mirror of
https://github.com/golang/go
synced 2024-11-19 18:44:41 -07:00
87e48c5afd
Since barrier-less memclr is only safe in very narrow circumstances, this commit renames memclr to avoid accidentally calling memclr on typed memory. This can cause subtle, non-deterministic bugs, so it's worth some effort to prevent. In the near term, this will also prevent bugs creeping in from any concurrent CLs that add calls to memclr; if this happens, whichever patch hits master second will fail to compile. This also adds the other new memclr variants to the compiler's builtin.go to minimize the churn on that binary blob. We'll use these in future commits. Updates #17503. Change-Id: I00eead049f5bd35ca107ea525966831f3d1ed9ca Reviewed-on: https://go-review.googlesource.com/31369 Reviewed-by: Keith Randall <khr@golang.org> Reviewed-by: Rick Hudson <rlh@golang.org>
217 lines
6.0 KiB
Go
217 lines
6.0 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"unsafe"
|
|
)
|
|
|
|
type slice struct {
|
|
array unsafe.Pointer
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
// maxElems is a lookup table containing the maximum capacity for a slice.
|
|
// The index is the size of the slice element.
|
|
var maxElems = [...]uintptr{
|
|
^uintptr(0),
|
|
_MaxMem / 1, _MaxMem / 2, _MaxMem / 3, _MaxMem / 4,
|
|
_MaxMem / 5, _MaxMem / 6, _MaxMem / 7, _MaxMem / 8,
|
|
_MaxMem / 9, _MaxMem / 10, _MaxMem / 11, _MaxMem / 12,
|
|
_MaxMem / 13, _MaxMem / 14, _MaxMem / 15, _MaxMem / 16,
|
|
_MaxMem / 17, _MaxMem / 18, _MaxMem / 19, _MaxMem / 20,
|
|
_MaxMem / 21, _MaxMem / 22, _MaxMem / 23, _MaxMem / 24,
|
|
_MaxMem / 25, _MaxMem / 26, _MaxMem / 27, _MaxMem / 28,
|
|
_MaxMem / 29, _MaxMem / 30, _MaxMem / 31, _MaxMem / 32,
|
|
}
|
|
|
|
// maxSliceCap returns the maximum capacity for a slice.
|
|
func maxSliceCap(elemsize uintptr) uintptr {
|
|
if elemsize < uintptr(len(maxElems)) {
|
|
return maxElems[elemsize]
|
|
}
|
|
return _MaxMem / elemsize
|
|
}
|
|
|
|
func makeslice(et *_type, len, cap int) slice {
|
|
// NOTE: The len > maxElements check here is not strictly necessary,
|
|
// but it produces a 'len out of range' error instead of a 'cap out of range' error
|
|
// when someone does make([]T, bignumber). 'cap out of range' is true too,
|
|
// but since the cap is only being supplied implicitly, saying len is clearer.
|
|
// See issue 4085.
|
|
maxElements := maxSliceCap(et.size)
|
|
if len < 0 || uintptr(len) > maxElements {
|
|
panic(errorString("makeslice: len out of range"))
|
|
}
|
|
|
|
if cap < len || uintptr(cap) > maxElements {
|
|
panic(errorString("makeslice: cap out of range"))
|
|
}
|
|
|
|
p := mallocgc(et.size*uintptr(cap), et, true)
|
|
return slice{p, len, cap}
|
|
}
|
|
|
|
func makeslice64(et *_type, len64, cap64 int64) slice {
|
|
len := int(len64)
|
|
if int64(len) != len64 {
|
|
panic(errorString("makeslice: len out of range"))
|
|
}
|
|
|
|
cap := int(cap64)
|
|
if int64(cap) != cap64 {
|
|
panic(errorString("makeslice: cap out of range"))
|
|
}
|
|
|
|
return makeslice(et, len, cap)
|
|
}
|
|
|
|
// growslice handles slice growth during append.
|
|
// It is passed the slice element type, the old slice, and the desired new minimum capacity,
|
|
// and it returns a new slice with at least that capacity, with the old data
|
|
// copied into it.
|
|
// The new slice's length is set to the old slice's length,
|
|
// NOT to the new requested capacity.
|
|
// This is for codegen convenience. The old slice's length is used immediately
|
|
// to calculate where to write new values during an append.
|
|
// TODO: When the old backend is gone, reconsider this decision.
|
|
// The SSA backend might prefer the new length or to return only ptr/cap and save stack space.
|
|
func growslice(et *_type, old slice, cap int) slice {
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer(&et))
|
|
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
|
|
}
|
|
if msanenabled {
|
|
msanread(old.array, uintptr(old.len*int(et.size)))
|
|
}
|
|
|
|
if et.size == 0 {
|
|
if cap < old.cap {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
// append should not create a slice with nil pointer but non-zero len.
|
|
// We assume that append doesn't need to preserve old.array in this case.
|
|
return slice{unsafe.Pointer(&zerobase), old.len, cap}
|
|
}
|
|
|
|
newcap := old.cap
|
|
doublecap := newcap + newcap
|
|
if cap > doublecap {
|
|
newcap = cap
|
|
} else {
|
|
if old.len < 1024 {
|
|
newcap = doublecap
|
|
} else {
|
|
for newcap < cap {
|
|
newcap += newcap / 4
|
|
}
|
|
}
|
|
}
|
|
|
|
var lenmem, newlenmem, capmem uintptr
|
|
const ptrSize = unsafe.Sizeof((*byte)(nil))
|
|
switch et.size {
|
|
case 1:
|
|
lenmem = uintptr(old.len)
|
|
newlenmem = uintptr(cap)
|
|
capmem = roundupsize(uintptr(newcap))
|
|
newcap = int(capmem)
|
|
case ptrSize:
|
|
lenmem = uintptr(old.len) * ptrSize
|
|
newlenmem = uintptr(cap) * ptrSize
|
|
capmem = roundupsize(uintptr(newcap) * ptrSize)
|
|
newcap = int(capmem / ptrSize)
|
|
default:
|
|
lenmem = uintptr(old.len) * et.size
|
|
newlenmem = uintptr(cap) * et.size
|
|
capmem = roundupsize(uintptr(newcap) * et.size)
|
|
newcap = int(capmem / et.size)
|
|
}
|
|
|
|
if cap < old.cap || uintptr(newcap) > maxSliceCap(et.size) {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
var p unsafe.Pointer
|
|
if et.kind&kindNoPointers != 0 {
|
|
p = mallocgc(capmem, nil, false)
|
|
memmove(p, old.array, lenmem)
|
|
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
|
|
// Only clear the part that will not be overwritten.
|
|
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
|
|
} else {
|
|
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
|
|
p = mallocgc(capmem, et, true)
|
|
if !writeBarrier.enabled {
|
|
memmove(p, old.array, lenmem)
|
|
} else {
|
|
for i := uintptr(0); i < lenmem; i += et.size {
|
|
typedmemmove(et, add(p, i), add(old.array, i))
|
|
}
|
|
}
|
|
}
|
|
|
|
return slice{p, old.len, newcap}
|
|
}
|
|
|
|
func slicecopy(to, fm slice, width uintptr) int {
|
|
if fm.len == 0 || to.len == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := fm.len
|
|
if to.len < n {
|
|
n = to.len
|
|
}
|
|
|
|
if width == 0 {
|
|
return n
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer(&to))
|
|
pc := funcPC(slicecopy)
|
|
racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
|
|
racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(to.array, uintptr(n*int(width)))
|
|
msanread(fm.array, uintptr(n*int(width)))
|
|
}
|
|
|
|
size := uintptr(n) * width
|
|
if size == 1 { // common case worth about 2x to do here
|
|
// TODO: is this still worth it with new memmove impl?
|
|
*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
|
|
} else {
|
|
memmove(to.array, fm.array, size)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func slicestringcopy(to []byte, fm string) int {
|
|
if len(fm) == 0 || len(to) == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := len(fm)
|
|
if len(to) < n {
|
|
n = len(to)
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer(&to))
|
|
pc := funcPC(slicestringcopy)
|
|
racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(unsafe.Pointer(&to[0]), uintptr(n))
|
|
}
|
|
|
|
memmove(unsafe.Pointer(&to[0]), stringStructOf(&fm).str, uintptr(n))
|
|
return n
|
|
}
|