1
0
mirror of https://github.com/golang/go synced 2024-11-18 15:24:41 -07:00
go/oracle/describe.go
Dominik Honnef 361bcb2be3 all: address vet issues, fix print calls
This fixes some print calls with wrong format directives. Additionally,
struct initialisers were changed to use keyed fields, purely to reduce
the amount of noise generated by go vet.

Change-Id: Ib9f6fd8f2dff7ce84826478de0ba83dda9746270
Reviewed-on: https://go-review.googlesource.com/21180
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-03-27 20:36:34 +00:00

776 lines
20 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.6
package oracle
import (
"bytes"
"fmt"
"go/ast"
exact "go/constant"
"go/token"
"go/types"
"log"
"os"
"strings"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/oracle/serial"
)
// describe describes the syntax node denoted by the query position,
// including:
// - its syntactic category
// - the definition of its referent (for identifiers) [now redundant]
// - its type and method set (for an expression or type expression)
//
func describe(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
if _, err := importQueryPackage(q.Pos, &lconf); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, true) // (need exact pos)
if err != nil {
return err
}
if false { // debugging
fprintf(os.Stderr, lprog.Fset, qpos.path[0], "you selected: %s %s",
astutil.NodeDescription(qpos.path[0]), pathToString(qpos.path))
}
path, action := findInterestingNode(qpos.info, qpos.path)
switch action {
case actionExpr:
q.result, err = describeValue(qpos, path)
case actionType:
q.result, err = describeType(qpos, path)
case actionPackage:
q.result, err = describePackage(qpos, path)
case actionStmt:
q.result, err = describeStmt(qpos, path)
case actionUnknown:
q.result = &describeUnknownResult{path[0]}
default:
panic(action) // unreachable
}
return err
}
type describeUnknownResult struct {
node ast.Node
}
func (r *describeUnknownResult) display(printf printfFunc) {
// Nothing much to say about misc syntax.
printf(r.node, "%s", astutil.NodeDescription(r.node))
}
func (r *describeUnknownResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Describe = &serial.Describe{
Desc: astutil.NodeDescription(r.node),
Pos: fset.Position(r.node.Pos()).String(),
}
}
type action int
const (
actionUnknown action = iota // None of the below
actionExpr // FuncDecl, true Expr or Ident(types.{Const,Var})
actionType // type Expr or Ident(types.TypeName).
actionStmt // Stmt or Ident(types.Label)
actionPackage // Ident(types.Package) or ImportSpec
)
// findInterestingNode classifies the syntax node denoted by path as one of:
// - an expression, part of an expression or a reference to a constant
// or variable;
// - a type, part of a type, or a reference to a named type;
// - a statement, part of a statement, or a label referring to a statement;
// - part of a package declaration or import spec.
// - none of the above.
// and returns the most "interesting" associated node, which may be
// the same node, an ancestor or a descendent.
//
func findInterestingNode(pkginfo *loader.PackageInfo, path []ast.Node) ([]ast.Node, action) {
// TODO(adonovan): integrate with go/types/stdlib_test.go and
// apply this to every AST node we can find to make sure it
// doesn't crash.
// TODO(adonovan): audit for ParenExpr safety, esp. since we
// traverse up and down.
// TODO(adonovan): if the users selects the "." in
// "fmt.Fprintf()", they'll get an ambiguous selection error;
// we won't even reach here. Can we do better?
// TODO(adonovan): describing a field within 'type T struct {...}'
// describes the (anonymous) struct type and concludes "no methods".
// We should ascend to the enclosing type decl, if any.
for len(path) > 0 {
switch n := path[0].(type) {
case *ast.GenDecl:
if len(n.Specs) == 1 {
// Descend to sole {Import,Type,Value}Spec child.
path = append([]ast.Node{n.Specs[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.FuncDecl:
// Descend to function name.
path = append([]ast.Node{n.Name}, path...)
continue
case *ast.ImportSpec:
return path, actionPackage
case *ast.ValueSpec:
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.TypeSpec:
// Descend to type name.
path = append([]ast.Node{n.Name}, path...)
continue
case ast.Stmt:
return path, actionStmt
case *ast.ArrayType,
*ast.StructType,
*ast.FuncType,
*ast.InterfaceType,
*ast.MapType,
*ast.ChanType:
return path, actionType
case *ast.Comment, *ast.CommentGroup, *ast.File, *ast.KeyValueExpr, *ast.CommClause:
return path, actionUnknown // uninteresting
case *ast.Ellipsis:
// Continue to enclosing node.
// e.g. [...]T in ArrayType
// f(x...) in CallExpr
// f(x...T) in FuncType
case *ast.Field:
// TODO(adonovan): this needs more thought,
// since fields can be so many things.
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
// Zero names (e.g. anon field in struct)
// or multiple field or param names:
// continue to enclosing field list.
case *ast.FieldList:
// Continue to enclosing node:
// {Struct,Func,Interface}Type or FuncDecl.
case *ast.BasicLit:
if _, ok := path[1].(*ast.ImportSpec); ok {
return path[1:], actionPackage
}
return path, actionExpr
case *ast.SelectorExpr:
// TODO(adonovan): use Selections info directly.
if pkginfo.Uses[n.Sel] == nil {
// TODO(adonovan): is this reachable?
return path, actionUnknown
}
// Descend to .Sel child.
path = append([]ast.Node{n.Sel}, path...)
continue
case *ast.Ident:
switch pkginfo.ObjectOf(n).(type) {
case *types.PkgName:
return path, actionPackage
case *types.Const:
return path, actionExpr
case *types.Label:
return path, actionStmt
case *types.TypeName:
return path, actionType
case *types.Var:
// For x in 'struct {x T}', return struct type, for now.
if _, ok := path[1].(*ast.Field); ok {
_ = path[2].(*ast.FieldList) // assertion
if _, ok := path[3].(*ast.StructType); ok {
return path[3:], actionType
}
}
return path, actionExpr
case *types.Func:
return path, actionExpr
case *types.Builtin:
// For reference to built-in function, return enclosing call.
path = path[1:] // ascend to enclosing function call
continue
case *types.Nil:
return path, actionExpr
}
// No object.
switch path[1].(type) {
case *ast.SelectorExpr:
// Return enclosing selector expression.
return path[1:], actionExpr
case *ast.Field:
// TODO(adonovan): test this.
// e.g. all f in:
// struct { f, g int }
// interface { f() }
// func (f T) method(f, g int) (f, g bool)
//
// switch path[3].(type) {
// case *ast.FuncDecl:
// case *ast.StructType:
// case *ast.InterfaceType:
// }
//
// return path[1:], actionExpr
//
// Unclear what to do with these.
// Struct.Fields -- field
// Interface.Methods -- field
// FuncType.{Params.Results} -- actionExpr
// FuncDecl.Recv -- actionExpr
case *ast.File:
// 'package foo'
return path, actionPackage
case *ast.ImportSpec:
// TODO(adonovan): fix: why no package object? go/types bug?
return path[1:], actionPackage
default:
// e.g. blank identifier
// or y in "switch y := x.(type)"
// or code in a _test.go file that's not part of the package.
log.Printf("unknown reference %s in %T\n", n, path[1])
return path, actionUnknown
}
case *ast.StarExpr:
if pkginfo.Types[n].IsType() {
return path, actionType
}
return path, actionExpr
case ast.Expr:
// All Expr but {BasicLit,Ident,StarExpr} are
// "true" expressions that evaluate to a value.
return path, actionExpr
}
// Ascend to parent.
path = path[1:]
}
return nil, actionUnknown // unreachable
}
func describeValue(qpos *queryPos, path []ast.Node) (*describeValueResult, error) {
var expr ast.Expr
var obj types.Object
switch n := path[0].(type) {
case *ast.ValueSpec:
// ambiguous ValueSpec containing multiple names
return nil, fmt.Errorf("multiple value specification")
case *ast.Ident:
obj = qpos.info.ObjectOf(n)
expr = n
case ast.Expr:
expr = n
default:
// TODO(adonovan): is this reachable?
return nil, fmt.Errorf("unexpected AST for expr: %T", n)
}
typ := qpos.info.TypeOf(expr)
constVal := qpos.info.Types[expr].Value
return &describeValueResult{
qpos: qpos,
expr: expr,
typ: typ,
constVal: constVal,
obj: obj,
}, nil
}
type describeValueResult struct {
qpos *queryPos
expr ast.Expr // query node
typ types.Type // type of expression
constVal exact.Value // value of expression, if constant
obj types.Object // var/func/const object, if expr was Ident
}
func (r *describeValueResult) display(printf printfFunc) {
var prefix, suffix string
if r.constVal != nil {
suffix = fmt.Sprintf(" of constant value %s", r.constVal)
}
switch obj := r.obj.(type) {
case *types.Func:
if recv := obj.Type().(*types.Signature).Recv(); recv != nil {
if _, ok := recv.Type().Underlying().(*types.Interface); ok {
prefix = "interface method "
} else {
prefix = "method "
}
}
}
// Describe the expression.
if r.obj != nil {
if r.obj.Pos() == r.expr.Pos() {
// defining ident
printf(r.expr, "definition of %s%s%s", prefix, r.qpos.objectString(r.obj), suffix)
} else {
// referring ident
printf(r.expr, "reference to %s%s%s", prefix, r.qpos.objectString(r.obj), suffix)
if def := r.obj.Pos(); def != token.NoPos {
printf(def, "defined here")
}
}
} else {
desc := astutil.NodeDescription(r.expr)
if suffix != "" {
// constant expression
printf(r.expr, "%s%s", desc, suffix)
} else {
// non-constant expression
printf(r.expr, "%s of type %s", desc, r.qpos.typeString(r.typ))
}
}
}
func (r *describeValueResult) toSerial(res *serial.Result, fset *token.FileSet) {
var value, objpos string
if r.constVal != nil {
value = r.constVal.String()
}
if r.obj != nil {
objpos = fset.Position(r.obj.Pos()).String()
}
res.Describe = &serial.Describe{
Desc: astutil.NodeDescription(r.expr),
Pos: fset.Position(r.expr.Pos()).String(),
Detail: "value",
Value: &serial.DescribeValue{
Type: r.qpos.typeString(r.typ),
Value: value,
ObjPos: objpos,
},
}
}
// ---- TYPE ------------------------------------------------------------
func describeType(qpos *queryPos, path []ast.Node) (*describeTypeResult, error) {
var description string
var t types.Type
switch n := path[0].(type) {
case *ast.Ident:
t = qpos.info.TypeOf(n)
switch t := t.(type) {
case *types.Basic:
description = "reference to built-in "
case *types.Named:
isDef := t.Obj().Pos() == n.Pos() // see caveats at isDef above
if isDef {
description = "definition of "
} else {
description = "reference to "
}
}
case ast.Expr:
t = qpos.info.TypeOf(n)
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for type: %T", n)
}
description = description + "type " + qpos.typeString(t)
// Show sizes for structs and named types (it's fairly obvious for others).
switch t.(type) {
case *types.Named, *types.Struct:
szs := types.StdSizes{WordSize: 8, MaxAlign: 8} // assume amd64
description = fmt.Sprintf("%s (size %d, align %d)", description,
szs.Sizeof(t), szs.Alignof(t))
}
return &describeTypeResult{
qpos: qpos,
node: path[0],
description: description,
typ: t,
methods: accessibleMethods(t, qpos.info.Pkg),
}, nil
}
type describeTypeResult struct {
qpos *queryPos
node ast.Node
description string
typ types.Type
methods []*types.Selection
}
func (r *describeTypeResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
// Show the underlying type for a reference to a named type.
if nt, ok := r.typ.(*types.Named); ok && r.node.Pos() != nt.Obj().Pos() {
printf(nt.Obj(), "defined as %s", r.qpos.typeString(nt.Underlying()))
}
// Print the method set, if the type kind is capable of bearing methods.
switch r.typ.(type) {
case *types.Interface, *types.Struct, *types.Named:
if len(r.methods) > 0 {
printf(r.node, "Method set:")
for _, meth := range r.methods {
// TODO(adonovan): print these relative
// to the owning package, not the
// query package.
printf(meth.Obj(), "\t%s", r.qpos.selectionString(meth))
}
} else {
printf(r.node, "No methods.")
}
}
}
func (r *describeTypeResult) toSerial(res *serial.Result, fset *token.FileSet) {
var namePos, nameDef string
if nt, ok := r.typ.(*types.Named); ok {
namePos = fset.Position(nt.Obj().Pos()).String()
nameDef = nt.Underlying().String()
}
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "type",
Type: &serial.DescribeType{
Type: r.qpos.typeString(r.typ),
NamePos: namePos,
NameDef: nameDef,
Methods: methodsToSerial(r.qpos.info.Pkg, r.methods, fset),
},
}
}
// ---- PACKAGE ------------------------------------------------------------
func describePackage(qpos *queryPos, path []ast.Node) (*describePackageResult, error) {
var description string
var pkg *types.Package
switch n := path[0].(type) {
case *ast.ImportSpec:
var obj types.Object
if n.Name != nil {
obj = qpos.info.Defs[n.Name]
} else {
obj = qpos.info.Implicits[n]
}
pkgname, _ := obj.(*types.PkgName)
if pkgname == nil {
return nil, fmt.Errorf("can't import package %s", n.Path.Value)
}
pkg = pkgname.Imported()
description = fmt.Sprintf("import of package %q", pkg.Path())
case *ast.Ident:
if _, isDef := path[1].(*ast.File); isDef {
// e.g. package id
pkg = qpos.info.Pkg
description = fmt.Sprintf("definition of package %q", pkg.Path())
} else {
// e.g. import id "..."
// or id.F()
pkg = qpos.info.ObjectOf(n).(*types.PkgName).Imported()
description = fmt.Sprintf("reference to package %q", pkg.Path())
}
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for package: %T", n)
}
var members []*describeMember
// NB: "unsafe" has no types.Package
if pkg != nil {
// Enumerate the accessible package members
// in lexicographic order.
for _, name := range pkg.Scope().Names() {
if pkg == qpos.info.Pkg || ast.IsExported(name) {
mem := pkg.Scope().Lookup(name)
var methods []*types.Selection
if mem, ok := mem.(*types.TypeName); ok {
methods = accessibleMethods(mem.Type(), qpos.info.Pkg)
}
members = append(members, &describeMember{
mem,
methods,
})
}
}
}
return &describePackageResult{qpos.fset, path[0], description, pkg, members}, nil
}
type describePackageResult struct {
fset *token.FileSet
node ast.Node
description string
pkg *types.Package
members []*describeMember // in lexicographic name order
}
type describeMember struct {
obj types.Object
methods []*types.Selection // in types.MethodSet order
}
func (r *describePackageResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
// Compute max width of name "column".
maxname := 0
for _, mem := range r.members {
if l := len(mem.obj.Name()); l > maxname {
maxname = l
}
}
for _, mem := range r.members {
printf(mem.obj, "\t%s", formatMember(mem.obj, maxname))
for _, meth := range mem.methods {
printf(meth.Obj(), "\t\t%s", types.SelectionString(meth, types.RelativeTo(r.pkg)))
}
}
}
func formatMember(obj types.Object, maxname int) string {
qualifier := types.RelativeTo(obj.Pkg())
var buf bytes.Buffer
fmt.Fprintf(&buf, "%-5s %-*s", tokenOf(obj), maxname, obj.Name())
switch obj := obj.(type) {
case *types.Const:
fmt.Fprintf(&buf, " %s = %s", types.TypeString(obj.Type(), qualifier), obj.Val().String())
case *types.Func:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
case *types.TypeName:
// Abbreviate long aggregate type names.
var abbrev string
switch t := obj.Type().Underlying().(type) {
case *types.Interface:
if t.NumMethods() > 1 {
abbrev = "interface{...}"
}
case *types.Struct:
if t.NumFields() > 1 {
abbrev = "struct{...}"
}
}
if abbrev == "" {
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type().Underlying(), qualifier))
} else {
fmt.Fprintf(&buf, " %s", abbrev)
}
case *types.Var:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
}
return buf.String()
}
func (r *describePackageResult) toSerial(res *serial.Result, fset *token.FileSet) {
var members []*serial.DescribeMember
for _, mem := range r.members {
typ := mem.obj.Type()
var val string
switch mem := mem.obj.(type) {
case *types.Const:
val = mem.Val().String()
case *types.TypeName:
typ = typ.Underlying()
}
members = append(members, &serial.DescribeMember{
Name: mem.obj.Name(),
Type: typ.String(),
Value: val,
Pos: fset.Position(mem.obj.Pos()).String(),
Kind: tokenOf(mem.obj),
Methods: methodsToSerial(r.pkg, mem.methods, fset),
})
}
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "package",
Package: &serial.DescribePackage{
Path: r.pkg.Path(),
Members: members,
},
}
}
func tokenOf(o types.Object) string {
switch o.(type) {
case *types.Func:
return "func"
case *types.Var:
return "var"
case *types.TypeName:
return "type"
case *types.Const:
return "const"
case *types.PkgName:
return "package"
case *types.Builtin:
return "builtin" // e.g. when describing package "unsafe"
case *types.Nil:
return "nil"
case *types.Label:
return "label"
}
panic(o)
}
// ---- STATEMENT ------------------------------------------------------------
func describeStmt(qpos *queryPos, path []ast.Node) (*describeStmtResult, error) {
var description string
switch n := path[0].(type) {
case *ast.Ident:
if qpos.info.Defs[n] != nil {
description = "labelled statement"
} else {
description = "reference to labelled statement"
}
default:
// Nothing much to say about statements.
description = astutil.NodeDescription(n)
}
return &describeStmtResult{qpos.fset, path[0], description}, nil
}
type describeStmtResult struct {
fset *token.FileSet
node ast.Node
description string
}
func (r *describeStmtResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
}
func (r *describeStmtResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "unknown",
}
}
// ------------------- Utilities -------------------
// pathToString returns a string containing the concrete types of the
// nodes in path.
func pathToString(path []ast.Node) string {
var buf bytes.Buffer
fmt.Fprint(&buf, "[")
for i, n := range path {
if i > 0 {
fmt.Fprint(&buf, " ")
}
fmt.Fprint(&buf, strings.TrimPrefix(fmt.Sprintf("%T", n), "*ast."))
}
fmt.Fprint(&buf, "]")
return buf.String()
}
func accessibleMethods(t types.Type, from *types.Package) []*types.Selection {
var methods []*types.Selection
for _, meth := range typeutil.IntuitiveMethodSet(t, nil) {
if isAccessibleFrom(meth.Obj(), from) {
methods = append(methods, meth)
}
}
return methods
}
func isAccessibleFrom(obj types.Object, pkg *types.Package) bool {
return ast.IsExported(obj.Name()) || obj.Pkg() == pkg
}
func methodsToSerial(this *types.Package, methods []*types.Selection, fset *token.FileSet) []serial.DescribeMethod {
qualifier := types.RelativeTo(this)
var jmethods []serial.DescribeMethod
for _, meth := range methods {
var ser serial.DescribeMethod
if meth != nil { // may contain nils when called by implements (on a method)
ser = serial.DescribeMethod{
Name: types.SelectionString(meth, qualifier),
Pos: fset.Position(meth.Obj().Pos()).String(),
}
}
jmethods = append(jmethods, ser)
}
return jmethods
}