xenocara/lib/pixman/test/composite.c

785 lines
17 KiB
C
Raw Normal View History

/*
* Copyright © 2005 Eric Anholt
* Copyright © 2009 Chris Wilson
* Copyright © 2010 Soeren Sandmann
* Copyright © 2010 Red Hat, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Eric Anholt not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Eric Anholt makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* ERIC ANHOLT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL ERIC ANHOLT BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h> /* abort() */
#include <math.h>
#include <time.h>
#include "utils.h"
typedef struct format_t format_t;
typedef struct image_t image_t;
typedef struct operator_t operator_t;
struct format_t
{
pixman_format_code_t format;
const char *name;
};
static const color_t colors[] =
{
{ 1.0, 1.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 0.0 },
{ 0.0, 0.0, 0.0, 1.0 },
{ 0.0, 0.0, 0.0, 0.0 },
{ 1.0, 0.0, 0.0, 1.0 },
{ 0.0, 1.0, 0.0, 1.0 },
{ 0.0, 0.0, 1.0, 1.0 },
{ 0.5, 0.0, 0.0, 0.5 },
};
static uint16_t
_color_double_to_short (double d)
{
uint32_t i;
i = (uint32_t) (d * 65536);
i -= (i >> 16);
return i;
}
static void
compute_pixman_color (const color_t *color,
pixman_color_t *out)
{
out->red = _color_double_to_short (color->r);
out->green = _color_double_to_short (color->g);
out->blue = _color_double_to_short (color->b);
out->alpha = _color_double_to_short (color->a);
}
#define REPEAT 0x01000000
#define FLAGS 0xff000000
static const int sizes[] =
{
0,
1,
1 | REPEAT,
10
};
static const format_t formats[] =
{
#define P(x) { PIXMAN_##x, #x }
/* 32 bpp formats */
P(a8r8g8b8),
P(x8r8g8b8),
P(a8b8g8r8),
P(x8b8g8r8),
P(b8g8r8a8),
P(b8g8r8x8),
P(r8g8b8a8),
P(r8g8b8x8),
P(x2r10g10b10),
P(x2b10g10r10),
P(a2r10g10b10),
P(a2b10g10r10),
/* 24 bpp formats */
P(r8g8b8),
P(b8g8r8),
P(r5g6b5),
P(b5g6r5),
/* 16 bpp formats */
P(x1r5g5b5),
P(x1b5g5r5),
P(a1r5g5b5),
P(a1b5g5r5),
P(a4b4g4r4),
P(x4b4g4r4),
P(a4r4g4b4),
P(x4r4g4b4),
/* 8 bpp formats */
P(a8),
P(r3g3b2),
P(b2g3r3),
P(a2r2g2b2),
P(a2b2g2r2),
P(x4a4),
/* 4 bpp formats */
P(a4),
P(r1g2b1),
P(b1g2r1),
P(a1r1g1b1),
P(a1b1g1r1),
/* 1 bpp formats */
P(a1)
#undef P
};
struct image_t
{
pixman_image_t *image;
const format_t *format;
const color_t *color;
pixman_repeat_t repeat;
int size;
};
struct operator_t
{
pixman_op_t op;
const char *name;
};
static const operator_t operators[] =
{
#define P(x) { PIXMAN_OP_##x, #x }
P(CLEAR),
P(SRC),
P(DST),
P(OVER),
P(OVER_REVERSE),
P(IN),
P(IN_REVERSE),
P(OUT),
P(OUT_REVERSE),
P(ATOP),
P(ATOP_REVERSE),
P(XOR),
P(ADD),
P(SATURATE),
P(DISJOINT_CLEAR),
P(DISJOINT_SRC),
P(DISJOINT_DST),
P(DISJOINT_OVER),
P(DISJOINT_OVER_REVERSE),
P(DISJOINT_IN),
P(DISJOINT_IN_REVERSE),
P(DISJOINT_OUT),
P(DISJOINT_OUT_REVERSE),
P(DISJOINT_ATOP),
P(DISJOINT_ATOP_REVERSE),
P(DISJOINT_XOR),
P(CONJOINT_CLEAR),
P(CONJOINT_SRC),
P(CONJOINT_DST),
P(CONJOINT_OVER),
P(CONJOINT_OVER_REVERSE),
P(CONJOINT_IN),
P(CONJOINT_IN_REVERSE),
P(CONJOINT_OUT),
P(CONJOINT_OUT_REVERSE),
P(CONJOINT_ATOP),
P(CONJOINT_ATOP_REVERSE),
P(CONJOINT_XOR),
#undef P
};
static double
calc_op (pixman_op_t op, double src, double dst, double srca, double dsta)
{
#define mult_chan(src, dst, Fa, Fb) MIN ((src) * (Fa) + (dst) * (Fb), 1.0)
double Fa, Fb;
switch (op)
{
case PIXMAN_OP_CLEAR:
case PIXMAN_OP_DISJOINT_CLEAR:
case PIXMAN_OP_CONJOINT_CLEAR:
return mult_chan (src, dst, 0.0, 0.0);
case PIXMAN_OP_SRC:
case PIXMAN_OP_DISJOINT_SRC:
case PIXMAN_OP_CONJOINT_SRC:
return mult_chan (src, dst, 1.0, 0.0);
case PIXMAN_OP_DST:
case PIXMAN_OP_DISJOINT_DST:
case PIXMAN_OP_CONJOINT_DST:
return mult_chan (src, dst, 0.0, 1.0);
case PIXMAN_OP_OVER:
return mult_chan (src, dst, 1.0, 1.0 - srca);
case PIXMAN_OP_OVER_REVERSE:
return mult_chan (src, dst, 1.0 - dsta, 1.0);
case PIXMAN_OP_IN:
return mult_chan (src, dst, dsta, 0.0);
case PIXMAN_OP_IN_REVERSE:
return mult_chan (src, dst, 0.0, srca);
case PIXMAN_OP_OUT:
return mult_chan (src, dst, 1.0 - dsta, 0.0);
case PIXMAN_OP_OUT_REVERSE:
return mult_chan (src, dst, 0.0, 1.0 - srca);
case PIXMAN_OP_ATOP:
return mult_chan (src, dst, dsta, 1.0 - srca);
case PIXMAN_OP_ATOP_REVERSE:
return mult_chan (src, dst, 1.0 - dsta, srca);
case PIXMAN_OP_XOR:
return mult_chan (src, dst, 1.0 - dsta, 1.0 - srca);
case PIXMAN_OP_ADD:
return mult_chan (src, dst, 1.0, 1.0);
case PIXMAN_OP_SATURATE:
case PIXMAN_OP_DISJOINT_OVER_REVERSE:
if (srca == 0.0)
Fa = 1.0;
else
Fa = MIN (1.0, (1.0 - dsta) / srca);
return mult_chan (src, dst, Fa, 1.0);
case PIXMAN_OP_DISJOINT_OVER:
if (dsta == 0.0)
Fb = 1.0;
else
Fb = MIN (1.0, (1.0 - srca) / dsta);
return mult_chan (src, dst, 1.0, Fb);
case PIXMAN_OP_DISJOINT_IN:
if (srca == 0.0)
Fa = 0.0;
else
Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca);
return mult_chan (src, dst, Fa, 0.0);
case PIXMAN_OP_DISJOINT_IN_REVERSE:
if (dsta == 0.0)
Fb = 0.0;
else
Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta);
return mult_chan (src, dst, 0.0, Fb);
case PIXMAN_OP_DISJOINT_OUT:
if (srca == 0.0)
Fa = 1.0;
else
Fa = MIN (1.0, (1.0 - dsta) / srca);
return mult_chan (src, dst, Fa, 0.0);
case PIXMAN_OP_DISJOINT_OUT_REVERSE:
if (dsta == 0.0)
Fb = 1.0;
else
Fb = MIN (1.0, (1.0 - srca) / dsta);
return mult_chan (src, dst, 0.0, Fb);
case PIXMAN_OP_DISJOINT_ATOP:
if (srca == 0.0)
Fa = 0.0;
else
Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca);
if (dsta == 0.0)
Fb = 1.0;
else
Fb = MIN (1.0, (1.0 - srca) / dsta);
return mult_chan (src, dst, Fa, Fb);
case PIXMAN_OP_DISJOINT_ATOP_REVERSE:
if (srca == 0.0)
Fa = 1.0;
else
Fa = MIN (1.0, (1.0 - dsta) / srca);
if (dsta == 0.0)
Fb = 0.0;
else
Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta);
return mult_chan (src, dst, Fa, Fb);
case PIXMAN_OP_DISJOINT_XOR:
if (srca == 0.0)
Fa = 1.0;
else
Fa = MIN (1.0, (1.0 - dsta) / srca);
if (dsta == 0.0)
Fb = 1.0;
else
Fb = MIN (1.0, (1.0 - srca) / dsta);
return mult_chan (src, dst, Fa, Fb);
case PIXMAN_OP_CONJOINT_OVER:
if (dsta == 0.0)
Fb = 0.0;
else
Fb = MAX (0.0, 1.0 - srca / dsta);
return mult_chan (src, dst, 1.0, Fb);
case PIXMAN_OP_CONJOINT_OVER_REVERSE:
if (srca == 0.0)
Fa = 0.0;
else
Fa = MAX (0.0, 1.0 - dsta / srca);
return mult_chan (src, dst, Fa, 1.0);
case PIXMAN_OP_CONJOINT_IN:
if (srca == 0.0)
Fa = 1.0;
else
Fa = MIN (1.0, dsta / srca);
return mult_chan (src, dst, Fa, 0.0);
case PIXMAN_OP_CONJOINT_IN_REVERSE:
if (dsta == 0.0)
Fb = 1.0;
else
Fb = MIN (1.0, srca / dsta);
return mult_chan (src, dst, 0.0, Fb);
case PIXMAN_OP_CONJOINT_OUT:
if (srca == 0.0)
Fa = 0.0;
else
Fa = MAX (0.0, 1.0 - dsta / srca);
return mult_chan (src, dst, Fa, 0.0);
case PIXMAN_OP_CONJOINT_OUT_REVERSE:
if (dsta == 0.0)
Fb = 0.0;
else
Fb = MAX (0.0, 1.0 - srca / dsta);
return mult_chan (src, dst, 0.0, Fb);
case PIXMAN_OP_CONJOINT_ATOP:
if (srca == 0.0)
Fa = 1.0;
else
Fa = MIN (1.0, dsta / srca);
if (dsta == 0.0)
Fb = 0.0;
else
Fb = MAX (0.0, 1.0 - srca / dsta);
return mult_chan (src, dst, Fa, Fb);
case PIXMAN_OP_CONJOINT_ATOP_REVERSE:
if (srca == 0.0)
Fa = 0.0;
else
Fa = MAX (0.0, 1.0 - dsta / srca);
if (dsta == 0.0)
Fb = 1.0;
else
Fb = MIN (1.0, srca / dsta);
return mult_chan (src, dst, Fa, Fb);
case PIXMAN_OP_CONJOINT_XOR:
if (srca == 0.0)
Fa = 0.0;
else
Fa = MAX (0.0, 1.0 - dsta / srca);
if (dsta == 0.0)
Fb = 0.0;
else
Fb = MAX (0.0, 1.0 - srca / dsta);
return mult_chan (src, dst, Fa, Fb);
case PIXMAN_OP_MULTIPLY:
case PIXMAN_OP_SCREEN:
case PIXMAN_OP_OVERLAY:
case PIXMAN_OP_DARKEN:
case PIXMAN_OP_LIGHTEN:
case PIXMAN_OP_COLOR_DODGE:
case PIXMAN_OP_COLOR_BURN:
case PIXMAN_OP_HARD_LIGHT:
case PIXMAN_OP_SOFT_LIGHT:
case PIXMAN_OP_DIFFERENCE:
case PIXMAN_OP_EXCLUSION:
case PIXMAN_OP_HSL_HUE:
case PIXMAN_OP_HSL_SATURATION:
case PIXMAN_OP_HSL_COLOR:
case PIXMAN_OP_HSL_LUMINOSITY:
default:
abort();
return 0; /* silence MSVC */
}
#undef mult_chan
}
static void
do_composite (pixman_op_t op,
const color_t *src,
const color_t *mask,
const color_t *dst,
color_t *result,
pixman_bool_t component_alpha)
{
color_t srcval, srcalpha;
if (mask == NULL)
{
srcval = *src;
srcalpha.r = src->a;
srcalpha.g = src->a;
srcalpha.b = src->a;
srcalpha.a = src->a;
}
else if (component_alpha)
{
srcval.r = src->r * mask->r;
srcval.g = src->g * mask->g;
srcval.b = src->b * mask->b;
srcval.a = src->a * mask->a;
srcalpha.r = src->a * mask->r;
srcalpha.g = src->a * mask->g;
srcalpha.b = src->a * mask->b;
srcalpha.a = src->a * mask->a;
}
else
{
srcval.r = src->r * mask->a;
srcval.g = src->g * mask->a;
srcval.b = src->b * mask->a;
srcval.a = src->a * mask->a;
srcalpha.r = src->a * mask->a;
srcalpha.g = src->a * mask->a;
srcalpha.b = src->a * mask->a;
srcalpha.a = src->a * mask->a;
}
result->r = calc_op (op, srcval.r, dst->r, srcalpha.r, dst->a);
result->g = calc_op (op, srcval.g, dst->g, srcalpha.g, dst->a);
result->b = calc_op (op, srcval.b, dst->b, srcalpha.b, dst->a);
result->a = calc_op (op, srcval.a, dst->a, srcalpha.a, dst->a);
}
static uint32_t
get_value (pixman_image_t *image)
{
uint32_t value = *(uint32_t *)pixman_image_get_data (image);
#ifdef WORDS_BIGENDIAN
{
pixman_format_code_t format = pixman_image_get_format (image);
value >>= 8 * sizeof(value) - PIXMAN_FORMAT_BPP (format);
}
#endif
return value;
}
static char *
describe_image (image_t *info, char *buf)
{
if (info->size)
{
sprintf (buf, "%s, %dx%d%s",
info->format->name,
info->size, info->size,
info->repeat ? " R" :"");
}
else
{
sprintf (buf, "solid");
}
return buf;
}
static char *
describe_color (const color_t *color, char *buf)
{
sprintf (buf, "%.3f %.3f %.3f %.3f",
color->r, color->g, color->b, color->a);
return buf;
}
static pixman_bool_t
composite_test (image_t *dst,
const operator_t *op,
image_t *src,
image_t *mask,
pixman_bool_t component_alpha,
int testno)
{
pixman_color_t fill;
color_t expected, tdst, tsrc, tmsk;
pixel_checker_t checker;
pixman_image_t *solid;
/* Initialize dst */
compute_pixman_color (dst->color, &fill);
solid = pixman_image_create_solid_fill (&fill);
pixman_image_composite32 (PIXMAN_OP_SRC, solid, NULL, dst->image,
0, 0, 0, 0, 0, 0, dst->size, dst->size);
pixman_image_unref (solid);
if (mask)
{
pixman_image_set_component_alpha (mask->image, component_alpha);
pixman_image_composite (op->op, src->image, mask->image, dst->image,
0, 0, 0, 0, 0, 0, dst->size, dst->size);
}
else
{
pixman_image_composite (op->op, src->image, NULL, dst->image,
0, 0,
0, 0,
0, 0,
dst->size, dst->size);
}
tdst = *dst->color;
round_color (dst->format->format, &tdst);
tsrc = *src->color;
if (src->size)
round_color (src->format->format, &tsrc);
if (mask)
{
tmsk = *mask->color;
if (mask->size)
round_color (mask->format->format, &tmsk);
if (component_alpha && PIXMAN_FORMAT_R (mask->format->format) == 0)
{
/* Ax component-alpha masks expand alpha into
* all color channels.
*/
tmsk.r = tmsk.g = tmsk.b = tmsk.a;
}
}
do_composite (op->op,
&tsrc,
mask? &tmsk : NULL,
&tdst,
&expected,
component_alpha);
pixel_checker_init (&checker, dst->format->format);
if (!pixel_checker_check (&checker, get_value (dst->image), &expected))
{
char buf[40], buf2[40];
int a, r, g, b;
uint32_t pixel;
printf ("---- Test %d failed ----\n", testno);
printf ("Operator: %s %s\n",
op->name, component_alpha ? "CA" : "");
printf ("Source: %s\n", describe_image (src, buf));
if (mask != NULL)
printf ("Mask: %s\n", describe_image (mask, buf));
printf ("Destination: %s\n\n", describe_image (dst, buf));
printf (" R G B A Rounded\n");
printf ("Source color: %s %s\n",
describe_color (src->color, buf),
describe_color (&tsrc, buf2));
if (mask)
{
printf ("Mask color: %s %s\n",
describe_color (mask->color, buf),
describe_color (&tmsk, buf2));
}
printf ("Dest. color: %s %s\n",
describe_color (dst->color, buf),
describe_color (&tdst, buf2));
pixel = get_value (dst->image);
printf ("Expected: %s\n", describe_color (&expected, buf));
pixel_checker_split_pixel (&checker, pixel, &a, &r, &g, &b);
printf ("Got: %5d %5d %5d %5d [pixel: 0x%08x]\n", r, g, b, a, pixel);
pixel_checker_get_min (&checker, &expected, &a, &r, &g, &b);
printf ("Min accepted: %5d %5d %5d %5d\n", r, g, b, a);
pixel_checker_get_max (&checker, &expected, &a, &r, &g, &b);
printf ("Max accepted: %5d %5d %5d %5d\n", r, g, b, a);
return FALSE;
}
return TRUE;
}
static void
image_init (image_t *info,
int color,
int format,
int size)
{
pixman_color_t fill;
info->color = &colors[color];
compute_pixman_color (info->color, &fill);
info->format = &formats[format];
info->size = sizes[size] & ~FLAGS;
info->repeat = PIXMAN_REPEAT_NONE;
if (info->size)
{
pixman_image_t *solid;
info->image = pixman_image_create_bits (info->format->format,
info->size, info->size,
NULL, 0);
solid = pixman_image_create_solid_fill (&fill);
pixman_image_composite32 (PIXMAN_OP_SRC, solid, NULL, info->image,
0, 0, 0, 0, 0, 0, info->size, info->size);
pixman_image_unref (solid);
if (sizes[size] & REPEAT)
{
pixman_image_set_repeat (info->image, PIXMAN_REPEAT_NORMAL);
info->repeat = PIXMAN_REPEAT_NORMAL;
}
}
else
{
info->image = pixman_image_create_solid_fill (&fill);
}
}
static void
image_fini (image_t *info)
{
pixman_image_unref (info->image);
}
static int
random_size (void)
{
return lcg_rand_n (ARRAY_LENGTH (sizes));
}
static int
random_color (void)
{
return lcg_rand_n (ARRAY_LENGTH (colors));
}
static int
random_format (void)
{
return lcg_rand_n (ARRAY_LENGTH (formats));
}
static pixman_bool_t
run_test (uint32_t seed)
{
image_t src, mask, dst;
const operator_t *op;
int ca;
int ok;
lcg_srand (seed);
image_init (&dst, random_color(), random_format(), 1);
image_init (&src, random_color(), random_format(), random_size());
image_init (&mask, random_color(), random_format(), random_size());
op = &(operators [lcg_rand_n (ARRAY_LENGTH (operators))]);
ca = lcg_rand_n (3);
switch (ca)
{
case 0:
ok = composite_test (&dst, op, &src, NULL, FALSE, seed);
break;
case 1:
ok = composite_test (&dst, op, &src, &mask, FALSE, seed);
break;
case 2:
ok = composite_test (&dst, op, &src, &mask,
mask.size? TRUE : FALSE, seed);
break;
default:
ok = FALSE;
break;
}
image_fini (&src);
image_fini (&mask);
image_fini (&dst);
return ok;
}
int
main (int argc, char **argv)
{
#define N_TESTS (8 * 1024 * 1024)
int result = 0;
uint32_t seed;
int32_t i;
if (argc > 1)
{
char *end;
i = strtol (argv[1], &end, 0);
if (end != argv[1])
{
if (!run_test (i))
return 1;
else
return 0;
}
else
{
printf ("Usage:\n\n %s <number>\n\n", argv[0]);
return -1;
}
}
if (getenv ("PIXMAN_RANDOMIZE_TESTS"))
seed = get_random_seed();
else
seed = 1;
#ifdef USE_OPENMP
# pragma omp parallel for default(none) shared(result, argv, seed)
#endif
for (i = 0; i <= N_TESTS; ++i)
{
if (!result && !run_test (i + seed))
{
printf ("Test 0x%08X failed.\n", seed + i);
result = seed + i;
}
}
return result;
}