mirror of
https://github.com/golang/go
synced 2024-11-20 07:34:40 -07:00
7ef59e4ed8
Otherwise, if you mistakenly refer to an undeclared 'shift' variable, you get 52. Change-Id: I845fb29f23baee1d8e17b37bde0239872eb54316 Reviewed-on: https://go-review.googlesource.com/2909 Reviewed-by: Austin Clements <austin@google.com>
144 lines
4.8 KiB
Go
144 lines
4.8 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Copy of math/sqrt.go, here for use by ARM softfloat.
|
|
|
|
package runtime
|
|
|
|
import "unsafe"
|
|
|
|
// The original C code and the long comment below are
|
|
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
|
|
// came with this notice. The go code is a simplified
|
|
// version of the original C.
|
|
//
|
|
// ====================================================
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
//
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
// Permission to use, copy, modify, and distribute this
|
|
// software is freely granted, provided that this notice
|
|
// is preserved.
|
|
// ====================================================
|
|
//
|
|
// __ieee754_sqrt(x)
|
|
// Return correctly rounded sqrt.
|
|
// -----------------------------------------
|
|
// | Use the hardware sqrt if you have one |
|
|
// -----------------------------------------
|
|
// Method:
|
|
// Bit by bit method using integer arithmetic. (Slow, but portable)
|
|
// 1. Normalization
|
|
// Scale x to y in [1,4) with even powers of 2:
|
|
// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
|
|
// sqrt(x) = 2**k * sqrt(y)
|
|
// 2. Bit by bit computation
|
|
// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
|
// i 0
|
|
// i+1 2
|
|
// s = 2*q , and y = 2 * ( y - q ). (1)
|
|
// i i i i
|
|
//
|
|
// To compute q from q , one checks whether
|
|
// i+1 i
|
|
//
|
|
// -(i+1) 2
|
|
// (q + 2 ) <= y. (2)
|
|
// i
|
|
// -(i+1)
|
|
// If (2) is false, then q = q ; otherwise q = q + 2 .
|
|
// i+1 i i+1 i
|
|
//
|
|
// With some algebraic manipulation, it is not difficult to see
|
|
// that (2) is equivalent to
|
|
// -(i+1)
|
|
// s + 2 <= y (3)
|
|
// i i
|
|
//
|
|
// The advantage of (3) is that s and y can be computed by
|
|
// i i
|
|
// the following recurrence formula:
|
|
// if (3) is false
|
|
//
|
|
// s = s , y = y ; (4)
|
|
// i+1 i i+1 i
|
|
//
|
|
// otherwise,
|
|
// -i -(i+1)
|
|
// s = s + 2 , y = y - s - 2 (5)
|
|
// i+1 i i+1 i i
|
|
//
|
|
// One may easily use induction to prove (4) and (5).
|
|
// Note. Since the left hand side of (3) contain only i+2 bits,
|
|
// it does not necessary to do a full (53-bit) comparison
|
|
// in (3).
|
|
// 3. Final rounding
|
|
// After generating the 53 bits result, we compute one more bit.
|
|
// Together with the remainder, we can decide whether the
|
|
// result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
// (it will never equal to 1/2ulp).
|
|
// The rounding mode can be detected by checking whether
|
|
// huge + tiny is equal to huge, and whether huge - tiny is
|
|
// equal to huge for some floating point number "huge" and "tiny".
|
|
//
|
|
//
|
|
// Notes: Rounding mode detection omitted.
|
|
|
|
const (
|
|
float64Mask = 0x7FF
|
|
float64Shift = 64 - 11 - 1
|
|
float64Bias = 1023
|
|
maxFloat64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52
|
|
)
|
|
|
|
func float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
|
|
func float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) }
|
|
|
|
func sqrt(x float64) float64 {
|
|
// special cases
|
|
switch {
|
|
case x == 0 || x != x || x > maxFloat64:
|
|
return x
|
|
case x < 0:
|
|
return nan()
|
|
}
|
|
ix := float64bits(x)
|
|
// normalize x
|
|
exp := int((ix >> float64Shift) & float64Mask)
|
|
if exp == 0 { // subnormal x
|
|
for ix&1<<float64Shift == 0 {
|
|
ix <<= 1
|
|
exp--
|
|
}
|
|
exp++
|
|
}
|
|
exp -= float64Bias // unbias exponent
|
|
ix &^= float64Mask << float64Shift
|
|
ix |= 1 << float64Shift
|
|
if exp&1 == 1 { // odd exp, double x to make it even
|
|
ix <<= 1
|
|
}
|
|
exp >>= 1 // exp = exp/2, exponent of square root
|
|
// generate sqrt(x) bit by bit
|
|
ix <<= 1
|
|
var q, s uint64 // q = sqrt(x)
|
|
r := uint64(1 << (float64Shift + 1)) // r = moving bit from MSB to LSB
|
|
for r != 0 {
|
|
t := s + r
|
|
if t <= ix {
|
|
s = t + r
|
|
ix -= t
|
|
q += r
|
|
}
|
|
ix <<= 1
|
|
r >>= 1
|
|
}
|
|
// final rounding
|
|
if ix != 0 { // remainder, result not exact
|
|
q += q & 1 // round according to extra bit
|
|
}
|
|
ix = q>>1 + uint64(exp-1+float64Bias)<<float64Shift // significand + biased exponent
|
|
return float64frombits(ix)
|
|
}
|