nixpkgs/lib/systems/parse.nix
John Ericson b9acfb4ecf treewide: isArm -> isAarch32
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.

The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:

```
ISA:             ARMv8   {-A, -R, -M}
                 /    \
Mode:     Aarch32     Aarch64
             |         /   \
Encoding:   A64      A32   T32
```

At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.

The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.

[1]: https://developer.arm.com/products/architecture/a-profile

(cherry picked from commit ba52ae5048)
2018-04-25 15:50:41 -04:00

277 lines
9.8 KiB
Nix

# Define the list of system with their properties.
#
# See https://clang.llvm.org/docs/CrossCompilation.html and
# http://llvm.org/docs/doxygen/html/Triple_8cpp_source.html especially
# Triple::normalize. Parsing should essentially act as a more conservative
# version of that last function.
#
# Most of the types below come in "open" and "closed" pairs. The open ones
# specify what information we need to know about systems in general, and the
# closed ones are sub-types representing the whitelist of systems we support in
# practice.
#
# Code in the remainder of nixpkgs shouldn't rely on the closed ones in
# e.g. exhaustive cases. Its more a sanity check to make sure nobody defines
# systems that overlap with existing ones and won't notice something amiss.
#
{ lib }:
with lib.lists;
with lib.types;
with lib.attrsets;
with (import ./inspect.nix { inherit lib; }).predicates;
let
inherit (lib.options) mergeOneOption;
setTypes = type:
mapAttrs (name: value:
assert type.check value;
setType type.name ({ inherit name; } // value));
in
rec {
################################################################################
types.openSignifiantByte = mkOptionType {
name = "significant-byte";
description = "Endianness";
merge = mergeOneOption;
};
types.significantByte = enum (attrValues significantBytes);
significantBytes = setTypes types.openSignifiantByte {
bigEndian = {};
littleEndian = {};
};
################################################################################
# Reasonable power of 2
types.bitWidth = enum [ 8 16 32 64 128 ];
################################################################################
types.openCpuType = mkOptionType {
name = "cpu-type";
description = "instruction set architecture name and information";
merge = mergeOneOption;
check = x: types.bitWidth.check x.bits
&& (if 8 < x.bits
then types.significantByte.check x.significantByte
else !(x ? significantByte));
};
types.cpuType = enum (attrValues cpuTypes);
cpuTypes = with significantBytes; setTypes types.openCpuType {
arm = { bits = 32; significantByte = littleEndian; family = "arm"; };
armv5tel = { bits = 32; significantByte = littleEndian; family = "arm"; };
armv6l = { bits = 32; significantByte = littleEndian; family = "arm"; };
armv7a = { bits = 32; significantByte = littleEndian; family = "arm"; };
armv7l = { bits = 32; significantByte = littleEndian; family = "arm"; };
aarch64 = { bits = 64; significantByte = littleEndian; family = "arm"; };
i686 = { bits = 32; significantByte = littleEndian; family = "x86"; };
x86_64 = { bits = 64; significantByte = littleEndian; family = "x86"; };
mips = { bits = 32; significantByte = bigEndian; family = "mips"; };
mipsel = { bits = 32; significantByte = littleEndian; family = "mips"; };
mips64 = { bits = 64; significantByte = bigEndian; family = "mips"; };
mips64el = { bits = 64; significantByte = littleEndian; family = "mips"; };
powerpc = { bits = 32; significantByte = bigEndian; family = "power"; };
riscv32 = { bits = 32; significantByte = littleEndian; family = "riscv"; };
riscv64 = { bits = 64; significantByte = littleEndian; family = "riscv"; };
wasm32 = { bits = 32; significantByte = littleEndian; family = "wasm"; };
wasm64 = { bits = 64; significantByte = littleEndian; family = "wasm"; };
};
################################################################################
types.openVendor = mkOptionType {
name = "vendor";
description = "vendor for the platform";
merge = mergeOneOption;
};
types.vendor = enum (attrValues vendors);
vendors = setTypes types.openVendor {
apple = {};
pc = {};
unknown = {};
};
################################################################################
types.openExecFormat = mkOptionType {
name = "exec-format";
description = "executable container used by the kernel";
merge = mergeOneOption;
};
types.execFormat = enum (attrValues execFormats);
execFormats = setTypes types.openExecFormat {
aout = {}; # a.out
elf = {};
macho = {};
pe = {};
unknown = {};
};
################################################################################
types.openKernelFamily = mkOptionType {
name = "exec-format";
description = "executable container used by the kernel";
merge = mergeOneOption;
};
types.kernelFamily = enum (attrValues kernelFamilies);
kernelFamilies = setTypes types.openKernelFamily {
bsd = {};
};
################################################################################
types.openKernel = mkOptionType {
name = "kernel";
description = "kernel name and information";
merge = mergeOneOption;
check = x: types.execFormat.check x.execFormat
&& all types.kernelFamily.check (attrValues x.families);
};
types.kernel = enum (attrValues kernels);
kernels = with execFormats; with kernelFamilies; setTypes types.openKernel {
darwin = { execFormat = macho; families = { }; };
freebsd = { execFormat = elf; families = { inherit bsd; }; };
hurd = { execFormat = elf; families = { }; };
linux = { execFormat = elf; families = { }; };
netbsd = { execFormat = elf; families = { inherit bsd; }; };
none = { execFormat = unknown; families = { }; };
openbsd = { execFormat = elf; families = { inherit bsd; }; };
solaris = { execFormat = elf; families = { }; };
windows = { execFormat = pe; families = { }; };
} // { # aliases
# TODO(@Ericson2314): Handle these Darwin version suffixes more generally.
darwin10 = kernels.darwin;
darwin14 = kernels.darwin;
win32 = kernels.windows;
};
################################################################################
types.openAbi = mkOptionType {
name = "abi";
description = "binary interface for compiled code and syscalls";
merge = mergeOneOption;
};
types.abi = enum (attrValues abis);
abis = setTypes types.openAbi {
android = {};
cygnus = {};
gnu = {};
msvc = {};
eabi = {};
androideabi = {};
gnueabi = {};
gnueabihf = {};
musleabi = {};
musleabihf = {};
musl = {};
unknown = {};
};
################################################################################
types.system = mkOptionType {
name = "system";
description = "fully parsed representation of llvm- or nix-style platform tuple";
merge = mergeOneOption;
check = { cpu, vendor, kernel, abi }:
types.cpuType.check cpu
&& types.vendor.check vendor
&& types.kernel.check kernel
&& types.abi.check abi;
};
isSystem = isType "system";
mkSystem = components:
assert types.system.check components;
setType "system" components;
mkSkeletonFromList = l: {
"2" = # We only do 2-part hacks for things Nix already supports
if elemAt l 1 == "cygwin"
then { cpu = elemAt l 0; kernel = "windows"; abi = "cygnus"; }
else if elemAt l 1 == "gnu"
then { cpu = elemAt l 0; kernel = "hurd"; abi = "gnu"; }
else { cpu = elemAt l 0; kernel = elemAt l 1; };
"3" = # Awkwards hacks, beware!
if elemAt l 1 == "apple"
then { cpu = elemAt l 0; vendor = "apple"; kernel = elemAt l 2; }
else if (elemAt l 1 == "linux") || (elemAt l 2 == "gnu")
then { cpu = elemAt l 0; kernel = elemAt l 1; abi = elemAt l 2; }
else if (elemAt l 2 == "mingw32") # autotools breaks on -gnu for window
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "windows"; abi = "gnu"; }
else throw "Target specification with 3 components is ambiguous";
"4" = { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; abi = elemAt l 3; };
}.${toString (length l)}
or (throw "system string has invalid number of hyphen-separated components");
# This should revert the job done by config.guess from the gcc compiler.
mkSystemFromSkeleton = { cpu
, # Optional, but fallback too complex for here.
# Inferred below instead.
vendor ? assert false; null
, kernel
, # Also inferred below
abi ? assert false; null
} @ args: let
getCpu = name: cpuTypes.${name} or (throw "Unknown CPU type: ${name}");
getVendor = name: vendors.${name} or (throw "Unknown vendor: ${name}");
getKernel = name: kernels.${name} or (throw "Unknown kernel: ${name}");
getAbi = name: abis.${name} or (throw "Unknown ABI: ${name}");
parsed = rec {
cpu = getCpu args.cpu;
vendor =
/**/ if args ? vendor then getVendor args.vendor
else if isDarwin parsed then vendors.apple
else if isWindows parsed then vendors.pc
else vendors.unknown;
kernel = getKernel args.kernel;
abi =
/**/ if args ? abi then getAbi args.abi
else if isLinux parsed then abis.gnu
else if isWindows parsed then abis.gnu
else abis.unknown;
};
in mkSystem parsed;
mkSystemFromString = s: mkSystemFromSkeleton (mkSkeletonFromList (lib.splitString "-" s));
doubleFromSystem = { cpu, vendor, kernel, abi, ... }:
if abi == abis.cygnus
then "${cpu.name}-cygwin"
else "${cpu.name}-${kernel.name}";
tripleFromSystem = { cpu, vendor, kernel, abi, ... } @ sys: assert isSystem sys; let
optAbi = lib.optionalString (abi != abis.unknown) "-${abi.name}";
in "${cpu.name}-${vendor.name}-${kernel.name}${optAbi}";
################################################################################
}