspc.dwords[i] = pciReadLong(tag, i * sizeof(CARD32));
/* Some broken devices don't implement this field... */
if (devp->pci_header_type == 0xff)
devp->pci_header_type = 0;
switch (devp->pci_header_type & 0x7f) {
case 0:
/* Get base address sizes for type 0 headers */
for (i = 0; i < 7; i++)
devp->basesize[i] =
pciGetBaseSize(tag, i, FALSE, &devp->minBasesize);
break;
case 1:
case 2:
/* Allow master aborts to complete normally on secondary buses */
if (!(devp->pci_bridge_control & PCI_PCI_BRIDGE_MASTER_ABORT_EN))
break;
pciWriteByte(tag, PCI_PCI_BRIDGE_CONTROL_REG,
devp->pci_bridge_control &
~(PCI_PCI_BRIDGE_MASTER_ABORT_EN |
PCI_PCI_BRIDGE_SECONDARY_RESET));
break;
default:
break;
}
#ifdef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: BusID 0x%.2x,0x%02x,0x%1x "
"ID 0x%04x,0x%04x Rev 0x%02x Class 0x%02x,0x%02x\n",
devp->busnum, devp->devnum, devp->funcnum,
devp->pci_vendor, devp->pci_device, devp->pci_rev_id,
devp->pci_base_class, devp->pci_sub_class);
#else
xf86MsgVerb(X_INFO, 2, "PCI: %.2x:%02x:%1x: chip %04x,%04x"
" card %04x,%04x rev %02x class %02x,%02x,%02x hdr %02x\n",
devp->busnum, devp->devnum, devp->funcnum,
devp->pci_vendor, devp->pci_device,
devp->pci_subsys_vendor, devp->pci_subsys_card,
devp->pci_rev_id, devp->pci_base_class,
devp->pci_sub_class, devp->pci_prog_if,
devp->pci_header_type);
#endif
pci_devp[idx++] = devp;
if (idx == xf86MaxPciDevs)
break;
tag = pciFindNext();
#ifdef DEBUGPCI
ErrorF("xf86scanpci: tag = pciFindNext = 0x%lx\n", tag);
#endif
}
/* Restore modified data (in reverse order), and link buses */
while (--idx >= 0) {
devp = pci_devp[idx];
switch (devp->pci_header_type & 0x7f) {
case 0:
if ((devp->pci_base_class != PCI_CLASS_BRIDGE) ||
(devp->pci_sub_class != PCI_SUBCLASS_BRIDGE_HOST))
break;
pciBusInfo[devp->busnum]->bridge = devp;
pciBusInfo[devp->busnum]->primary_bus = devp->busnum;
break;
case 1:
case 2:
i = PCI_SECONDARY_BUS_EXTRACT(devp->pci_pp_bus_register, devp->tag);
if (i > devp->busnum) {
if (pciBusInfo[i]) {
pciBusInfo[i]->bridge = devp;
/*
* The back link needs to be set here, and is unlikely to
* change.
*/
devp->businfo = pciBusInfo[i];
}
#ifdef ARCH_PCI_PCI_BRIDGE
ARCH_PCI_PCI_BRIDGE(devp);
#endif
}
if (!(devp->pci_bridge_control & PCI_PCI_BRIDGE_MASTER_ABORT_EN))
break;
pciWriteByte(devp->tag, PCI_PCI_BRIDGE_CONTROL_REG,
devp->pci_bridge_control & ~PCI_PCI_BRIDGE_SECONDARY_RESET);
break;
default:
break;
}
}
#ifdef XF86SCANPCI_WRAPPER
XF86SCANPCI_WRAPPER(SCANPCI_TERM);
#endif
/*
* Lastly, link bridges to their secondary bus, after the architecture has
* had a chance to modify these assignments.
*/
for (idx = 0; idx < pciNumBuses; idx++) {
if (!(busp = pciBusInfo[idx]) || !(devp = busp->bridge))
continue;
devp->businfo = busp;
}
#ifndef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: End of PCI scan\n");
#endif
return pci_devp;
}
pciConfigPtr
xf86GetPciConfigFromTag(PCITAG Tag)
{
pciConfigPtr pDev;
int i = 0;
2007-11-24 10:55:21 -07:00
for (i = 0 ; (pDev = pci_devp[i]) && i <= xf86MaxPciDevs; i++) {
2006-11-26 11:13:41 -07:00
if (Tag == pDev->tag)
return pDev;
}
return NULL; /* Bad data */
}
CARD32
pciCheckForBrokenBase(PCITAG Tag,int basereg)
{
pciWriteLong(Tag, PCI_MAP_REG_START + (basereg << 2), 0xffffffff);
return pciReadLong(Tag, PCI_MAP_REG_START + (basereg << 2));
}
#if defined(INCLUDE_XF86_MAP_PCI_MEM)
_X_EXPORT pointer
xf86MapPciMem(int ScreenNum, int Flags, PCITAG Tag, ADDRESS Base,
unsigned long Size)
{
ADDRESS hostbase = pciBusAddrToHostAddr(Tag, PCI_MEM,Base);
pointer base;
CARD32 save = 0;
/*
* If there are possible read side-effects, disable memory while
* doing the mapping.
*/
if (Flags & VIDMEM_READSIDEEFFECT) {
save = pciReadLong(Tag, PCI_CMD_STAT_REG);
pciWriteLong(Tag, PCI_CMD_STAT_REG,
save & ~PCI_CMD_MEM_ENABLE);
}
base = xf86MapDomainMemory(ScreenNum, Flags, Tag, hostbase, Size);
if (!base) {
FatalError("xf86MapPciMem: Could not mmap PCI memory "
"[base=0x%lx,hostbase=0x%lx,size=%lx] (%s)\n",
Base, hostbase, Size, strerror(errno));
}
/*
* If read side-effects, do whatever might be needed to prevent
* unintended reads, then restore PCI_CMD_STAT_REG.
*/
if (Flags & VIDMEM_READSIDEEFFECT) {
xf86MapReadSideEffects(ScreenNum, Flags, base, Size);
pciWriteLong(Tag, PCI_CMD_STAT_REG, save);
}
return((pointer)base);
}
static int
handlePciBIOS( PCITAG Tag, int basereg, unsigned char * buf, int len )
{
CARD32 romsave = 0;
int i;
romBaseSource b_reg;
ADDRESS hostbase;
CARD8 tmp[64];
int ret = 0;
romsave = pciReadLong(Tag, PCI_MAP_ROM_REG);
for (i = ROM_BASE_PRESET; i <= ROM_BASE_FIND; i++) {
memType savebase = 0, newbase, romaddr;
switch (i) {
case ROM_BASE_PRESET:
/* Does the driver have a preference? */
if (basereg > ROM_BASE_PRESET && basereg <= ROM_BASE_FIND)
b_reg = basereg;
else
b_reg = ++i;
break;
case ROM_BASE_FIND:
/*
* If we have something that looks like a valid address
* in romsave, it's probably not going to help to try
* to guess a new address and reprogram it.
*/
if (PCIGETROM(romsave)) {
pciWriteLong(Tag, PCI_MAP_ROM_REG, PCI_MAP_ROM_ADDRESS_MASK);
if (romsave != pciReadLong(Tag, PCI_MAP_ROM_REG)) {
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
continue;
}
}
default:
b_reg = i;
}
if (!(newbase = getValidBIOSBase(Tag, b_reg)))
continue; /* no valid address found */
romaddr = PCIGETROM(newbase);
/* if we use a mem base save it and move it out of the way */
if (b_reg >= 0 && b_reg <= 5) {
memType emptybase;
savebase = pciReadLong(Tag, PCI_MAP_REG_START+(b_reg<<2));
xf86MsgVerb(X_INFO,5,"xf86ReadPciBios: modifying membase[%i]"
" for device %i:%i:%i\n", basereg,
(int)PCI_BUS_FROM_TAG(Tag), (int)PCI_DEV_FROM_TAG(Tag),
(int)PCI_FUNC_FROM_TAG(Tag));
if (!(emptybase = getEmptyPciRange(Tag,b_reg))) {
xf86Msg(X_ERROR,"Cannot find empty range to map base to\n");
return 0;
}
pciWriteLong(Tag, PCI_MAP_REG_START + (b_reg << 2),
emptybase);
}
/* Set ROM base address and enable ROM address decoding */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romaddr
| PCI_MAP_ROM_DECODE_ENABLE);
hostbase = pciBusAddrToHostAddr(Tag, PCI_MEM, PCIGETROM(romaddr));
if ((xf86ReadDomainMemory(Tag, hostbase, sizeof(tmp), tmp) !=
sizeof(tmp)) ||
(tmp[0] != 0x55) || (tmp[1] != 0xaa) || !tmp[2] ) {
/* Restore the base registers if they were changed. */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
if (savebase) pciWriteLong(Tag, PCI_MAP_REG_START + (b_reg << 2),
(CARD32) savebase);
/* No BIOS found: try another address */
continue;
}
ret = readPciBios( Tag, tmp, hostbase, buf, len, PCI_BIOS_PC );
/* Restore the base register if it was changed. */
if (savebase) pciWriteLong(Tag, PCI_MAP_REG_START + (b_reg << 2),
(CARD32) savebase);
/* Restore ROM address decoding */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
return ret;
}
/* Restore ROM address decoding */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
return 0;
}
static int
readPciBios(PCITAG Tag, CARD8* tmp, ADDRESS hostbase, unsigned char * buf,
int len, PciBiosType bios_type )
{
unsigned int image_length = 0;
int ret;
/* We found a PCI BIOS Image. Now we look for the correct type */
while ((tmp[0] == 0x55) && (tmp[1] == 0xAA)) {
unsigned short data_off = tmp[0x18] | (tmp[0x19] << 8);
unsigned char data[0x18];
unsigned char type;
if ((xf86ReadDomainMemory(Tag, hostbase + data_off, sizeof(data), data)
!= sizeof(data)) ||
(data[0] != 'P') ||
(data[1] != 'C') ||
(data[2] != 'I') ||
(data[3] != 'R'))
break;
type = data[0x14];
#ifdef PRINT_PCI
ErrorF("data segment in BIOS: 0x%x, type: 0x%x\n", data_off, type);
#endif
if (type != bios_type) { /* not correct image: find next one */
const unsigned char indicator = data[0x15];
unsigned int i_length;
if (indicator & 0x80) /* last image */
break;
i_length = (data[0x10] | (data[0x11] << 8)) << 9;
#ifdef PRINT_PCI
ErrorF( "data image length: 0x%x, ind: 0x%x\n", i_length, indicator );
#endif
hostbase += i_length;
if (xf86ReadDomainMemory(Tag, hostbase, sizeof(tmp), tmp)
!= sizeof(tmp))
break;
continue;
}
/* OK, we have a PCI BIOS Image of the correct type */
if ( bios_type == PCI_BIOS_PC )
image_length = tmp[2] << 9;
else
image_length = (data[0x10] | (data[0x11] << 8)) << 9;
#ifdef PRINT_PCI
ErrorF("BIOS length: 0x%x\n", image_length);
#endif
break;
}
ret = 0;
if (image_length) {
/* If no length is given return the full length. Beware: Area pointed to
* by Buf must be large enough!
*/
if (len == 0) {
len = image_length;
}
else if ( len > image_length ) {
len = image_length;
xf86MsgVerb( X_INFO, 3, "Truncating PCI BIOS Length to %i\n",
len );
}
/* Read BIOS */
ret = xf86ReadDomainMemory( Tag, hostbase, len, buf );
}
return ret;
}
static int
HandlePciBios(PCITAG Tag, int basereg, unsigned char * buf, int len)
{
int n, num;
CARD32 Acc1, Acc2;
PCITAG *pTag;
int i;
/* fall back to the old code if the OS code fails */
if (pciOSHandleBIOS) {
n = pciOSHandleBIOS(Tag, basereg, buf, len);
if (n)
return n;
}
n = handlePciBIOS( Tag, basereg, buf, len );
if (n)
return n;
num = pciTestMultiDeviceCard(PCI_BUS_FROM_TAG(Tag),
PCI_DEV_FROM_TAG(Tag),
PCI_FUNC_FROM_TAG(Tag),&pTag);
if (!num) return 0;
#define PCI_ENA (PCI_CMD_MEM_ENABLE | PCI_CMD_IO_ENABLE)
Acc1 = pciReadLong(Tag, PCI_CMD_STAT_REG);
pciWriteLong(Tag, PCI_CMD_STAT_REG, (Acc1 & ~PCI_ENA));
for (i = 0; i < num; i++) {
Acc2 = pciReadLong(pTag[i], PCI_CMD_STAT_REG);
pciWriteLong(pTag[i], PCI_CMD_STAT_REG, (Acc2 | PCI_ENA));
n = handlePciBIOS( pTag[i], 0, buf, len );
pciWriteLong(pTag[i], PCI_CMD_STAT_REG, Acc2);
if (n)
break;
}
pciWriteLong(Tag, PCI_CMD_STAT_REG, Acc1);
return n;
}
_X_EXPORT int
xf86ReadPciBIOS(unsigned long Offset, PCITAG Tag, int basereg,
unsigned char *Buf, int Len)
{
return HandlePciBios(Tag, basereg, Buf, Len);
}
#endif /* INCLUDE_XF86_MAP_PCI_MEM */
#ifdef INCLUDE_XF86_NO_DOMAIN
_X_EXPORT int
xf86GetPciDomain(PCITAG Tag)
{
return 0;
}
_X_EXPORT pointer
xf86MapDomainMemory(int ScreenNum, int Flags, PCITAG Tag,
ADDRESS Base, unsigned long Size)
{
return xf86MapVidMem(ScreenNum, Flags, Base, Size);
}
_X_EXPORT IOADDRESS
xf86MapDomainIO(int ScreenNum, int Flags, PCITAG Tag,
IOADDRESS Base, unsigned long Size)
{
return Base;
}
_X_EXPORT int
xf86ReadDomainMemory(PCITAG Tag, ADDRESS Base, int Len, unsigned char *Buf)
{
int ret, length, rlength;
/* Read in 64kB chunks */
ret = 0;
while ((length = Len) > 0) {
if (length > 0x010000) length = 0x010000;
rlength = xf86ReadBIOS(Base, 0, Buf, length);
if (rlength < 0) {
ret = rlength;
break;
}
ret += rlength;
if (rlength < length) break;
Base += rlength;
Buf += rlength;
Len -= rlength;
}
return ret;
}
#endif /* INCLUDE_XF86_NO_DOMAIN */