xenocara/app/xlockmore/modes/dilemma.c

952 lines
25 KiB
C
Raw Normal View History

2006-11-26 04:07:42 -07:00
/* -*- Mode: C; tab-width: 4 -*- */
/* dilemma --- Lloyd's Prisoner's Dilemma Simulation */
#if !defined( lint ) && !defined( SABER )
static const char sccsid[] = "@(#)dilemma.c 5.00 2000/11/01 xlockmore";
#endif
/*-
* Copyright (c) 1997 by David Bagley.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation.
*
* This file is provided AS IS with no warranties of any kind. The author
* shall have no liability with respect to the infringement of copyrights,
* trade secrets or any patents by this file or any part thereof. In no
* event will the author be liable for any lost revenue or profits or
* other special, indirect and consequential damages.
*
* Revision History:
* 01-Nov-2000: Allocation checks
* 20-Oct-1997: Computing Bouts of the Prisoner's Dilemma by Alun L. Lloyd
* Scientific American Magazine June 1995
* Used voters.c as a guide.
*/
/*-
* Opponent's Strategy
*
* Cooperate Defect
* -----------------------
* | | |
* Cooperate | 1 | 0 |
* Player's | | |
* Strategy |-----------+-----------|
* | | |
* Defect | b | 0 |
* | | |
* -----------------------
*
* The Payoff Matrix
*
* An interesting value of "b" for a 8 neighbor grid is 1.85
* What does b stand for? "bonus"?
* Cells get 1 if they and their opponent cooperates.
* Cells get b if they cheat and their opponent cooperates.
* Cells get 0 in the 2 other cases.
* If b is greater then a cell should always cheat except
* they have to live with their neighbor... so on the next go around
* their neighbor might not see any benefit in cooperating.
* Cells add up the previous results of their neighbors
* and decide if its their best strategy is to cheat or not to cheat.
*
* I have noticed round off errors I have not as yet tracked them down.
* Try
* -bonus 1.99 -neighbors 12 -size 10
* -bonus 241 -neighbors 6 -size 8
* -bonus 1.71 -neighbors 4 -size 4
*/
#ifdef STANDALONE
#define MODE_dilemma
#define PROGCLASS "Dilemma"
#define HACK_INIT init_dilemma
#define HACK_DRAW draw_dilemma
#define dilemma_opts xlockmore_opts
#define DEFAULTS "*delay: 200000 \n" \
"*batchcount: -2 \n" \
"*cycles: 1000 \n" \
"*size: 0 \n" \
"*ncolors: 6 \n" \
"*neighbors: 0 \n"
#include "xlockmore.h" /* in xscreensaver distribution */
#define UNIFORM_COLORS
#define BRIGHT_COLORS
#define SMOOTH_COLORS
#else /* STANDALONE */
#include "xlock.h" /* in xlockmore distribution */
#endif /* STANDALONE */
#include "automata.h"
#ifdef MODE_dilemma
/*-
* neighbors of 0 randomizes it between 3, 4, 6, 8, 9, and 12.
*/
#define DEF_NEIGHBORS "0" /* choose random value */
#define DEF_BONUS "1.85"
#define DEF_CONSCIOUS "True"
static int neighbors;
static float bonus;
static Bool conscious;
static XrmOptionDescRec opts[] =
{
{(char *) "-neighbors", (char *) ".dilemma.neighbors", XrmoptionSepArg, (caddr_t) NULL},
{(char *) "-bonus", (char *) ".dilemma.bonus", XrmoptionSepArg, (caddr_t) NULL},
{(char *) "-conscious", (char *) ".dilemma.conscious", XrmoptionNoArg, (caddr_t) "on"},
{(char *) "+conscious", (char *) ".dilemma.conscious", XrmoptionNoArg, (caddr_t) "off"}
};
static argtype vars[] =
{
{(void *) & neighbors, (char *) "neighbors", (char *) "Neighbors", (char *) DEF_NEIGHBORS, t_Int},
{(void *) & bonus, (char *) "bonus", (char *) "Bonus", (char *) DEF_BONUS, t_Float},
{(void *) & conscious, (char *) "conscious", (char *) "Conscious", (char *) DEF_CONSCIOUS, t_Bool}
};
static OptionStruct desc[] =
{
{(char *) "-neighbors num", (char *) "squares 4 or 8, hexagons 6, triangles 3, 9 or 12"},
{(char *) "-bonus value", (char *) "bonus for cheating... between 1.0 and 4.0"},
{(char *) "-/+conscious", (char *) "turn on/off self-awareness"}
};
ModeSpecOpt dilemma_opts =
{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc};
#ifdef USE_MODULES
ModStruct dilemma_description =
{"dilemma", "init_dilemma", "draw_dilemma", "release_dilemma",
"refresh_dilemma", "init_dilemma", (char *) NULL, &dilemma_opts,
200000, -2, 1000, 0, 64, 1.0, "",
"Shows Lloyd's Prisoner's Dilemma simulation", 0, NULL};
#endif
/* Better bitmaps needed :) */
#include "bitmaps/cooperat.xbm" /* age > 1 then blue, age = 1 then green */
#include "bitmaps/defect.xbm" /* age > 1 then red, age = 1 then yellow */
#define DEFECTOR 0
#define COOPERATOR 1
#define COLORS 4
#define BLUE (45 * MI_NPIXELS(mi) / 64) /* COOPERATING, was cooperating */
#define GREEN (23 * MI_NPIXELS(mi) / 64) /* COOPERATING, was defecting */
#define YELLOW (MI_NPIXELS(mi) / 6) /* DEFECTING, was cooperating */
#define RED 0 /* DEFECTING, was defecting */
#define MINDEFECT 1
#define BITMAPS 2
#define MINGRIDSIZE 16
#define MINSIZE 10
#define FACTOR 10
#define NEIGHBORKINDS 6
#define REDRAWSTEP 2000 /* How many cells to draw per cycle */
#define ROUND_FLOAT(x,a) ((float) ((int) ((x) / (a) + 0.5)) * (a))
static XImage logo[BITMAPS] =
{
{0, 0, 0, XYBitmap, (char *) cooperat_bits, LSBFirst, 8, LSBFirst, 8, 1},
{0, 0, 0, XYBitmap, (char *) defect_bits, LSBFirst, 8, LSBFirst, 8, 1}
};
/* Dilemma data */
/* Singly linked list */
typedef struct _CellList {
XPoint pt;
struct _CellList *next;
} CellList;
typedef struct {
int defectors; /* portion of defectors */
float pm[2][2]; /* payoff matrix */
unsigned long colors[2][2];
CellList *cellList[COLORS];
char *s, *sn; /* cell strategies */
float *payoff;
int initialized;
int xs, ys; /* Size of cooperators and defectors */
int xb, yb; /* Bitmap offset for cooperators and defectors */
int state;
int redrawing, redrawpos;
int pixelmode;
int generation;
int ncols, nrows;
int npositions;
int width, height;
int neighbors;
union {
XPoint hexagon[6];
XPoint triangle[2][3];
} shape;
} dilemmastruct;
static char plots[NEIGHBORKINDS] =
{
3, 4, 6, 8, 9, 12 /* Neighborhoods */
};
static dilemmastruct *dilemmas = (dilemmastruct *) NULL;
static int icon_width, icon_height;
static void
drawcell(ModeInfo * mi, int col, int row, unsigned long color, int bitmap,
Bool firstChange)
{
Display *display = MI_DISPLAY(mi);
Window window = MI_WINDOW(mi);
GC gc = MI_GC(mi);
dilemmastruct *dp = &dilemmas[MI_SCREEN(mi)];
unsigned long colour = (MI_NPIXELS(mi) >= COLORS) ?
color : MI_WHITE_PIXEL(mi);
XSetForeground(display, gc, colour);
if (dp->neighbors == 6) {
int ccol = 2 * col + !(row & 1), crow = 2 * row;
dp->shape.hexagon[0].x = dp->xb + ccol * dp->xs;
dp->shape.hexagon[0].y = dp->yb + crow * dp->ys;
if (dp->xs == 1 && dp->ys == 1)
XDrawPoint(display, window, gc,
dp->shape.hexagon[0].x, dp->shape.hexagon[0].y);
else if (bitmap == BITMAPS - 1)
XFillPolygon(display, window, gc,
dp->shape.hexagon, 6, Convex, CoordModePrevious);
else {
if (firstChange) {
XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
XFillPolygon(display, window, gc,
dp->shape.hexagon, 6, Convex, CoordModePrevious);
XSetForeground(display, gc, colour);
}
if (dp->xs <= 6 || dp->ys <= 2)
XFillRectangle(display, window, gc,
dp->shape.hexagon[0].x - 3 * dp->xs / 4,
dp->shape.hexagon[0].y + dp->ys / 4, dp->xs, dp->ys);
else
XFillArc(display, window, gc,
dp->xb + dp->xs * ccol - 3 * dp->xs / 4,
dp->yb + dp->ys * crow + dp->ys / 4,
2 * dp->xs - 6, 2 * dp->ys - 2,
0, 23040);
}
} else if (dp->neighbors == 4 || dp->neighbors == 8) {
if (dp->pixelmode) {
if (bitmap == BITMAPS - 1 || (dp->xs <= 2 || dp->ys <= 2))
XFillRectangle(display, window, gc,
dp->xb + dp->xs * col, dp->yb + dp->ys * row,
dp->xs - (dp->xs > 3), dp->ys - (dp->ys > 3));
else {
if (firstChange) {
XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
XFillRectangle(display, window, gc,
dp->xb + dp->xs * col, dp->yb + dp->ys * row,
dp->xs, dp->ys);
XSetForeground(display, gc, colour);
}
XFillArc(display, window, gc,
dp->xb + dp->xs * col, dp->yb + dp->ys * row,
dp->xs - 1, dp->ys - 1,
0, 23040);
}
} else
(void) XPutImage(display, window, gc,
&logo[bitmap], 0, 0,
dp->xb + dp->xs * col, dp->yb + dp->ys * row,
icon_width, icon_height);
} else { /* TRI */
int orient = (col + row) % 2; /* O left 1 right */
dp->shape.triangle[orient][0].x = dp->xb + col * dp->xs;
dp->shape.triangle[orient][0].y = dp->yb + row * dp->ys;
if (dp->xs <= 3 || dp->ys <= 3)
XDrawPoint(display, window, gc,
((orient) ? -1 : 1) + dp->shape.triangle[orient][0].x,
dp->shape.triangle[orient][0].y);
else {
if (orient)
dp->shape.triangle[orient][0].x += (dp->xs / 2 - 1);
else
dp->shape.triangle[orient][0].x -= (dp->xs / 2 - 1);
if (bitmap == BITMAPS - 1)
XFillPolygon(display, window, gc,
dp->shape.triangle[orient], 3, Convex, CoordModePrevious);
else {
if (firstChange) {
XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
XFillPolygon(display, window, gc,
dp->shape.triangle[orient], 3, Convex, CoordModePrevious);
XSetForeground(display, gc, colour);
}
XFillArc(display, window, gc,
dp->xb + dp->xs * col - 4 * dp->xs / 5 +
((orient) ? dp->xs / 3 : 3 * dp->xs / 5),
dp->yb + dp->ys * row - dp->ys / 2 + 1, dp->ys - 3, dp->ys - 3,
0, 23040);
}
}
}
}
static void
addtolist(ModeInfo * mi, int col, int row, int state)
{
dilemmastruct *dp = &dilemmas[MI_SCREEN(mi)];
CellList *current;
current = dp->cellList[state];
dp->cellList[state] = (CellList *) malloc(sizeof (CellList));
dp->cellList[state]->pt.x = col;
dp->cellList[state]->pt.y = row;
dp->cellList[state]->next = current;
}
#ifdef DEBUG
static void
print_state(ModeInfo * mi, int state)
{
dilemmastruct *dp = &dilemmas[MI_SCREEN(mi)];
CellList *locallist;
int i = 0;
locallist = dp->cellList[state];
(void) printf("state %d\n", state);
while (locallist) {
(void) printf("%d x %d, y %d\n", i,
locallist->pt.x, locallist->pt.y);
locallist = locallist->next;
i++;
}
}
#endif
static void
free_state(dilemmastruct * dp, int state)
{
CellList *current;
while (dp->cellList[state]) {
current = dp->cellList[state];
dp->cellList[state] = dp->cellList[state]->next;
free(current);
}
dp->cellList[state] = (CellList *) NULL;
}
static void
free_list(dilemmastruct * dp)
{
int state;
for (state = 0; state < COLORS; state++)
free_state(dp, state);
}
static void
free_dilemma(dilemmastruct *dp)
{
free_list(dp);
if (dp->sn != NULL) {
free(dp->sn);
dp->sn = (char *) NULL;
}
if (dp->s != NULL) {
free(dp->s);
dp->s = (char *) NULL;
}
if (dp->payoff != NULL) {
free(dp->payoff);
dp->payoff = (float *) NULL;
}
}
static void
alloc_dilemma(dilemmastruct *dp)
{
if ((dp->s = (char *) calloc(dp->npositions, sizeof (char))) == NULL) {
free_dilemma(dp);
return;
}
if ((dp->sn = (char *) calloc(dp->npositions, sizeof (char))) == NULL) {
free_dilemma(dp);
return;
}
if ((dp->payoff = (float *) calloc(dp->npositions,
sizeof (float))) == NULL) {
free_dilemma(dp);
return;
}
}
static int
neighbor_position(dilemmastruct * dp, int col, int row, int dir)
{
if (dp->neighbors == 6) {
switch (dir) {
case 0:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
break;
case 60:
if (!(row & 1))
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 120:
if (row & 1)
col = (!col) ? dp->ncols - 1 : col - 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 180:
col = (!col) ? dp->ncols - 1 : col - 1;
break;
case 240:
if (row & 1)
col = (!col) ? dp->ncols - 1 : col - 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 300:
if (!(row & 1))
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
default:
(void) fprintf(stderr, "wrong direction %d\n", dir);
}
} else if (dp->neighbors == 4 || dp->neighbors == 8) {
switch (dir) {
case 0:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
break;
case 45:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 90:
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 135:
col = (!col) ? dp->ncols - 1 : col - 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 180:
col = (!col) ? dp->ncols - 1 : col - 1;
break;
case 225:
col = (!col) ? dp->ncols - 1 : col - 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 270:
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 315:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
default:
(void) fprintf(stderr, "wrong direction %d\n", dir);
}
} else { /* TRI */
if ((col + row) % 2) { /* right */
switch (dir) {
case 0:
col = (!col) ? dp->ncols - 1 : col - 1;
break;
case 30:
case 40:
col = (!col) ? dp->ncols - 1 : col - 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 60:
col = (!col) ? dp->ncols - 1 : col - 1;
if (row + 1 == dp->nrows)
row = 1;
else if (row + 2 == dp->nrows)
row = 0;
else
row = row + 2;
break;
case 80:
case 90:
if (row + 1 == dp->nrows)
row = 1;
else if (row + 2 == dp->nrows)
row = 0;
else
row = row + 2;
break;
case 120:
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 150:
case 160:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 180:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
break;
case 200:
case 210:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 240:
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 270:
case 280:
if (!row)
row = dp->nrows - 2;
else if (!(row - 1))
row = dp->nrows - 1;
else
row = row - 2;
break;
case 300:
col = (!col) ? dp->ncols - 1 : col - 1;
if (!row)
row = dp->nrows - 2;
else if (!(row - 1))
row = dp->nrows - 1;
else
row = row - 2;
break;
case 320:
case 330:
col = (!col) ? dp->ncols - 1 : col - 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
default:
(void) fprintf(stderr, "wrong direction %d\n", dir);
}
} else { /* left */
switch (dir) {
case 0:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
break;
case 30:
case 40:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 60:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
if (!row)
row = dp->nrows - 2;
else if (row == 1)
row = dp->nrows - 1;
else
row = row - 2;
break;
case 80:
case 90:
if (!row)
row = dp->nrows - 2;
else if (row == 1)
row = dp->nrows - 1;
else
row = row - 2;
break;
case 120:
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 150:
case 160:
col = (!col) ? dp->ncols - 1 : col - 1;
row = (!row) ? dp->nrows - 1 : row - 1;
break;
case 180:
col = (!col) ? dp->ncols - 1 : col - 1;
break;
case 200:
case 210:
col = (!col) ? dp->ncols - 1 : col - 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 240:
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
case 270:
case 280:
if (row + 1 == dp->nrows)
row = 1;
else if (row + 2 == dp->nrows)
row = 0;
else
row = row + 2;
break;
case 300:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
if (row + 1 == dp->nrows)
row = 1;
else if (row + 2 == dp->nrows)
row = 0;
else
row = row + 2;
break;
case 320:
case 330:
col = (col + 1 == dp->ncols) ? 0 : col + 1;
row = (row + 1 == dp->nrows) ? 0 : row + 1;
break;
default:
(void) fprintf(stderr, "wrong direction %d\n", dir);
}
}
}
return row * dp->ncols + col;
}
static void
draw_state(ModeInfo * mi, int state)
{
dilemmastruct *dp = &dilemmas[MI_SCREEN(mi)];
CellList *current;
current = dp->cellList[state];
while (current) {
int col = current->pt.x;
int row = current->pt.y;
int colrow = col + row * dp->ncols;
drawcell(mi, col, row,
dp->colors[(int) dp->sn[colrow]][(int) dp->s[colrow]],
dp->sn[colrow], 1);
if (dp->s[colrow] && !dp->sn[colrow])
dp->defectors--;
if (!dp->s[colrow] && dp->sn[colrow])
dp->defectors++;
dp->s[colrow] = dp->sn[colrow];
current = current->next;
}
free_state(dp, state);
XFlush(MI_DISPLAY(mi));
}
void
init_dilemma(ModeInfo * mi)
{
int size = MI_SIZE(mi);
int i, col, row, colrow, mrow;
dilemmastruct *dp;
if (dilemmas == NULL) {
if ((dilemmas = (dilemmastruct *) calloc(MI_NUM_SCREENS(mi),
sizeof (dilemmastruct))) == NULL)
return;
}
dp = &dilemmas[MI_SCREEN(mi)];
dp->generation = 0;
dp->redrawing = 0;
dp->state = 0;
free_dilemma(dp);
if (!dp->initialized) { /* Genesis */
icon_width = cooperat_width;
icon_height = cooperat_height;
dp->initialized = 1;
for (i = 0; i < BITMAPS; i++) {
logo[i].width = icon_width;
logo[i].height = icon_height;
logo[i].bytes_per_line = (icon_width + 7) / 8;
}
}
dp->width = MI_WIDTH(mi);
dp->height = MI_HEIGHT(mi);
for (i = 0; i < NEIGHBORKINDS; i++) {
if (neighbors == plots[i]) {
dp->neighbors = neighbors;
break;
}
if (i == NEIGHBORKINDS - 1) {
#if 0
dp->neighbors = plots[NRAND(NEIGHBORKINDS)];
dp->neighbors = (LRAND() & 1) ? 4 : 8;
#else
dp->neighbors = 8;
#endif
break;
}
}
if (dp->neighbors == 6) {
int nccols, ncrows, sides;
if (dp->width < 2)
dp->width = 2;
if (dp->height < 4)
dp->height = 4;
if (size < -MINSIZE)
dp->ys = NRAND(MIN(-size, MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE)) - MINSIZE + 1) + MINSIZE;
else if (size < MINSIZE) {
if (!size)
dp->ys = MAX(MINSIZE, MIN(dp->width, dp->height) / MINGRIDSIZE);
else
dp->ys = MINSIZE;
} else
dp->ys = MIN(size, MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE));
dp->xs = dp->ys;
dp->pixelmode = True;
nccols = MAX(dp->width / dp->xs - 2, 2);
ncrows = MAX(dp->height / dp->ys - 1, 2);
dp->ncols = nccols / 2;
dp->nrows = 2 * (ncrows / 4);
dp->xb = (dp->width - dp->xs * nccols) / 2 + dp->xs / 2;
dp->yb = (dp->height - dp->ys * (ncrows / 2) * 2) / 2 + dp->ys - 2;
for (sides = 0; sides < 6; sides++) {
dp->shape.hexagon[sides].x = (dp->xs - 1) * hexagonUnit[sides].x;
dp->shape.hexagon[sides].y =
((dp->ys - 1) * hexagonUnit[sides].y / 2) * 4 / 3;
}
} else if (dp->neighbors == 4 || dp->neighbors == 8) {
if (dp->width < 2)
dp->width = 2;
if (dp->height < 2)
dp->height = 2;
if (size == 0 ||
MINGRIDSIZE * size > dp->width || MINGRIDSIZE * size > dp->height) {
if (dp->width > MINGRIDSIZE * icon_width &&
dp->height > MINGRIDSIZE * icon_height) {
dp->pixelmode = False;
dp->xs = icon_width;
dp->ys = icon_height;
} else {
dp->pixelmode = True;
dp->xs = dp->ys = MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE);
}
} else {
dp->pixelmode = True;
if (size < -MINSIZE)
dp->ys = NRAND(MIN(-size, MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE)) - MINSIZE + 1) + MINSIZE;
else if (size < MINSIZE)
dp->ys = MINSIZE;
else
dp->ys = MIN(size, MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE));
dp->xs = dp->ys;
}
dp->ncols = MAX(dp->width / dp->xs, 2);
dp->nrows = MAX(dp->height / dp->ys, 2);
dp->xb = (dp->width - dp->xs * dp->ncols) / 2;
dp->yb = (dp->height - dp->ys * dp->nrows) / 2;
} else { /* TRI */
int orient, sides;
if (dp->width < 2)
dp->width = 2;
if (dp->height < 2)
dp->height = 2;
if (size < -MINSIZE)
dp->ys = NRAND(MIN(-size, MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE)) - MINSIZE + 1) + MINSIZE;
else if (size < MINSIZE) {
if (!size)
dp->ys = MAX(MINSIZE, MIN(dp->width, dp->height) / MINGRIDSIZE);
else
dp->ys = MINSIZE;
} else
dp->ys = MIN(size, MAX(MINSIZE, MIN(dp->width, dp->height) /
MINGRIDSIZE));
dp->xs = (int) (1.52 * dp->ys);
dp->pixelmode = True;
dp->ncols = (MAX(dp->width / dp->xs - 1, 2) / 2) * 2;
dp->nrows = (MAX(dp->height / dp->ys - 1, 2) / 2) * 2;
dp->xb = (dp->width - dp->xs * dp->ncols) / 2 + dp->xs / 2;
dp->yb = (dp->height - dp->ys * dp->nrows) / 2 + dp->ys / 2;
for (orient = 0; orient < 2; orient++) {
for (sides = 0; sides < 3; sides++) {
dp->shape.triangle[orient][sides].x =
(dp->xs - 2) * triangleUnit[orient][sides].x;
dp->shape.triangle[orient][sides].y =
(dp->ys - 2) * triangleUnit[orient][sides].y;
}
}
}
dp->npositions = dp->ncols * dp->nrows;
dp->pm[0][0] = 1, dp->pm[0][1] = 0;
if (bonus < 1.0 || bonus > 4.0)
dp->pm[1][0] = 1.85;
else
dp->pm[1][0] = bonus;
dp->pm[1][1] = 0;
if (MI_NPIXELS(mi) >= COLORS) {
dp->colors[0][0] = MI_PIXEL(mi, BLUE); /* COOPERATING, was cooperating */
dp->colors[0][1] = MI_PIXEL(mi, GREEN); /* COOPERATING, was defecting */
dp->colors[1][0] = MI_PIXEL(mi, YELLOW); /* DEFECTING, was cooperating */
dp->colors[1][1] = MI_PIXEL(mi, RED); /* DEFECTING, was defecting */
} else {
dp->colors[0][0] = MI_WHITE_PIXEL(mi);
dp->colors[0][1] = MI_WHITE_PIXEL(mi);
dp->colors[1][0] = MI_WHITE_PIXEL(mi);
dp->colors[1][1] = MI_WHITE_PIXEL(mi);
}
alloc_dilemma(dp);
if (dp->s == NULL)
return;
MI_CLEARWINDOW(mi);
dp->defectors = MI_COUNT(mi);
if (dp->defectors < -MINDEFECT) {
dp->defectors = NRAND(-dp->defectors - MINDEFECT + 1) + MINDEFECT;
} else if (dp->defectors < MINDEFECT)
dp->defectors = MINDEFECT;
if (dp->defectors > dp->npositions)
dp->defectors = dp->npositions;
for (i = 0; i < dp->defectors; i++) {
do {
colrow = NRAND(dp->npositions);
} while (dp->sn[colrow]);
dp->sn[colrow] = 1;
}
#if 0 /* if p was a float... */
mrow = 0;
for (row = 0; row < dp->nrows; row++) {
for (col = 0; col < dp->ncols; col++) {
dp->sn[col + mrow] = ((float) LRAND() / MAXRAND < dp->p);
}
mrow += dp->ncols;
}
#endif
dp->defectors = 0;
/* Show initial state... real important for debugging */
mrow = 0;
for (row = 0; row < dp->nrows; ++row) {
for (col = 0; col < dp->ncols; ++col) {
addtolist(mi, col, row,
dp->sn[col + mrow] * BITMAPS + dp->s[col + mrow]);
}
mrow += dp->ncols;
}
}
void
draw_dilemma(ModeInfo * mi)
{
int col, row, mrow, colrow, n, i;
dilemmastruct *dp;
if (dilemmas == NULL)
return;
dp = &dilemmas[MI_SCREEN(mi)];
if (dp->s == NULL)
return;
MI_IS_DRAWN(mi) = True;
if (dp->state >= 2 * COLORS) {
for (col = 0; col < dp->ncols; col++) {
for (row = 0; row < dp->nrows; row++) {
colrow = col + row * dp->ncols;
if (conscious)
dp->payoff[colrow] =
dp->pm[(int) dp->s[colrow]][(int) dp->s[colrow]];
else
dp->payoff[colrow] = 0.0;
for (n = 0; n < dp->neighbors; n++)
dp->payoff[colrow] +=
dp->pm[(int) dp->s[colrow]][(int)
dp->s[neighbor_position(dp,
col, row, n * 360 / dp->neighbors)]];
}
}
for (row = 0; row < dp->nrows; row++) {
for (col = 0; col < dp->ncols; col++) {
float hp;
int position;
colrow = col + row * dp->ncols;
hp = dp->payoff[colrow];
dp->sn[colrow] = dp->s[colrow];
for (n = 0; n < dp->neighbors; n++) {
position = neighbor_position(dp, col, row, n * 360 / dp->neighbors);
if (ROUND_FLOAT(dp->payoff[position], 0.001) >
ROUND_FLOAT(hp, 0.001)) {
hp = dp->payoff[position];
dp->sn[colrow] = dp->s[position];
}
}
}
}
mrow = 0;
for (row = 0; row < dp->nrows; row++) {
for (col = 0; col < dp->ncols; col++) {
addtolist(mi, col, row,
dp->sn[col + mrow] * BITMAPS + dp->s[col + mrow]);
}
mrow += dp->ncols;
}
if (++dp->generation > MI_CYCLES(mi) ||
dp->defectors == dp->npositions || dp->defectors == 0)
init_dilemma(mi);
dp->state = 0;
} else {
if (dp->state < COLORS) {
draw_state(mi, dp->state);
}
dp->state++;
}
#if 1
if (dp->redrawing) {
for (i = 0; i < REDRAWSTEP; i++) {
drawcell(mi, dp->redrawpos % dp->ncols, dp->redrawpos / dp->ncols,
dp->colors[(int) dp->sn[dp->redrawpos]][(int) dp->s[dp->redrawpos]],
dp->sn[dp->redrawpos], 1);
if (++(dp->redrawpos) >= dp->npositions) {
dp->redrawing = 0;
break;
}
}
}
#endif
}
void
release_dilemma(ModeInfo * mi)
{
if (dilemmas != NULL) {
int screen;
for (screen = 0; screen < MI_NUM_SCREENS(mi); screen++)
free_dilemma(&dilemmas[screen]);
free(dilemmas);
dilemmas = (dilemmastruct *) NULL;
}
}
void
refresh_dilemma(ModeInfo * mi)
{
dilemmastruct *dp = &dilemmas[MI_SCREEN(mi)];
dp->redrawing = 1;
dp->redrawpos = 0;
}
#endif /* MODE_dilemma */