1
0
mirror of https://github.com/golang/go synced 2024-11-26 10:28:19 -07:00
go/test/torture.go
Rémy Oudompheng 0b2353edcb cmd/5g, cmd/6g: fix out of registers with array indexing.
Compiling expressions like:
    s[s[s[s[s[s[s[s[s[s[s[s[i]]]]]]]]]]]]
make 5g and 6g run out of registers. Such expressions can arise
if a slice is used to represent a permutation and the user wants
to iterate it.

This is due to the usual problem of allocating registers before
going down the expression tree, instead of allocating them in a
postfix way.

The functions cgenr and agenr (that generate a value to a newly
allocated register instead of an existing location), are either
introduced or modified when they already existed to allocate
the new register as late as possible, and sudoaddable is disabled
for OINDEX nodes so that igen/agenr is used instead.

Update #4207.

R=dave, daniel.morsing, rsc
CC=golang-dev
https://golang.org/cl/6733055
2012-11-02 07:50:59 +01:00

337 lines
7.5 KiB
Go

// compile
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Various tests for expressions with high complexity.
package main
// Concatenate 16 4-bit integers into a 64-bit number.
func concat(s *[16]byte) uint64 {
r := (((((((((((((((uint64(s[0])<<4|
uint64(s[1]))<<4|
uint64(s[2]))<<4|
uint64(s[3]))<<4|
uint64(s[4]))<<4|
uint64(s[5]))<<4|
uint64(s[6]))<<4|
uint64(s[7]))<<4|
uint64(s[8]))<<4|
uint64(s[9]))<<4|
uint64(s[10]))<<4|
uint64(s[11]))<<4|
uint64(s[12]))<<4|
uint64(s[13]))<<4|
uint64(s[14]))<<4 |
uint64(s[15]))
return r
}
// Compute the determinant of a 4x4-matrix by the sum
// over all index permutations.
func determinant(m [4][4]float64) float64 {
return m[0][0]*m[1][1]*m[2][2]*m[3][3] -
m[0][0]*m[1][1]*m[2][3]*m[3][2] -
m[0][0]*m[1][2]*m[2][1]*m[3][3] +
m[0][0]*m[1][2]*m[2][3]*m[3][1] +
m[0][0]*m[1][3]*m[2][1]*m[3][2] -
m[0][0]*m[1][3]*m[2][2]*m[3][1] -
m[0][1]*m[1][0]*m[2][2]*m[3][3] +
m[0][1]*m[1][0]*m[2][3]*m[3][2] +
m[0][1]*m[1][2]*m[2][0]*m[3][3] -
m[0][1]*m[1][2]*m[2][3]*m[3][0] -
m[0][1]*m[1][3]*m[2][0]*m[3][2] +
m[0][1]*m[1][3]*m[2][2]*m[3][0] +
m[0][2]*m[1][0]*m[2][1]*m[3][3] -
m[0][2]*m[1][0]*m[2][3]*m[3][1] -
m[0][2]*m[1][1]*m[2][0]*m[3][3] +
m[0][2]*m[1][1]*m[2][3]*m[3][0] +
m[0][2]*m[1][3]*m[2][0]*m[3][1] -
m[0][2]*m[1][3]*m[2][1]*m[3][0] -
m[0][3]*m[1][0]*m[2][1]*m[3][2] +
m[0][3]*m[1][0]*m[2][2]*m[3][1] +
m[0][3]*m[1][1]*m[2][0]*m[3][2] -
m[0][3]*m[1][1]*m[2][2]*m[3][0] -
m[0][3]*m[1][2]*m[2][0]*m[3][1] +
m[0][3]*m[1][2]*m[2][1]*m[3][0]
}
// Compute the determinant of a 4x4-matrix by the sum
// over all index permutations.
func determinantInt(m [4][4]int) int {
return m[0][0]*m[1][1]*m[2][2]*m[3][3] -
m[0][0]*m[1][1]*m[2][3]*m[3][2] -
m[0][0]*m[1][2]*m[2][1]*m[3][3] +
m[0][0]*m[1][2]*m[2][3]*m[3][1] +
m[0][0]*m[1][3]*m[2][1]*m[3][2] -
m[0][0]*m[1][3]*m[2][2]*m[3][1] -
m[0][1]*m[1][0]*m[2][2]*m[3][3] +
m[0][1]*m[1][0]*m[2][3]*m[3][2] +
m[0][1]*m[1][2]*m[2][0]*m[3][3] -
m[0][1]*m[1][2]*m[2][3]*m[3][0] -
m[0][1]*m[1][3]*m[2][0]*m[3][2] +
m[0][1]*m[1][3]*m[2][2]*m[3][0] +
m[0][2]*m[1][0]*m[2][1]*m[3][3] -
m[0][2]*m[1][0]*m[2][3]*m[3][1] -
m[0][2]*m[1][1]*m[2][0]*m[3][3] +
m[0][2]*m[1][1]*m[2][3]*m[3][0] +
m[0][2]*m[1][3]*m[2][0]*m[3][1] -
m[0][2]*m[1][3]*m[2][1]*m[3][0] -
m[0][3]*m[1][0]*m[2][1]*m[3][2] +
m[0][3]*m[1][0]*m[2][2]*m[3][1] +
m[0][3]*m[1][1]*m[2][0]*m[3][2] -
m[0][3]*m[1][1]*m[2][2]*m[3][0] -
m[0][3]*m[1][2]*m[2][0]*m[3][1] +
m[0][3]*m[1][2]*m[2][1]*m[3][0]
}
// Compute the determinant of a 4x4-matrix by the sum
// over all index permutations.
func determinantByte(m [4][4]byte) byte {
return m[0][0]*m[1][1]*m[2][2]*m[3][3] -
m[0][0]*m[1][1]*m[2][3]*m[3][2] -
m[0][0]*m[1][2]*m[2][1]*m[3][3] +
m[0][0]*m[1][2]*m[2][3]*m[3][1] +
m[0][0]*m[1][3]*m[2][1]*m[3][2] -
m[0][0]*m[1][3]*m[2][2]*m[3][1] -
m[0][1]*m[1][0]*m[2][2]*m[3][3] +
m[0][1]*m[1][0]*m[2][3]*m[3][2] +
m[0][1]*m[1][2]*m[2][0]*m[3][3] -
m[0][1]*m[1][2]*m[2][3]*m[3][0] -
m[0][1]*m[1][3]*m[2][0]*m[3][2] +
m[0][1]*m[1][3]*m[2][2]*m[3][0] +
m[0][2]*m[1][0]*m[2][1]*m[3][3] -
m[0][2]*m[1][0]*m[2][3]*m[3][1] -
m[0][2]*m[1][1]*m[2][0]*m[3][3] +
m[0][2]*m[1][1]*m[2][3]*m[3][0] +
m[0][2]*m[1][3]*m[2][0]*m[3][1] -
m[0][2]*m[1][3]*m[2][1]*m[3][0] -
m[0][3]*m[1][0]*m[2][1]*m[3][2] +
m[0][3]*m[1][0]*m[2][2]*m[3][1] +
m[0][3]*m[1][1]*m[2][0]*m[3][2] -
m[0][3]*m[1][1]*m[2][2]*m[3][0] -
m[0][3]*m[1][2]*m[2][0]*m[3][1] +
m[0][3]*m[1][2]*m[2][1]*m[3][0]
}
type A []A
// A sequence of constant indexings.
func IndexChain1(s A) A {
return s[0][0][0][0][0][0][0][0][0][0][0][0][0][0][0][0]
}
// A sequence of non-constant indexings.
func IndexChain2(s A, i int) A {
return s[i][i][i][i][i][i][i][i][i][i][i][i][i][i][i][i]
}
// Another sequence of indexings.
func IndexChain3(s []int) int {
return s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[s[0]]]]]]]]]]]]]]]]]]]]]
}
// A right-leaning tree of byte multiplications.
func righttree(a, b, c, d uint8) uint8 {
return a * (b * (c * (d *
(a * (b * (c * (d *
(a * (b * (c * (d *
(a * (b * (c * (d *
(a * (b * (c * (d *
a * (b * (c * d)))))))))))))))))))))
}
// A left-leaning tree of byte multiplications.
func lefttree(a, b, c, d uint8) uint8 {
return ((((((((((((((((((a * b) * c) * d *
a) * b) * c) * d *
a) * b) * c) * d *
a) * b) * c) * d *
a) * b) * c) * d *
a) * b) * c) * d)
}
type T struct {
Next I
}
type I interface{}
// A chains of type assertions.
func ChainT(t *T) *T {
return t.
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T).
Next.(*T)
}
type U struct {
Children []J
}
func (u *U) Child(n int) J { return u.Children[n] }
type J interface {
Child(n int) J
}
func ChainUAssert(u *U) *U {
return u.Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U).
Child(0).(*U)
}
func ChainUNoAssert(u *U) *U {
return u.Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).
Child(0).(*U)
}
// Type assertions and slice indexing. See issue 4207.
func ChainAssertIndex(u *U) J {
return u.
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0].(*U).
Children[0]
}
type UArr struct {
Children [2]J
}
func (u *UArr) Child(n int) J { return u.Children[n] }
func ChainAssertArrayIndex(u *UArr) J {
return u.
Children[0].(*UArr).
Children[0].(*UArr).
Children[0].(*UArr).
Children[0].(*UArr).
Children[0].(*UArr).
Children[0].(*UArr).
Children[0].(*UArr).
// Children[0].(*UArr).
// Children[0].(*UArr).
// Children[0].(*UArr).
// Children[0].(*UArr).
// Children[0].(*UArr).
// Children[0].(*UArr).
Children[0]
}
type UArrPtr struct {
Children *[2]J
}
func (u *UArrPtr) Child(n int) J { return u.Children[n] }
func ChainAssertArrayptrIndex(u *UArrPtr) J {
// TODO: don't crash on longer chains.
return u.
Children[0].(*UArrPtr).
Children[0].(*UArrPtr).
Children[0].(*UArrPtr).
Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
// Children[0].(*UArrPtr).
Children[0]
}
// Chains of divisions. See issue 4201.
func ChainDiv(a, b int) int {
return a / b / a / b / a / b / a / b /
a / b / a / b / a / b / a / b /
a / b / a / b / a / b / a / b
}
func ChainDivRight(a, b int) int {
return a / (b / (a / (b /
(a / (b / (a / (b /
(a / (b / (a / (b /
(a / (b / (a / (b /
(a / (b / (a / b))))))))))))))))))
}
func ChainDivConst(a int) int {
return a / 17 / 17 / 17 /
17 / 17 / 17 / 17 /
17 / 17 / 17 / 17
}