mirror of
https://github.com/golang/go
synced 2024-11-19 18:24:39 -07:00
3a84e3305b
This CL is quite conservative in some ways. It continues to define symbols that have no real purpose (e.g. epclntab). These could be deleted if there is no concern that external tools might look for them. It would also now be possible to make some changes to the pcln data but I get the impression that would definitely require some thought and discussion. Change-Id: Ib33cde07e4ec38ecc1d6c319a10138c9347933a3 Reviewed-on: https://go-review.googlesource.com/7616 Run-TryBot: Ian Lance Taylor <iant@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Ian Lance Taylor <iant@golang.org>
3405 lines
90 KiB
Go
3405 lines
90 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import "unsafe"
|
|
|
|
var (
|
|
m0 m
|
|
g0 g
|
|
)
|
|
|
|
// Goroutine scheduler
|
|
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
|
|
//
|
|
// The main concepts are:
|
|
// G - goroutine.
|
|
// M - worker thread, or machine.
|
|
// P - processor, a resource that is required to execute Go code.
|
|
// M must have an associated P to execute Go code, however it can be
|
|
// blocked or in a syscall w/o an associated P.
|
|
//
|
|
// Design doc at http://golang.org/s/go11sched.
|
|
|
|
const (
|
|
// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
|
|
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
|
|
_GoidCacheBatch = 16
|
|
)
|
|
|
|
// The bootstrap sequence is:
|
|
//
|
|
// call osinit
|
|
// call schedinit
|
|
// make & queue new G
|
|
// call runtime·mstart
|
|
//
|
|
// The new G calls runtime·main.
|
|
func schedinit() {
|
|
// raceinit must be the first call to race detector.
|
|
// In particular, it must be done before mallocinit below calls racemapshadow.
|
|
_g_ := getg()
|
|
if raceenabled {
|
|
_g_.racectx = raceinit()
|
|
}
|
|
|
|
sched.maxmcount = 10000
|
|
|
|
// Cache the framepointer experiment. This affects stack unwinding.
|
|
framepointer_enabled = haveexperiment("framepointer")
|
|
|
|
tracebackinit()
|
|
symtabverify()
|
|
stackinit()
|
|
mallocinit()
|
|
mcommoninit(_g_.m)
|
|
|
|
goargs()
|
|
goenvs()
|
|
parsedebugvars()
|
|
wbshadowinit()
|
|
gcinit()
|
|
|
|
sched.lastpoll = uint64(nanotime())
|
|
procs := 1
|
|
if n := atoi(gogetenv("GOMAXPROCS")); n > 0 {
|
|
if n > _MaxGomaxprocs {
|
|
n = _MaxGomaxprocs
|
|
}
|
|
procs = n
|
|
}
|
|
if procresize(int32(procs)) != nil {
|
|
throw("unknown runnable goroutine during bootstrap")
|
|
}
|
|
|
|
if buildVersion == "" {
|
|
// Condition should never trigger. This code just serves
|
|
// to ensure runtime·buildVersion is kept in the resulting binary.
|
|
buildVersion = "unknown"
|
|
}
|
|
}
|
|
|
|
func dumpgstatus(gp *g) {
|
|
_g_ := getg()
|
|
print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
|
|
print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
|
|
}
|
|
|
|
func checkmcount() {
|
|
// sched lock is held
|
|
if sched.mcount > sched.maxmcount {
|
|
print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
|
|
throw("thread exhaustion")
|
|
}
|
|
}
|
|
|
|
func mcommoninit(mp *m) {
|
|
_g_ := getg()
|
|
|
|
// g0 stack won't make sense for user (and is not necessary unwindable).
|
|
if _g_ != _g_.m.g0 {
|
|
callers(1, mp.createstack[:])
|
|
}
|
|
|
|
mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
|
|
if mp.fastrand == 0 {
|
|
mp.fastrand = 0x49f6428a
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
mp.id = sched.mcount
|
|
sched.mcount++
|
|
checkmcount()
|
|
mpreinit(mp)
|
|
if mp.gsignal != nil {
|
|
mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
|
|
}
|
|
|
|
// Add to allm so garbage collector doesn't free g->m
|
|
// when it is just in a register or thread-local storage.
|
|
mp.alllink = allm
|
|
|
|
// NumCgoCall() iterates over allm w/o schedlock,
|
|
// so we need to publish it safely.
|
|
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Mark gp ready to run.
|
|
func ready(gp *g, traceskip int) {
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, traceskip)
|
|
}
|
|
|
|
status := readgstatus(gp)
|
|
|
|
// Mark runnable.
|
|
_g_ := getg()
|
|
_g_.m.locks++ // disable preemption because it can be holding p in a local var
|
|
if status&^_Gscan != _Gwaiting {
|
|
dumpgstatus(gp)
|
|
throw("bad g->status in ready")
|
|
}
|
|
|
|
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
runqput(_g_.m.p, gp)
|
|
if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic
|
|
wakep()
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
}
|
|
|
|
func gcprocs() int32 {
|
|
// Figure out how many CPUs to use during GC.
|
|
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
|
|
lock(&sched.lock)
|
|
n := gomaxprocs
|
|
if n > ncpu {
|
|
n = ncpu
|
|
}
|
|
if n > _MaxGcproc {
|
|
n = _MaxGcproc
|
|
}
|
|
if n > sched.nmidle+1 { // one M is currently running
|
|
n = sched.nmidle + 1
|
|
}
|
|
unlock(&sched.lock)
|
|
return n
|
|
}
|
|
|
|
func needaddgcproc() bool {
|
|
lock(&sched.lock)
|
|
n := gomaxprocs
|
|
if n > ncpu {
|
|
n = ncpu
|
|
}
|
|
if n > _MaxGcproc {
|
|
n = _MaxGcproc
|
|
}
|
|
n -= sched.nmidle + 1 // one M is currently running
|
|
unlock(&sched.lock)
|
|
return n > 0
|
|
}
|
|
|
|
func helpgc(nproc int32) {
|
|
_g_ := getg()
|
|
lock(&sched.lock)
|
|
pos := 0
|
|
for n := int32(1); n < nproc; n++ { // one M is currently running
|
|
if allp[pos].mcache == _g_.m.mcache {
|
|
pos++
|
|
}
|
|
mp := mget()
|
|
if mp == nil {
|
|
throw("gcprocs inconsistency")
|
|
}
|
|
mp.helpgc = n
|
|
mp.p = allp[pos]
|
|
mp.mcache = allp[pos].mcache
|
|
pos++
|
|
notewakeup(&mp.park)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Similar to stoptheworld but best-effort and can be called several times.
|
|
// There is no reverse operation, used during crashing.
|
|
// This function must not lock any mutexes.
|
|
func freezetheworld() {
|
|
if gomaxprocs == 1 {
|
|
return
|
|
}
|
|
// stopwait and preemption requests can be lost
|
|
// due to races with concurrently executing threads,
|
|
// so try several times
|
|
for i := 0; i < 5; i++ {
|
|
// this should tell the scheduler to not start any new goroutines
|
|
sched.stopwait = 0x7fffffff
|
|
atomicstore(&sched.gcwaiting, 1)
|
|
// this should stop running goroutines
|
|
if !preemptall() {
|
|
break // no running goroutines
|
|
}
|
|
usleep(1000)
|
|
}
|
|
// to be sure
|
|
usleep(1000)
|
|
preemptall()
|
|
usleep(1000)
|
|
}
|
|
|
|
func isscanstatus(status uint32) bool {
|
|
if status == _Gscan {
|
|
throw("isscanstatus: Bad status Gscan")
|
|
}
|
|
return status&_Gscan == _Gscan
|
|
}
|
|
|
|
// All reads and writes of g's status go through readgstatus, casgstatus
|
|
// castogscanstatus, casfrom_Gscanstatus.
|
|
//go:nosplit
|
|
func readgstatus(gp *g) uint32 {
|
|
return atomicload(&gp.atomicstatus)
|
|
}
|
|
|
|
// The Gscanstatuses are acting like locks and this releases them.
|
|
// If it proves to be a performance hit we should be able to make these
|
|
// simple atomic stores but for now we are going to throw if
|
|
// we see an inconsistent state.
|
|
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
|
|
success := false
|
|
|
|
// Check that transition is valid.
|
|
switch oldval {
|
|
default:
|
|
print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
|
|
dumpgstatus(gp)
|
|
throw("casfrom_Gscanstatus:top gp->status is not in scan state")
|
|
case _Gscanrunnable,
|
|
_Gscanwaiting,
|
|
_Gscanrunning,
|
|
_Gscansyscall:
|
|
if newval == oldval&^_Gscan {
|
|
success = cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
case _Gscanenqueue:
|
|
if newval == _Gwaiting {
|
|
success = cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
}
|
|
if !success {
|
|
print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
|
|
dumpgstatus(gp)
|
|
throw("casfrom_Gscanstatus: gp->status is not in scan state")
|
|
}
|
|
if newval == _Grunning {
|
|
gp.gcscanvalid = false
|
|
}
|
|
}
|
|
|
|
// This will return false if the gp is not in the expected status and the cas fails.
|
|
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
|
|
func castogscanstatus(gp *g, oldval, newval uint32) bool {
|
|
switch oldval {
|
|
case _Grunnable,
|
|
_Gwaiting,
|
|
_Gsyscall:
|
|
if newval == oldval|_Gscan {
|
|
return cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
case _Grunning:
|
|
if gp.gcscanvalid {
|
|
print("runtime: castogscanstatus _Grunning and gp.gcscanvalid is true, newval=", hex(newval), "\n")
|
|
throw("castogscanstatus")
|
|
}
|
|
if newval == _Gscanrunning || newval == _Gscanenqueue {
|
|
return cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
}
|
|
print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
|
|
throw("castogscanstatus")
|
|
panic("not reached")
|
|
}
|
|
|
|
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
|
|
// and casfrom_Gscanstatus instead.
|
|
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
|
|
// put it in the Gscan state is finished.
|
|
//go:nosplit
|
|
func casgstatus(gp *g, oldval, newval uint32) {
|
|
if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
|
|
systemstack(func() {
|
|
print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
|
|
throw("casgstatus: bad incoming values")
|
|
})
|
|
}
|
|
|
|
// loop if gp->atomicstatus is in a scan state giving
|
|
// GC time to finish and change the state to oldval.
|
|
for !cas(&gp.atomicstatus, oldval, newval) {
|
|
if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
|
|
systemstack(func() {
|
|
throw("casgstatus: waiting for Gwaiting but is Grunnable")
|
|
})
|
|
}
|
|
// Help GC if needed.
|
|
// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
|
|
// gp.preemptscan = false
|
|
// systemstack(func() {
|
|
// gcphasework(gp)
|
|
// })
|
|
// }
|
|
}
|
|
if newval == _Grunning {
|
|
gp.gcscanvalid = false
|
|
}
|
|
}
|
|
|
|
// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
|
|
// Returns old status. Cannot call casgstatus directly, because we are racing with an
|
|
// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
|
|
// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
|
|
// it would loop waiting for the status to go back to Gwaiting, which it never will.
|
|
//go:nosplit
|
|
func casgcopystack(gp *g) uint32 {
|
|
for {
|
|
oldstatus := readgstatus(gp) &^ _Gscan
|
|
if oldstatus != _Gwaiting && oldstatus != _Grunnable {
|
|
throw("copystack: bad status, not Gwaiting or Grunnable")
|
|
}
|
|
if cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
|
|
return oldstatus
|
|
}
|
|
}
|
|
}
|
|
|
|
// stopg ensures that gp is stopped at a GC safe point where its stack can be scanned
|
|
// or in the context of a moving collector the pointers can be flipped from pointing
|
|
// to old object to pointing to new objects.
|
|
// If stopg returns true, the caller knows gp is at a GC safe point and will remain there until
|
|
// the caller calls restartg.
|
|
// If stopg returns false, the caller is not responsible for calling restartg. This can happen
|
|
// if another thread, either the gp itself or another GC thread is taking the responsibility
|
|
// to do the GC work related to this thread.
|
|
func stopg(gp *g) bool {
|
|
for {
|
|
if gp.gcworkdone {
|
|
return false
|
|
}
|
|
|
|
switch s := readgstatus(gp); s {
|
|
default:
|
|
dumpgstatus(gp)
|
|
throw("stopg: gp->atomicstatus is not valid")
|
|
|
|
case _Gdead:
|
|
return false
|
|
|
|
case _Gcopystack:
|
|
// Loop until a new stack is in place.
|
|
|
|
case _Grunnable,
|
|
_Gsyscall,
|
|
_Gwaiting:
|
|
// Claim goroutine by setting scan bit.
|
|
if !castogscanstatus(gp, s, s|_Gscan) {
|
|
break
|
|
}
|
|
// In scan state, do work.
|
|
gcphasework(gp)
|
|
return true
|
|
|
|
case _Gscanrunnable,
|
|
_Gscanwaiting,
|
|
_Gscansyscall:
|
|
// Goroutine already claimed by another GC helper.
|
|
return false
|
|
|
|
case _Grunning:
|
|
// Claim goroutine, so we aren't racing with a status
|
|
// transition away from Grunning.
|
|
if !castogscanstatus(gp, _Grunning, _Gscanrunning) {
|
|
break
|
|
}
|
|
|
|
// Mark gp for preemption.
|
|
if !gp.gcworkdone {
|
|
gp.preemptscan = true
|
|
gp.preempt = true
|
|
gp.stackguard0 = stackPreempt
|
|
}
|
|
|
|
// Unclaim.
|
|
casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
|
|
// The GC requests that this routine be moved from a scanmumble state to a mumble state.
|
|
func restartg(gp *g) {
|
|
s := readgstatus(gp)
|
|
switch s {
|
|
default:
|
|
dumpgstatus(gp)
|
|
throw("restartg: unexpected status")
|
|
|
|
case _Gdead:
|
|
// ok
|
|
|
|
case _Gscanrunnable,
|
|
_Gscanwaiting,
|
|
_Gscansyscall:
|
|
casfrom_Gscanstatus(gp, s, s&^_Gscan)
|
|
|
|
// Scan is now completed.
|
|
// Goroutine now needs to be made runnable.
|
|
// We put it on the global run queue; ready blocks on the global scheduler lock.
|
|
case _Gscanenqueue:
|
|
casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
|
|
if gp != getg().m.curg {
|
|
throw("processing Gscanenqueue on wrong m")
|
|
}
|
|
dropg()
|
|
ready(gp, 0)
|
|
}
|
|
}
|
|
|
|
func stopscanstart(gp *g) {
|
|
_g_ := getg()
|
|
if _g_ == gp {
|
|
throw("GC not moved to G0")
|
|
}
|
|
if stopg(gp) {
|
|
if !isscanstatus(readgstatus(gp)) {
|
|
dumpgstatus(gp)
|
|
throw("GC not in scan state")
|
|
}
|
|
restartg(gp)
|
|
}
|
|
}
|
|
|
|
// Runs on g0 and does the actual work after putting the g back on the run queue.
|
|
func mquiesce(gpmaster *g) {
|
|
// enqueue the calling goroutine.
|
|
restartg(gpmaster)
|
|
|
|
activeglen := len(allgs)
|
|
for i := 0; i < activeglen; i++ {
|
|
gp := allgs[i]
|
|
if readgstatus(gp) == _Gdead {
|
|
gp.gcworkdone = true // noop scan.
|
|
} else {
|
|
gp.gcworkdone = false
|
|
}
|
|
stopscanstart(gp)
|
|
}
|
|
|
|
// Check that the G's gcwork (such as scanning) has been done. If not do it now.
|
|
// You can end up doing work here if the page trap on a Grunning Goroutine has
|
|
// not been sprung or in some race situations. For example a runnable goes dead
|
|
// and is started up again with a gp->gcworkdone set to false.
|
|
for i := 0; i < activeglen; i++ {
|
|
gp := allgs[i]
|
|
for !gp.gcworkdone {
|
|
status := readgstatus(gp)
|
|
if status == _Gdead {
|
|
//do nothing, scan not needed.
|
|
gp.gcworkdone = true // scan is a noop
|
|
break
|
|
}
|
|
if status == _Grunning && gp.stackguard0 == uintptr(stackPreempt) && notetsleep(&sched.stopnote, 100*1000) { // nanosecond arg
|
|
noteclear(&sched.stopnote)
|
|
} else {
|
|
stopscanstart(gp)
|
|
}
|
|
}
|
|
}
|
|
|
|
for i := 0; i < activeglen; i++ {
|
|
gp := allgs[i]
|
|
status := readgstatus(gp)
|
|
if isscanstatus(status) {
|
|
print("mstopandscang:bottom: post scan bad status gp=", gp, " has status ", hex(status), "\n")
|
|
dumpgstatus(gp)
|
|
}
|
|
if !gp.gcworkdone && status != _Gdead {
|
|
print("mstopandscang:bottom: post scan gp=", gp, "->gcworkdone still false\n")
|
|
dumpgstatus(gp)
|
|
}
|
|
}
|
|
|
|
schedule() // Never returns.
|
|
}
|
|
|
|
// quiesce moves all the goroutines to a GC safepoint which for now is a at preemption point.
|
|
// If the global gcphase is GCmark quiesce will ensure that all of the goroutine's stacks
|
|
// have been scanned before it returns.
|
|
func quiesce(mastergp *g) {
|
|
castogscanstatus(mastergp, _Grunning, _Gscanenqueue)
|
|
// Now move this to the g0 (aka m) stack.
|
|
// g0 will potentially scan this thread and put mastergp on the runqueue
|
|
mcall(mquiesce)
|
|
}
|
|
|
|
// Holding worldsema grants an M the right to try to stop the world.
|
|
// The procedure is:
|
|
//
|
|
// semacquire(&worldsema);
|
|
// m.preemptoff = "reason";
|
|
// stoptheworld();
|
|
//
|
|
// ... do stuff ...
|
|
//
|
|
// m.preemptoff = "";
|
|
// semrelease(&worldsema);
|
|
// starttheworld();
|
|
//
|
|
var worldsema uint32 = 1
|
|
|
|
// This is used by the GC as well as the routines that do stack dumps. In the case
|
|
// of GC all the routines can be reliably stopped. This is not always the case
|
|
// when the system is in panic or being exited.
|
|
func stoptheworld() {
|
|
_g_ := getg()
|
|
|
|
// If we hold a lock, then we won't be able to stop another M
|
|
// that is blocked trying to acquire the lock.
|
|
if _g_.m.locks > 0 {
|
|
throw("stoptheworld: holding locks")
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
sched.stopwait = gomaxprocs
|
|
atomicstore(&sched.gcwaiting, 1)
|
|
preemptall()
|
|
// stop current P
|
|
_g_.m.p.status = _Pgcstop // Pgcstop is only diagnostic.
|
|
sched.stopwait--
|
|
// try to retake all P's in Psyscall status
|
|
for i := 0; i < int(gomaxprocs); i++ {
|
|
p := allp[i]
|
|
s := p.status
|
|
if s == _Psyscall && cas(&p.status, s, _Pgcstop) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(p)
|
|
traceProcStop(p)
|
|
}
|
|
p.syscalltick++
|
|
sched.stopwait--
|
|
}
|
|
}
|
|
// stop idle P's
|
|
for {
|
|
p := pidleget()
|
|
if p == nil {
|
|
break
|
|
}
|
|
p.status = _Pgcstop
|
|
sched.stopwait--
|
|
}
|
|
wait := sched.stopwait > 0
|
|
unlock(&sched.lock)
|
|
|
|
// wait for remaining P's to stop voluntarily
|
|
if wait {
|
|
for {
|
|
// wait for 100us, then try to re-preempt in case of any races
|
|
if notetsleep(&sched.stopnote, 100*1000) {
|
|
noteclear(&sched.stopnote)
|
|
break
|
|
}
|
|
preemptall()
|
|
}
|
|
}
|
|
if sched.stopwait != 0 {
|
|
throw("stoptheworld: not stopped")
|
|
}
|
|
for i := 0; i < int(gomaxprocs); i++ {
|
|
p := allp[i]
|
|
if p.status != _Pgcstop {
|
|
throw("stoptheworld: not stopped")
|
|
}
|
|
}
|
|
}
|
|
|
|
func mhelpgc() {
|
|
_g_ := getg()
|
|
_g_.m.helpgc = -1
|
|
}
|
|
|
|
func starttheworld() {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // disable preemption because it can be holding p in a local var
|
|
gp := netpoll(false) // non-blocking
|
|
injectglist(gp)
|
|
add := needaddgcproc()
|
|
lock(&sched.lock)
|
|
|
|
procs := gomaxprocs
|
|
if newprocs != 0 {
|
|
procs = newprocs
|
|
newprocs = 0
|
|
}
|
|
p1 := procresize(procs)
|
|
sched.gcwaiting = 0
|
|
if sched.sysmonwait != 0 {
|
|
sched.sysmonwait = 0
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
|
|
for p1 != nil {
|
|
p := p1
|
|
p1 = p1.link
|
|
if p.m != nil {
|
|
mp := p.m
|
|
p.m = nil
|
|
if mp.nextp != nil {
|
|
throw("starttheworld: inconsistent mp->nextp")
|
|
}
|
|
mp.nextp = p
|
|
notewakeup(&mp.park)
|
|
} else {
|
|
// Start M to run P. Do not start another M below.
|
|
newm(nil, p)
|
|
add = false
|
|
}
|
|
}
|
|
|
|
// Wakeup an additional proc in case we have excessive runnable goroutines
|
|
// in local queues or in the global queue. If we don't, the proc will park itself.
|
|
// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
|
|
if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 {
|
|
wakep()
|
|
}
|
|
|
|
if add {
|
|
// If GC could have used another helper proc, start one now,
|
|
// in the hope that it will be available next time.
|
|
// It would have been even better to start it before the collection,
|
|
// but doing so requires allocating memory, so it's tricky to
|
|
// coordinate. This lazy approach works out in practice:
|
|
// we don't mind if the first couple gc rounds don't have quite
|
|
// the maximum number of procs.
|
|
newm(mhelpgc, nil)
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
}
|
|
|
|
// Called to start an M.
|
|
//go:nosplit
|
|
func mstart() {
|
|
_g_ := getg()
|
|
|
|
if _g_.stack.lo == 0 {
|
|
// Initialize stack bounds from system stack.
|
|
// Cgo may have left stack size in stack.hi.
|
|
size := _g_.stack.hi
|
|
if size == 0 {
|
|
size = 8192
|
|
}
|
|
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
|
|
_g_.stack.lo = _g_.stack.hi - size + 1024
|
|
}
|
|
// Initialize stack guards so that we can start calling
|
|
// both Go and C functions with stack growth prologues.
|
|
_g_.stackguard0 = _g_.stack.lo + _StackGuard
|
|
_g_.stackguard1 = _g_.stackguard0
|
|
mstart1()
|
|
}
|
|
|
|
func mstart1() {
|
|
_g_ := getg()
|
|
|
|
if _g_ != _g_.m.g0 {
|
|
throw("bad runtime·mstart")
|
|
}
|
|
|
|
// Record top of stack for use by mcall.
|
|
// Once we call schedule we're never coming back,
|
|
// so other calls can reuse this stack space.
|
|
gosave(&_g_.m.g0.sched)
|
|
_g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
|
|
asminit()
|
|
minit()
|
|
|
|
// Install signal handlers; after minit so that minit can
|
|
// prepare the thread to be able to handle the signals.
|
|
if _g_.m == &m0 {
|
|
// Create an extra M for callbacks on threads not created by Go.
|
|
if iscgo && !cgoHasExtraM {
|
|
cgoHasExtraM = true
|
|
newextram()
|
|
}
|
|
initsig()
|
|
}
|
|
|
|
if _g_.m.mstartfn != 0 {
|
|
fn := *(*func())(unsafe.Pointer(&_g_.m.mstartfn))
|
|
fn()
|
|
}
|
|
|
|
if _g_.m.helpgc != 0 {
|
|
_g_.m.helpgc = 0
|
|
stopm()
|
|
} else if _g_.m != &m0 {
|
|
acquirep(_g_.m.nextp)
|
|
_g_.m.nextp = nil
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
// When running with cgo, we call _cgo_thread_start
|
|
// to start threads for us so that we can play nicely with
|
|
// foreign code.
|
|
var cgoThreadStart unsafe.Pointer
|
|
|
|
type cgothreadstart struct {
|
|
g *g
|
|
tls *uint64
|
|
fn unsafe.Pointer
|
|
}
|
|
|
|
// Allocate a new m unassociated with any thread.
|
|
// Can use p for allocation context if needed.
|
|
func allocm(_p_ *p) *m {
|
|
_g_ := getg()
|
|
_g_.m.locks++ // disable GC because it can be called from sysmon
|
|
if _g_.m.p == nil {
|
|
acquirep(_p_) // temporarily borrow p for mallocs in this function
|
|
}
|
|
mp := new(m)
|
|
mcommoninit(mp)
|
|
|
|
// In case of cgo or Solaris, pthread_create will make us a stack.
|
|
// Windows and Plan 9 will layout sched stack on OS stack.
|
|
if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
|
|
mp.g0 = malg(-1)
|
|
} else {
|
|
mp.g0 = malg(8192)
|
|
}
|
|
mp.g0.m = mp
|
|
|
|
if _p_ == _g_.m.p {
|
|
releasep()
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
|
|
return mp
|
|
}
|
|
|
|
// needm is called when a cgo callback happens on a
|
|
// thread without an m (a thread not created by Go).
|
|
// In this case, needm is expected to find an m to use
|
|
// and return with m, g initialized correctly.
|
|
// Since m and g are not set now (likely nil, but see below)
|
|
// needm is limited in what routines it can call. In particular
|
|
// it can only call nosplit functions (textflag 7) and cannot
|
|
// do any scheduling that requires an m.
|
|
//
|
|
// In order to avoid needing heavy lifting here, we adopt
|
|
// the following strategy: there is a stack of available m's
|
|
// that can be stolen. Using compare-and-swap
|
|
// to pop from the stack has ABA races, so we simulate
|
|
// a lock by doing an exchange (via casp) to steal the stack
|
|
// head and replace the top pointer with MLOCKED (1).
|
|
// This serves as a simple spin lock that we can use even
|
|
// without an m. The thread that locks the stack in this way
|
|
// unlocks the stack by storing a valid stack head pointer.
|
|
//
|
|
// In order to make sure that there is always an m structure
|
|
// available to be stolen, we maintain the invariant that there
|
|
// is always one more than needed. At the beginning of the
|
|
// program (if cgo is in use) the list is seeded with a single m.
|
|
// If needm finds that it has taken the last m off the list, its job
|
|
// is - once it has installed its own m so that it can do things like
|
|
// allocate memory - to create a spare m and put it on the list.
|
|
//
|
|
// Each of these extra m's also has a g0 and a curg that are
|
|
// pressed into service as the scheduling stack and current
|
|
// goroutine for the duration of the cgo callback.
|
|
//
|
|
// When the callback is done with the m, it calls dropm to
|
|
// put the m back on the list.
|
|
//go:nosplit
|
|
func needm(x byte) {
|
|
if iscgo && !cgoHasExtraM {
|
|
// Can happen if C/C++ code calls Go from a global ctor.
|
|
// Can not throw, because scheduler is not initialized yet.
|
|
write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
|
|
exit(1)
|
|
}
|
|
|
|
// Lock extra list, take head, unlock popped list.
|
|
// nilokay=false is safe here because of the invariant above,
|
|
// that the extra list always contains or will soon contain
|
|
// at least one m.
|
|
mp := lockextra(false)
|
|
|
|
// Set needextram when we've just emptied the list,
|
|
// so that the eventual call into cgocallbackg will
|
|
// allocate a new m for the extra list. We delay the
|
|
// allocation until then so that it can be done
|
|
// after exitsyscall makes sure it is okay to be
|
|
// running at all (that is, there's no garbage collection
|
|
// running right now).
|
|
mp.needextram = mp.schedlink == nil
|
|
unlockextra(mp.schedlink)
|
|
|
|
// Install g (= m->g0) and set the stack bounds
|
|
// to match the current stack. We don't actually know
|
|
// how big the stack is, like we don't know how big any
|
|
// scheduling stack is, but we assume there's at least 32 kB,
|
|
// which is more than enough for us.
|
|
setg(mp.g0)
|
|
_g_ := getg()
|
|
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
|
|
_g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
|
|
_g_.stackguard0 = _g_.stack.lo + _StackGuard
|
|
|
|
// Initialize this thread to use the m.
|
|
asminit()
|
|
minit()
|
|
}
|
|
|
|
var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
|
|
|
|
// newextram allocates an m and puts it on the extra list.
|
|
// It is called with a working local m, so that it can do things
|
|
// like call schedlock and allocate.
|
|
func newextram() {
|
|
// Create extra goroutine locked to extra m.
|
|
// The goroutine is the context in which the cgo callback will run.
|
|
// The sched.pc will never be returned to, but setting it to
|
|
// goexit makes clear to the traceback routines where
|
|
// the goroutine stack ends.
|
|
mp := allocm(nil)
|
|
gp := malg(4096)
|
|
gp.sched.pc = funcPC(goexit) + _PCQuantum
|
|
gp.sched.sp = gp.stack.hi
|
|
gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame
|
|
gp.sched.lr = 0
|
|
gp.sched.g = guintptr(unsafe.Pointer(gp))
|
|
gp.syscallpc = gp.sched.pc
|
|
gp.syscallsp = gp.sched.sp
|
|
// malg returns status as Gidle, change to Gsyscall before adding to allg
|
|
// where GC will see it.
|
|
casgstatus(gp, _Gidle, _Gsyscall)
|
|
gp.m = mp
|
|
mp.curg = gp
|
|
mp.locked = _LockInternal
|
|
mp.lockedg = gp
|
|
gp.lockedm = mp
|
|
gp.goid = int64(xadd64(&sched.goidgen, 1))
|
|
if raceenabled {
|
|
gp.racectx = racegostart(funcPC(newextram))
|
|
}
|
|
// put on allg for garbage collector
|
|
allgadd(gp)
|
|
|
|
// Add m to the extra list.
|
|
mnext := lockextra(true)
|
|
mp.schedlink = mnext
|
|
unlockextra(mp)
|
|
}
|
|
|
|
// dropm is called when a cgo callback has called needm but is now
|
|
// done with the callback and returning back into the non-Go thread.
|
|
// It puts the current m back onto the extra list.
|
|
//
|
|
// The main expense here is the call to signalstack to release the
|
|
// m's signal stack, and then the call to needm on the next callback
|
|
// from this thread. It is tempting to try to save the m for next time,
|
|
// which would eliminate both these costs, but there might not be
|
|
// a next time: the current thread (which Go does not control) might exit.
|
|
// If we saved the m for that thread, there would be an m leak each time
|
|
// such a thread exited. Instead, we acquire and release an m on each
|
|
// call. These should typically not be scheduling operations, just a few
|
|
// atomics, so the cost should be small.
|
|
//
|
|
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
|
|
// variable using pthread_key_create. Unlike the pthread keys we already use
|
|
// on OS X, this dummy key would never be read by Go code. It would exist
|
|
// only so that we could register at thread-exit-time destructor.
|
|
// That destructor would put the m back onto the extra list.
|
|
// This is purely a performance optimization. The current version,
|
|
// in which dropm happens on each cgo call, is still correct too.
|
|
// We may have to keep the current version on systems with cgo
|
|
// but without pthreads, like Windows.
|
|
func dropm() {
|
|
// Undo whatever initialization minit did during needm.
|
|
unminit()
|
|
|
|
// Clear m and g, and return m to the extra list.
|
|
// After the call to setg we can only call nosplit functions
|
|
// with no pointer manipulation.
|
|
mp := getg().m
|
|
mnext := lockextra(true)
|
|
mp.schedlink = mnext
|
|
|
|
setg(nil)
|
|
unlockextra(mp)
|
|
}
|
|
|
|
var extram uintptr
|
|
|
|
// lockextra locks the extra list and returns the list head.
|
|
// The caller must unlock the list by storing a new list head
|
|
// to extram. If nilokay is true, then lockextra will
|
|
// return a nil list head if that's what it finds. If nilokay is false,
|
|
// lockextra will keep waiting until the list head is no longer nil.
|
|
//go:nosplit
|
|
func lockextra(nilokay bool) *m {
|
|
const locked = 1
|
|
|
|
for {
|
|
old := atomicloaduintptr(&extram)
|
|
if old == locked {
|
|
yield := osyield
|
|
yield()
|
|
continue
|
|
}
|
|
if old == 0 && !nilokay {
|
|
usleep(1)
|
|
continue
|
|
}
|
|
if casuintptr(&extram, old, locked) {
|
|
return (*m)(unsafe.Pointer(old))
|
|
}
|
|
yield := osyield
|
|
yield()
|
|
continue
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
func unlockextra(mp *m) {
|
|
atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp)))
|
|
}
|
|
|
|
// Create a new m. It will start off with a call to fn, or else the scheduler.
|
|
// fn needs to be static and not a heap allocated closure.
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func newm(fn func(), _p_ *p) {
|
|
mp := allocm(_p_)
|
|
// procresize made _p_ reachable through allp, which doesn't change during GC, so WB can be eliminated
|
|
setPNoWriteBarrier(&mp.nextp, _p_)
|
|
// Store &fn as a uintptr since it is not heap allocated so the WB can be eliminated
|
|
mp.mstartfn = *(*uintptr)(unsafe.Pointer(&fn))
|
|
if iscgo {
|
|
var ts cgothreadstart
|
|
if _cgo_thread_start == nil {
|
|
throw("_cgo_thread_start missing")
|
|
}
|
|
// mp is reachable via allm and mp.g0 never changes, so WB can be eliminated.
|
|
setGNoWriteBarrier(&ts.g, mp.g0)
|
|
ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
|
|
ts.fn = unsafe.Pointer(funcPC(mstart))
|
|
asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
|
|
return
|
|
}
|
|
newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
|
|
}
|
|
|
|
// Stops execution of the current m until new work is available.
|
|
// Returns with acquired P.
|
|
func stopm() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.locks != 0 {
|
|
throw("stopm holding locks")
|
|
}
|
|
if _g_.m.p != nil {
|
|
throw("stopm holding p")
|
|
}
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
xadd(&sched.nmspinning, -1)
|
|
}
|
|
|
|
retry:
|
|
lock(&sched.lock)
|
|
mput(_g_.m)
|
|
unlock(&sched.lock)
|
|
notesleep(&_g_.m.park)
|
|
noteclear(&_g_.m.park)
|
|
if _g_.m.helpgc != 0 {
|
|
gchelper()
|
|
_g_.m.helpgc = 0
|
|
_g_.m.mcache = nil
|
|
_g_.m.p = nil
|
|
goto retry
|
|
}
|
|
acquirep(_g_.m.nextp)
|
|
_g_.m.nextp = nil
|
|
}
|
|
|
|
func mspinning() {
|
|
getg().m.spinning = true
|
|
}
|
|
|
|
// Schedules some M to run the p (creates an M if necessary).
|
|
// If p==nil, tries to get an idle P, if no idle P's does nothing.
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func startm(_p_ *p, spinning bool) {
|
|
lock(&sched.lock)
|
|
if _p_ == nil {
|
|
_p_ = pidleget()
|
|
if _p_ == nil {
|
|
unlock(&sched.lock)
|
|
if spinning {
|
|
xadd(&sched.nmspinning, -1)
|
|
}
|
|
return
|
|
}
|
|
}
|
|
mp := mget()
|
|
unlock(&sched.lock)
|
|
if mp == nil {
|
|
var fn func()
|
|
if spinning {
|
|
fn = mspinning
|
|
}
|
|
newm(fn, _p_)
|
|
return
|
|
}
|
|
if mp.spinning {
|
|
throw("startm: m is spinning")
|
|
}
|
|
if mp.nextp != nil {
|
|
throw("startm: m has p")
|
|
}
|
|
mp.spinning = spinning
|
|
// procresize made _p_ reachable through allp, which doesn't change during GC, so WB can be eliminated
|
|
setPNoWriteBarrier(&mp.nextp, _p_)
|
|
notewakeup(&mp.park)
|
|
}
|
|
|
|
// Hands off P from syscall or locked M.
|
|
// Always runs without a P, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func handoffp(_p_ *p) {
|
|
// if it has local work, start it straight away
|
|
if _p_.runqhead != _p_.runqtail || sched.runqsize != 0 {
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// no local work, check that there are no spinning/idle M's,
|
|
// otherwise our help is not required
|
|
if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
|
|
startm(_p_, true)
|
|
return
|
|
}
|
|
lock(&sched.lock)
|
|
if sched.gcwaiting != 0 {
|
|
_p_.status = _Pgcstop
|
|
sched.stopwait--
|
|
if sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
if sched.runqsize != 0 {
|
|
unlock(&sched.lock)
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// If this is the last running P and nobody is polling network,
|
|
// need to wakeup another M to poll network.
|
|
if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 {
|
|
unlock(&sched.lock)
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
pidleput(_p_)
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Tries to add one more P to execute G's.
|
|
// Called when a G is made runnable (newproc, ready).
|
|
func wakep() {
|
|
// be conservative about spinning threads
|
|
if !cas(&sched.nmspinning, 0, 1) {
|
|
return
|
|
}
|
|
startm(nil, true)
|
|
}
|
|
|
|
// Stops execution of the current m that is locked to a g until the g is runnable again.
|
|
// Returns with acquired P.
|
|
func stoplockedm() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
|
|
throw("stoplockedm: inconsistent locking")
|
|
}
|
|
if _g_.m.p != nil {
|
|
// Schedule another M to run this p.
|
|
_p_ := releasep()
|
|
handoffp(_p_)
|
|
}
|
|
incidlelocked(1)
|
|
// Wait until another thread schedules lockedg again.
|
|
notesleep(&_g_.m.park)
|
|
noteclear(&_g_.m.park)
|
|
status := readgstatus(_g_.m.lockedg)
|
|
if status&^_Gscan != _Grunnable {
|
|
print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
|
|
dumpgstatus(_g_)
|
|
throw("stoplockedm: not runnable")
|
|
}
|
|
acquirep(_g_.m.nextp)
|
|
_g_.m.nextp = nil
|
|
}
|
|
|
|
// Schedules the locked m to run the locked gp.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func startlockedm(gp *g) {
|
|
_g_ := getg()
|
|
|
|
mp := gp.lockedm
|
|
if mp == _g_.m {
|
|
throw("startlockedm: locked to me")
|
|
}
|
|
if mp.nextp != nil {
|
|
throw("startlockedm: m has p")
|
|
}
|
|
// directly handoff current P to the locked m
|
|
incidlelocked(-1)
|
|
_p_ := releasep()
|
|
// procresize made _p_ reachable through allp, which doesn't change during GC, so WB can be eliminated
|
|
setPNoWriteBarrier(&mp.nextp, _p_)
|
|
notewakeup(&mp.park)
|
|
stopm()
|
|
}
|
|
|
|
// Stops the current m for stoptheworld.
|
|
// Returns when the world is restarted.
|
|
func gcstopm() {
|
|
_g_ := getg()
|
|
|
|
if sched.gcwaiting == 0 {
|
|
throw("gcstopm: not waiting for gc")
|
|
}
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
xadd(&sched.nmspinning, -1)
|
|
}
|
|
_p_ := releasep()
|
|
lock(&sched.lock)
|
|
_p_.status = _Pgcstop
|
|
sched.stopwait--
|
|
if sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
stopm()
|
|
}
|
|
|
|
// Schedules gp to run on the current M.
|
|
// Never returns.
|
|
func execute(gp *g) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Grunnable, _Grunning)
|
|
gp.waitsince = 0
|
|
gp.preempt = false
|
|
gp.stackguard0 = gp.stack.lo + _StackGuard
|
|
_g_.m.p.schedtick++
|
|
_g_.m.curg = gp
|
|
gp.m = _g_.m
|
|
|
|
// Check whether the profiler needs to be turned on or off.
|
|
hz := sched.profilehz
|
|
if _g_.m.profilehz != hz {
|
|
resetcpuprofiler(hz)
|
|
}
|
|
|
|
if trace.enabled {
|
|
traceGoStart()
|
|
}
|
|
|
|
gogo(&gp.sched)
|
|
}
|
|
|
|
// Finds a runnable goroutine to execute.
|
|
// Tries to steal from other P's, get g from global queue, poll network.
|
|
func findrunnable() *g {
|
|
_g_ := getg()
|
|
|
|
top:
|
|
if sched.gcwaiting != 0 {
|
|
gcstopm()
|
|
goto top
|
|
}
|
|
if fingwait && fingwake {
|
|
if gp := wakefing(); gp != nil {
|
|
ready(gp, 0)
|
|
}
|
|
}
|
|
|
|
// local runq
|
|
if gp := runqget(_g_.m.p); gp != nil {
|
|
return gp
|
|
}
|
|
|
|
// global runq
|
|
if sched.runqsize != 0 {
|
|
lock(&sched.lock)
|
|
gp := globrunqget(_g_.m.p, 0)
|
|
unlock(&sched.lock)
|
|
if gp != nil {
|
|
return gp
|
|
}
|
|
}
|
|
|
|
// Poll network.
|
|
// This netpoll is only an optimization before we resort to stealing.
|
|
// We can safely skip it if there a thread blocked in netpoll already.
|
|
// If there is any kind of logical race with that blocked thread
|
|
// (e.g. it has already returned from netpoll, but does not set lastpoll yet),
|
|
// this thread will do blocking netpoll below anyway.
|
|
if netpollinited() && sched.lastpoll != 0 {
|
|
if gp := netpoll(false); gp != nil { // non-blocking
|
|
// netpoll returns list of goroutines linked by schedlink.
|
|
injectglist(gp.schedlink)
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp
|
|
}
|
|
}
|
|
|
|
// If number of spinning M's >= number of busy P's, block.
|
|
// This is necessary to prevent excessive CPU consumption
|
|
// when GOMAXPROCS>>1 but the program parallelism is low.
|
|
if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic
|
|
goto stop
|
|
}
|
|
if !_g_.m.spinning {
|
|
_g_.m.spinning = true
|
|
xadd(&sched.nmspinning, 1)
|
|
}
|
|
// random steal from other P's
|
|
for i := 0; i < int(2*gomaxprocs); i++ {
|
|
if sched.gcwaiting != 0 {
|
|
goto top
|
|
}
|
|
_p_ := allp[fastrand1()%uint32(gomaxprocs)]
|
|
var gp *g
|
|
if _p_ == _g_.m.p {
|
|
gp = runqget(_p_)
|
|
} else {
|
|
gp = runqsteal(_g_.m.p, _p_)
|
|
}
|
|
if gp != nil {
|
|
return gp
|
|
}
|
|
}
|
|
stop:
|
|
|
|
// return P and block
|
|
lock(&sched.lock)
|
|
if sched.gcwaiting != 0 {
|
|
unlock(&sched.lock)
|
|
goto top
|
|
}
|
|
if sched.runqsize != 0 {
|
|
gp := globrunqget(_g_.m.p, 0)
|
|
unlock(&sched.lock)
|
|
return gp
|
|
}
|
|
_p_ := releasep()
|
|
pidleput(_p_)
|
|
unlock(&sched.lock)
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
xadd(&sched.nmspinning, -1)
|
|
}
|
|
|
|
// check all runqueues once again
|
|
for i := 0; i < int(gomaxprocs); i++ {
|
|
_p_ := allp[i]
|
|
if _p_ != nil && _p_.runqhead != _p_.runqtail {
|
|
lock(&sched.lock)
|
|
_p_ = pidleget()
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
goto top
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
// poll network
|
|
if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 {
|
|
if _g_.m.p != nil {
|
|
throw("findrunnable: netpoll with p")
|
|
}
|
|
if _g_.m.spinning {
|
|
throw("findrunnable: netpoll with spinning")
|
|
}
|
|
gp := netpoll(true) // block until new work is available
|
|
atomicstore64(&sched.lastpoll, uint64(nanotime()))
|
|
if gp != nil {
|
|
lock(&sched.lock)
|
|
_p_ = pidleget()
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
injectglist(gp.schedlink)
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp
|
|
}
|
|
injectglist(gp)
|
|
}
|
|
}
|
|
stopm()
|
|
goto top
|
|
}
|
|
|
|
func resetspinning() {
|
|
_g_ := getg()
|
|
|
|
var nmspinning uint32
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
nmspinning = xadd(&sched.nmspinning, -1)
|
|
if nmspinning < 0 {
|
|
throw("findrunnable: negative nmspinning")
|
|
}
|
|
} else {
|
|
nmspinning = atomicload(&sched.nmspinning)
|
|
}
|
|
|
|
// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
|
|
// so see if we need to wakeup another P here.
|
|
if nmspinning == 0 && atomicload(&sched.npidle) > 0 {
|
|
wakep()
|
|
}
|
|
}
|
|
|
|
// Injects the list of runnable G's into the scheduler.
|
|
// Can run concurrently with GC.
|
|
func injectglist(glist *g) {
|
|
if glist == nil {
|
|
return
|
|
}
|
|
if trace.enabled {
|
|
for gp := glist; gp != nil; gp = gp.schedlink {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
}
|
|
lock(&sched.lock)
|
|
var n int
|
|
for n = 0; glist != nil; n++ {
|
|
gp := glist
|
|
glist = gp.schedlink
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
globrunqput(gp)
|
|
}
|
|
unlock(&sched.lock)
|
|
for ; n != 0 && sched.npidle != 0; n-- {
|
|
startm(nil, false)
|
|
}
|
|
}
|
|
|
|
// One round of scheduler: find a runnable goroutine and execute it.
|
|
// Never returns.
|
|
func schedule() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.locks != 0 {
|
|
throw("schedule: holding locks")
|
|
}
|
|
|
|
if _g_.m.lockedg != nil {
|
|
stoplockedm()
|
|
execute(_g_.m.lockedg) // Never returns.
|
|
}
|
|
|
|
top:
|
|
if sched.gcwaiting != 0 {
|
|
gcstopm()
|
|
goto top
|
|
}
|
|
|
|
var gp *g
|
|
if trace.enabled || trace.shutdown {
|
|
gp = traceReader()
|
|
if gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
traceGoUnpark(gp, 0)
|
|
resetspinning()
|
|
}
|
|
}
|
|
if gp == nil {
|
|
// Check the global runnable queue once in a while to ensure fairness.
|
|
// Otherwise two goroutines can completely occupy the local runqueue
|
|
// by constantly respawning each other.
|
|
if _g_.m.p.schedtick%61 == 0 && sched.runqsize > 0 {
|
|
lock(&sched.lock)
|
|
gp = globrunqget(_g_.m.p, 1)
|
|
unlock(&sched.lock)
|
|
if gp != nil {
|
|
resetspinning()
|
|
}
|
|
}
|
|
}
|
|
if gp == nil {
|
|
gp = runqget(_g_.m.p)
|
|
if gp != nil && _g_.m.spinning {
|
|
throw("schedule: spinning with local work")
|
|
}
|
|
}
|
|
if gp == nil {
|
|
gp = findrunnable() // blocks until work is available
|
|
resetspinning()
|
|
}
|
|
|
|
if gp.lockedm != nil {
|
|
// Hands off own p to the locked m,
|
|
// then blocks waiting for a new p.
|
|
startlockedm(gp)
|
|
goto top
|
|
}
|
|
|
|
execute(gp)
|
|
}
|
|
|
|
// dropg removes the association between m and the current goroutine m->curg (gp for short).
|
|
// Typically a caller sets gp's status away from Grunning and then
|
|
// immediately calls dropg to finish the job. The caller is also responsible
|
|
// for arranging that gp will be restarted using ready at an
|
|
// appropriate time. After calling dropg and arranging for gp to be
|
|
// readied later, the caller can do other work but eventually should
|
|
// call schedule to restart the scheduling of goroutines on this m.
|
|
func dropg() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.lockedg == nil {
|
|
_g_.m.curg.m = nil
|
|
_g_.m.curg = nil
|
|
}
|
|
}
|
|
|
|
func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
|
|
unlock((*mutex)(lock))
|
|
return true
|
|
}
|
|
|
|
// park continuation on g0.
|
|
func park_m(gp *g) {
|
|
_g_ := getg()
|
|
|
|
if trace.enabled {
|
|
traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
|
|
}
|
|
|
|
casgstatus(gp, _Grunning, _Gwaiting)
|
|
dropg()
|
|
|
|
if _g_.m.waitunlockf != nil {
|
|
fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
|
|
ok := fn(gp, _g_.m.waitlock)
|
|
_g_.m.waitunlockf = nil
|
|
_g_.m.waitlock = nil
|
|
if !ok {
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 2)
|
|
}
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
execute(gp) // Schedule it back, never returns.
|
|
}
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
func goschedImpl(gp *g) {
|
|
status := readgstatus(gp)
|
|
if status&^_Gscan != _Grunning {
|
|
dumpgstatus(gp)
|
|
throw("bad g status")
|
|
}
|
|
casgstatus(gp, _Grunning, _Grunnable)
|
|
dropg()
|
|
lock(&sched.lock)
|
|
globrunqput(gp)
|
|
unlock(&sched.lock)
|
|
|
|
schedule()
|
|
}
|
|
|
|
// Gosched continuation on g0.
|
|
func gosched_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoSched()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
func gopreempt_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoPreempt()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
// Finishes execution of the current goroutine.
|
|
func goexit1() {
|
|
if raceenabled {
|
|
racegoend()
|
|
}
|
|
if trace.enabled {
|
|
traceGoEnd()
|
|
}
|
|
mcall(goexit0)
|
|
}
|
|
|
|
// goexit continuation on g0.
|
|
func goexit0(gp *g) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Grunning, _Gdead)
|
|
gp.m = nil
|
|
gp.lockedm = nil
|
|
_g_.m.lockedg = nil
|
|
gp.paniconfault = false
|
|
gp._defer = nil // should be true already but just in case.
|
|
gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
|
|
gp.writebuf = nil
|
|
gp.waitreason = ""
|
|
gp.param = nil
|
|
|
|
dropg()
|
|
|
|
if _g_.m.locked&^_LockExternal != 0 {
|
|
print("invalid m->locked = ", _g_.m.locked, "\n")
|
|
throw("internal lockOSThread error")
|
|
}
|
|
_g_.m.locked = 0
|
|
gfput(_g_.m.p, gp)
|
|
schedule()
|
|
}
|
|
|
|
//go:nosplit
|
|
//go:nowritebarrier
|
|
func save(pc, sp uintptr) {
|
|
_g_ := getg()
|
|
|
|
_g_.sched.pc = pc
|
|
_g_.sched.sp = sp
|
|
_g_.sched.lr = 0
|
|
_g_.sched.ret = 0
|
|
_g_.sched.ctxt = nil
|
|
_g_.sched.g = guintptr(unsafe.Pointer(_g_))
|
|
}
|
|
|
|
// The goroutine g is about to enter a system call.
|
|
// Record that it's not using the cpu anymore.
|
|
// This is called only from the go syscall library and cgocall,
|
|
// not from the low-level system calls used by the
|
|
//
|
|
// Entersyscall cannot split the stack: the gosave must
|
|
// make g->sched refer to the caller's stack segment, because
|
|
// entersyscall is going to return immediately after.
|
|
//
|
|
// Nothing entersyscall calls can split the stack either.
|
|
// We cannot safely move the stack during an active call to syscall,
|
|
// because we do not know which of the uintptr arguments are
|
|
// really pointers (back into the stack).
|
|
// In practice, this means that we make the fast path run through
|
|
// entersyscall doing no-split things, and the slow path has to use systemstack
|
|
// to run bigger things on the system stack.
|
|
//
|
|
// reentersyscall is the entry point used by cgo callbacks, where explicitly
|
|
// saved SP and PC are restored. This is needed when exitsyscall will be called
|
|
// from a function further up in the call stack than the parent, as g->syscallsp
|
|
// must always point to a valid stack frame. entersyscall below is the normal
|
|
// entry point for syscalls, which obtains the SP and PC from the caller.
|
|
//
|
|
// Syscall tracing:
|
|
// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
|
|
// If the syscall does not block, that is it, we do not emit any other events.
|
|
// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
|
|
// when syscall returns we emit traceGoSysExit and when the goroutine starts running
|
|
// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
|
|
// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
|
|
// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.syscalltick),
|
|
// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
|
|
// and we wait for the increment before emitting traceGoSysExit.
|
|
// Note that the increment is done even if tracing is not enabled,
|
|
// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
|
|
//
|
|
//go:nosplit
|
|
func reentersyscall(pc, sp uintptr) {
|
|
_g_ := getg()
|
|
|
|
// Disable preemption because during this function g is in Gsyscall status,
|
|
// but can have inconsistent g->sched, do not let GC observe it.
|
|
_g_.m.locks++
|
|
|
|
if trace.enabled {
|
|
systemstack(traceGoSysCall)
|
|
}
|
|
|
|
// Entersyscall must not call any function that might split/grow the stack.
|
|
// (See details in comment above.)
|
|
// Catch calls that might, by replacing the stack guard with something that
|
|
// will trip any stack check and leaving a flag to tell newstack to die.
|
|
_g_.stackguard0 = stackPreempt
|
|
_g_.throwsplit = true
|
|
|
|
// Leave SP around for GC and traceback.
|
|
save(pc, sp)
|
|
_g_.syscallsp = sp
|
|
_g_.syscallpc = pc
|
|
casgstatus(_g_, _Grunning, _Gsyscall)
|
|
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
|
|
systemstack(func() {
|
|
print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
|
|
throw("entersyscall")
|
|
})
|
|
}
|
|
|
|
if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic
|
|
systemstack(entersyscall_sysmon)
|
|
save(pc, sp)
|
|
}
|
|
|
|
_g_.m.syscalltick = _g_.m.p.syscalltick
|
|
_g_.m.mcache = nil
|
|
_g_.m.p.m = nil
|
|
atomicstore(&_g_.m.p.status, _Psyscall)
|
|
if sched.gcwaiting != 0 {
|
|
systemstack(entersyscall_gcwait)
|
|
save(pc, sp)
|
|
}
|
|
|
|
// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
|
|
// We set _StackGuard to StackPreempt so that first split stack check calls morestack.
|
|
// Morestack detects this case and throws.
|
|
_g_.stackguard0 = stackPreempt
|
|
_g_.m.locks--
|
|
}
|
|
|
|
// Standard syscall entry used by the go syscall library and normal cgo calls.
|
|
//go:nosplit
|
|
func entersyscall(dummy int32) {
|
|
reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
|
|
}
|
|
|
|
func entersyscall_sysmon() {
|
|
lock(&sched.lock)
|
|
if atomicload(&sched.sysmonwait) != 0 {
|
|
atomicstore(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
func entersyscall_gcwait() {
|
|
_g_ := getg()
|
|
_p_ := _g_.m.p
|
|
|
|
lock(&sched.lock)
|
|
if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(_p_)
|
|
traceProcStop(_p_)
|
|
}
|
|
_p_.syscalltick++
|
|
if sched.stopwait--; sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// The same as entersyscall(), but with a hint that the syscall is blocking.
|
|
//go:nosplit
|
|
func entersyscallblock(dummy int32) {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // see comment in entersyscall
|
|
_g_.throwsplit = true
|
|
_g_.stackguard0 = stackPreempt // see comment in entersyscall
|
|
_g_.m.syscalltick = _g_.m.p.syscalltick
|
|
_g_.m.p.syscalltick++
|
|
|
|
// Leave SP around for GC and traceback.
|
|
pc := getcallerpc(unsafe.Pointer(&dummy))
|
|
sp := getcallersp(unsafe.Pointer(&dummy))
|
|
save(pc, sp)
|
|
_g_.syscallsp = _g_.sched.sp
|
|
_g_.syscallpc = _g_.sched.pc
|
|
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
|
|
sp1 := sp
|
|
sp2 := _g_.sched.sp
|
|
sp3 := _g_.syscallsp
|
|
systemstack(func() {
|
|
print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
|
|
throw("entersyscallblock")
|
|
})
|
|
}
|
|
casgstatus(_g_, _Grunning, _Gsyscall)
|
|
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
|
|
systemstack(func() {
|
|
print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
|
|
throw("entersyscallblock")
|
|
})
|
|
}
|
|
|
|
systemstack(entersyscallblock_handoff)
|
|
|
|
// Resave for traceback during blocked call.
|
|
save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
func entersyscallblock_handoff() {
|
|
if trace.enabled {
|
|
traceGoSysCall()
|
|
traceGoSysBlock(getg().m.p)
|
|
}
|
|
handoffp(releasep())
|
|
}
|
|
|
|
// The goroutine g exited its system call.
|
|
// Arrange for it to run on a cpu again.
|
|
// This is called only from the go syscall library, not
|
|
// from the low-level system calls used by the
|
|
//go:nosplit
|
|
func exitsyscall(dummy int32) {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // see comment in entersyscall
|
|
if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
|
|
throw("exitsyscall: syscall frame is no longer valid")
|
|
}
|
|
|
|
_g_.waitsince = 0
|
|
oldp := _g_.m.p
|
|
if exitsyscallfast() {
|
|
if _g_.m.mcache == nil {
|
|
throw("lost mcache")
|
|
}
|
|
if trace.enabled {
|
|
if oldp != _g_.m.p || _g_.m.syscalltick != _g_.m.p.syscalltick {
|
|
systemstack(traceGoStart)
|
|
}
|
|
}
|
|
// There's a cpu for us, so we can run.
|
|
_g_.m.p.syscalltick++
|
|
// We need to cas the status and scan before resuming...
|
|
casgstatus(_g_, _Gsyscall, _Grunning)
|
|
|
|
// Garbage collector isn't running (since we are),
|
|
// so okay to clear syscallsp.
|
|
_g_.syscallsp = 0
|
|
_g_.m.locks--
|
|
if _g_.preempt {
|
|
// restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
} else {
|
|
// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
|
|
_g_.stackguard0 = _g_.stack.lo + _StackGuard
|
|
}
|
|
_g_.throwsplit = false
|
|
return
|
|
}
|
|
|
|
if trace.enabled {
|
|
// Wait till traceGoSysBlock event is emited.
|
|
// This ensures consistency of the trace (the goroutine is started after it is blocked).
|
|
for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
|
|
osyield()
|
|
}
|
|
// This can't be done since the GC may be running and this code
|
|
// will invoke write barriers.
|
|
// TODO: Figure out how to get traceGoSysExit into the trace log or
|
|
// it is likely not to work as expected.
|
|
// systemstack(traceGoSysExit)
|
|
}
|
|
|
|
_g_.m.locks--
|
|
|
|
// Call the scheduler.
|
|
mcall(exitsyscall0)
|
|
|
|
if _g_.m.mcache == nil {
|
|
throw("lost mcache")
|
|
}
|
|
|
|
// Scheduler returned, so we're allowed to run now.
|
|
// Delete the syscallsp information that we left for
|
|
// the garbage collector during the system call.
|
|
// Must wait until now because until gosched returns
|
|
// we don't know for sure that the garbage collector
|
|
// is not running.
|
|
_g_.syscallsp = 0
|
|
_g_.m.p.syscalltick++
|
|
_g_.throwsplit = false
|
|
}
|
|
|
|
//go:nosplit
|
|
func exitsyscallfast() bool {
|
|
_g_ := getg()
|
|
|
|
// Freezetheworld sets stopwait but does not retake P's.
|
|
if sched.stopwait != 0 {
|
|
_g_.m.mcache = nil
|
|
_g_.m.p = nil
|
|
return false
|
|
}
|
|
|
|
// Try to re-acquire the last P.
|
|
if _g_.m.p != nil && _g_.m.p.status == _Psyscall && cas(&_g_.m.p.status, _Psyscall, _Prunning) {
|
|
// There's a cpu for us, so we can run.
|
|
_g_.m.mcache = _g_.m.p.mcache
|
|
_g_.m.p.m = _g_.m
|
|
if _g_.m.syscalltick != _g_.m.p.syscalltick {
|
|
if trace.enabled {
|
|
// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
|
|
// traceGoSysBlock for this syscall was already emitted,
|
|
// but here we effectively retake the p from the new syscall running on the same p.
|
|
systemstack(func() {
|
|
// Denote blocking of the new syscall.
|
|
traceGoSysBlock(_g_.m.p)
|
|
// Denote completion of the current syscall.
|
|
traceGoSysExit()
|
|
})
|
|
}
|
|
_g_.m.p.syscalltick++
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Try to get any other idle P.
|
|
oldp := _g_.m.p
|
|
_g_.m.mcache = nil
|
|
_g_.m.p = nil
|
|
if sched.pidle != nil {
|
|
var ok bool
|
|
systemstack(func() {
|
|
ok = exitsyscallfast_pidle()
|
|
if ok && trace.enabled {
|
|
if oldp != nil {
|
|
// Wait till traceGoSysBlock event is emited.
|
|
// This ensures consistency of the trace (the goroutine is started after it is blocked).
|
|
for oldp.syscalltick == _g_.m.syscalltick {
|
|
osyield()
|
|
}
|
|
}
|
|
traceGoSysExit()
|
|
}
|
|
})
|
|
if ok {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func exitsyscallfast_pidle() bool {
|
|
lock(&sched.lock)
|
|
_p_ := pidleget()
|
|
if _p_ != nil && atomicload(&sched.sysmonwait) != 0 {
|
|
atomicstore(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// exitsyscall slow path on g0.
|
|
// Failed to acquire P, enqueue gp as runnable.
|
|
func exitsyscall0(gp *g) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Gsyscall, _Grunnable)
|
|
dropg()
|
|
lock(&sched.lock)
|
|
_p_ := pidleget()
|
|
if _p_ == nil {
|
|
globrunqput(gp)
|
|
} else if atomicload(&sched.sysmonwait) != 0 {
|
|
atomicstore(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
execute(gp) // Never returns.
|
|
}
|
|
if _g_.m.lockedg != nil {
|
|
// Wait until another thread schedules gp and so m again.
|
|
stoplockedm()
|
|
execute(gp) // Never returns.
|
|
}
|
|
stopm()
|
|
schedule() // Never returns.
|
|
}
|
|
|
|
func beforefork() {
|
|
gp := getg().m.curg
|
|
|
|
// Fork can hang if preempted with signals frequently enough (see issue 5517).
|
|
// Ensure that we stay on the same M where we disable profiling.
|
|
gp.m.locks++
|
|
if gp.m.profilehz != 0 {
|
|
resetcpuprofiler(0)
|
|
}
|
|
|
|
// This function is called before fork in syscall package.
|
|
// Code between fork and exec must not allocate memory nor even try to grow stack.
|
|
// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
|
|
// runtime_AfterFork will undo this in parent process, but not in child.
|
|
gp.stackguard0 = stackFork
|
|
}
|
|
|
|
// Called from syscall package before fork.
|
|
//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
|
|
//go:nosplit
|
|
func syscall_runtime_BeforeFork() {
|
|
systemstack(beforefork)
|
|
}
|
|
|
|
func afterfork() {
|
|
gp := getg().m.curg
|
|
|
|
// See the comment in beforefork.
|
|
gp.stackguard0 = gp.stack.lo + _StackGuard
|
|
|
|
hz := sched.profilehz
|
|
if hz != 0 {
|
|
resetcpuprofiler(hz)
|
|
}
|
|
gp.m.locks--
|
|
}
|
|
|
|
// Called from syscall package after fork in parent.
|
|
//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
|
|
//go:nosplit
|
|
func syscall_runtime_AfterFork() {
|
|
systemstack(afterfork)
|
|
}
|
|
|
|
// Allocate a new g, with a stack big enough for stacksize bytes.
|
|
func malg(stacksize int32) *g {
|
|
newg := new(g)
|
|
if stacksize >= 0 {
|
|
stacksize = round2(_StackSystem + stacksize)
|
|
systemstack(func() {
|
|
newg.stack = stackalloc(uint32(stacksize))
|
|
})
|
|
newg.stackguard0 = newg.stack.lo + _StackGuard
|
|
newg.stackguard1 = ^uintptr(0)
|
|
}
|
|
return newg
|
|
}
|
|
|
|
// Create a new g running fn with siz bytes of arguments.
|
|
// Put it on the queue of g's waiting to run.
|
|
// The compiler turns a go statement into a call to this.
|
|
// Cannot split the stack because it assumes that the arguments
|
|
// are available sequentially after &fn; they would not be
|
|
// copied if a stack split occurred.
|
|
//go:nosplit
|
|
func newproc(siz int32, fn *funcval) {
|
|
argp := add(unsafe.Pointer(&fn), ptrSize)
|
|
pc := getcallerpc(unsafe.Pointer(&siz))
|
|
systemstack(func() {
|
|
newproc1(fn, (*uint8)(argp), siz, 0, pc)
|
|
})
|
|
}
|
|
|
|
// Create a new g running fn with narg bytes of arguments starting
|
|
// at argp and returning nret bytes of results. callerpc is the
|
|
// address of the go statement that created this. The new g is put
|
|
// on the queue of g's waiting to run.
|
|
func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
|
|
_g_ := getg()
|
|
|
|
if fn == nil {
|
|
_g_.m.throwing = -1 // do not dump full stacks
|
|
throw("go of nil func value")
|
|
}
|
|
_g_.m.locks++ // disable preemption because it can be holding p in a local var
|
|
siz := narg + nret
|
|
siz = (siz + 7) &^ 7
|
|
|
|
// We could allocate a larger initial stack if necessary.
|
|
// Not worth it: this is almost always an error.
|
|
// 4*sizeof(uintreg): extra space added below
|
|
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
|
|
if siz >= _StackMin-4*regSize-regSize {
|
|
throw("newproc: function arguments too large for new goroutine")
|
|
}
|
|
|
|
_p_ := _g_.m.p
|
|
newg := gfget(_p_)
|
|
if newg == nil {
|
|
newg = malg(_StackMin)
|
|
casgstatus(newg, _Gidle, _Gdead)
|
|
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
|
|
}
|
|
if newg.stack.hi == 0 {
|
|
throw("newproc1: newg missing stack")
|
|
}
|
|
|
|
if readgstatus(newg) != _Gdead {
|
|
throw("newproc1: new g is not Gdead")
|
|
}
|
|
|
|
totalSize := 4*regSize + uintptr(siz) // extra space in case of reads slightly beyond frame
|
|
if hasLinkRegister {
|
|
totalSize += ptrSize
|
|
}
|
|
totalSize += -totalSize & (spAlign - 1) // align to spAlign
|
|
sp := newg.stack.hi - totalSize
|
|
spArg := sp
|
|
if hasLinkRegister {
|
|
// caller's LR
|
|
*(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
|
|
spArg += ptrSize
|
|
}
|
|
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
|
|
|
|
memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
|
|
newg.sched.sp = sp
|
|
newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function
|
|
newg.sched.g = guintptr(unsafe.Pointer(newg))
|
|
gostartcallfn(&newg.sched, fn)
|
|
newg.gopc = callerpc
|
|
newg.startpc = fn.fn
|
|
casgstatus(newg, _Gdead, _Grunnable)
|
|
|
|
if _p_.goidcache == _p_.goidcacheend {
|
|
// Sched.goidgen is the last allocated id,
|
|
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
|
|
// At startup sched.goidgen=0, so main goroutine receives goid=1.
|
|
_p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch)
|
|
_p_.goidcache -= _GoidCacheBatch - 1
|
|
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
|
|
}
|
|
newg.goid = int64(_p_.goidcache)
|
|
_p_.goidcache++
|
|
if raceenabled {
|
|
newg.racectx = racegostart(callerpc)
|
|
}
|
|
if trace.enabled {
|
|
traceGoCreate(newg, newg.startpc)
|
|
}
|
|
runqput(_p_, newg)
|
|
|
|
if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
|
|
wakep()
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
return newg
|
|
}
|
|
|
|
// Put on gfree list.
|
|
// If local list is too long, transfer a batch to the global list.
|
|
func gfput(_p_ *p, gp *g) {
|
|
if readgstatus(gp) != _Gdead {
|
|
throw("gfput: bad status (not Gdead)")
|
|
}
|
|
|
|
stksize := gp.stack.hi - gp.stack.lo
|
|
|
|
if stksize != _FixedStack {
|
|
// non-standard stack size - free it.
|
|
stackfree(gp.stack)
|
|
gp.stack.lo = 0
|
|
gp.stack.hi = 0
|
|
gp.stackguard0 = 0
|
|
}
|
|
|
|
gp.schedlink = _p_.gfree
|
|
_p_.gfree = gp
|
|
_p_.gfreecnt++
|
|
if _p_.gfreecnt >= 64 {
|
|
lock(&sched.gflock)
|
|
for _p_.gfreecnt >= 32 {
|
|
_p_.gfreecnt--
|
|
gp = _p_.gfree
|
|
_p_.gfree = gp.schedlink
|
|
gp.schedlink = sched.gfree
|
|
sched.gfree = gp
|
|
sched.ngfree++
|
|
}
|
|
unlock(&sched.gflock)
|
|
}
|
|
}
|
|
|
|
// Get from gfree list.
|
|
// If local list is empty, grab a batch from global list.
|
|
func gfget(_p_ *p) *g {
|
|
retry:
|
|
gp := _p_.gfree
|
|
if gp == nil && sched.gfree != nil {
|
|
lock(&sched.gflock)
|
|
for _p_.gfreecnt < 32 && sched.gfree != nil {
|
|
_p_.gfreecnt++
|
|
gp = sched.gfree
|
|
sched.gfree = gp.schedlink
|
|
sched.ngfree--
|
|
gp.schedlink = _p_.gfree
|
|
_p_.gfree = gp
|
|
}
|
|
unlock(&sched.gflock)
|
|
goto retry
|
|
}
|
|
if gp != nil {
|
|
_p_.gfree = gp.schedlink
|
|
_p_.gfreecnt--
|
|
if gp.stack.lo == 0 {
|
|
// Stack was deallocated in gfput. Allocate a new one.
|
|
systemstack(func() {
|
|
gp.stack = stackalloc(_FixedStack)
|
|
})
|
|
gp.stackguard0 = gp.stack.lo + _StackGuard
|
|
} else {
|
|
if raceenabled {
|
|
racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)
|
|
}
|
|
}
|
|
}
|
|
return gp
|
|
}
|
|
|
|
// Purge all cached G's from gfree list to the global list.
|
|
func gfpurge(_p_ *p) {
|
|
lock(&sched.gflock)
|
|
for _p_.gfreecnt != 0 {
|
|
_p_.gfreecnt--
|
|
gp := _p_.gfree
|
|
_p_.gfree = gp.schedlink
|
|
gp.schedlink = sched.gfree
|
|
sched.gfree = gp
|
|
sched.ngfree++
|
|
}
|
|
unlock(&sched.gflock)
|
|
}
|
|
|
|
// Breakpoint executes a breakpoint trap.
|
|
func Breakpoint() {
|
|
breakpoint()
|
|
}
|
|
|
|
// dolockOSThread is called by LockOSThread and lockOSThread below
|
|
// after they modify m.locked. Do not allow preemption during this call,
|
|
// or else the m might be different in this function than in the caller.
|
|
//go:nosplit
|
|
func dolockOSThread() {
|
|
_g_ := getg()
|
|
_g_.m.lockedg = _g_
|
|
_g_.lockedm = _g_.m
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// LockOSThread wires the calling goroutine to its current operating system thread.
|
|
// Until the calling goroutine exits or calls UnlockOSThread, it will always
|
|
// execute in that thread, and no other goroutine can.
|
|
func LockOSThread() {
|
|
getg().m.locked |= _LockExternal
|
|
dolockOSThread()
|
|
}
|
|
|
|
//go:nosplit
|
|
func lockOSThread() {
|
|
getg().m.locked += _LockInternal
|
|
dolockOSThread()
|
|
}
|
|
|
|
// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
|
|
// after they update m->locked. Do not allow preemption during this call,
|
|
// or else the m might be in different in this function than in the caller.
|
|
//go:nosplit
|
|
func dounlockOSThread() {
|
|
_g_ := getg()
|
|
if _g_.m.locked != 0 {
|
|
return
|
|
}
|
|
_g_.m.lockedg = nil
|
|
_g_.lockedm = nil
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
|
|
// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
|
|
func UnlockOSThread() {
|
|
getg().m.locked &^= _LockExternal
|
|
dounlockOSThread()
|
|
}
|
|
|
|
//go:nosplit
|
|
func unlockOSThread() {
|
|
_g_ := getg()
|
|
if _g_.m.locked < _LockInternal {
|
|
systemstack(badunlockosthread)
|
|
}
|
|
_g_.m.locked -= _LockInternal
|
|
dounlockOSThread()
|
|
}
|
|
|
|
func badunlockosthread() {
|
|
throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
|
|
}
|
|
|
|
func gcount() int32 {
|
|
n := int32(allglen) - sched.ngfree
|
|
for i := 0; ; i++ {
|
|
_p_ := allp[i]
|
|
if _p_ == nil {
|
|
break
|
|
}
|
|
n -= _p_.gfreecnt
|
|
}
|
|
|
|
// All these variables can be changed concurrently, so the result can be inconsistent.
|
|
// But at least the current goroutine is running.
|
|
if n < 1 {
|
|
n = 1
|
|
}
|
|
return n
|
|
}
|
|
|
|
func mcount() int32 {
|
|
return sched.mcount
|
|
}
|
|
|
|
var prof struct {
|
|
lock uint32
|
|
hz int32
|
|
}
|
|
|
|
func _System() { _System() }
|
|
func _ExternalCode() { _ExternalCode() }
|
|
func _GC() { _GC() }
|
|
|
|
// Called if we receive a SIGPROF signal.
|
|
func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
|
|
if prof.hz == 0 {
|
|
return
|
|
}
|
|
|
|
// Profiling runs concurrently with GC, so it must not allocate.
|
|
mp.mallocing++
|
|
|
|
// Define that a "user g" is a user-created goroutine, and a "system g"
|
|
// is one that is m->g0 or m->gsignal. We've only made sure that we
|
|
// can unwind user g's, so exclude the system g's.
|
|
//
|
|
// It is not quite as easy as testing gp == m->curg (the current user g)
|
|
// because we might be interrupted for profiling halfway through a
|
|
// goroutine switch. The switch involves updating three (or four) values:
|
|
// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
|
|
// because once it gets updated the new g is running.
|
|
//
|
|
// When switching from a user g to a system g, LR is not considered live,
|
|
// so the update only affects g, SP, and PC. Since PC must be last, there
|
|
// the possible partial transitions in ordinary execution are (1) g alone is updated,
|
|
// (2) both g and SP are updated, and (3) SP alone is updated.
|
|
// If g is updated, we'll see a system g and not look closer.
|
|
// If SP alone is updated, we can detect the partial transition by checking
|
|
// whether the SP is within g's stack bounds. (We could also require that SP
|
|
// be changed only after g, but the stack bounds check is needed by other
|
|
// cases, so there is no need to impose an additional requirement.)
|
|
//
|
|
// There is one exceptional transition to a system g, not in ordinary execution.
|
|
// When a signal arrives, the operating system starts the signal handler running
|
|
// with an updated PC and SP. The g is updated last, at the beginning of the
|
|
// handler. There are two reasons this is okay. First, until g is updated the
|
|
// g and SP do not match, so the stack bounds check detects the partial transition.
|
|
// Second, signal handlers currently run with signals disabled, so a profiling
|
|
// signal cannot arrive during the handler.
|
|
//
|
|
// When switching from a system g to a user g, there are three possibilities.
|
|
//
|
|
// First, it may be that the g switch has no PC update, because the SP
|
|
// either corresponds to a user g throughout (as in asmcgocall)
|
|
// or because it has been arranged to look like a user g frame
|
|
// (as in cgocallback_gofunc). In this case, since the entire
|
|
// transition is a g+SP update, a partial transition updating just one of
|
|
// those will be detected by the stack bounds check.
|
|
//
|
|
// Second, when returning from a signal handler, the PC and SP updates
|
|
// are performed by the operating system in an atomic update, so the g
|
|
// update must be done before them. The stack bounds check detects
|
|
// the partial transition here, and (again) signal handlers run with signals
|
|
// disabled, so a profiling signal cannot arrive then anyway.
|
|
//
|
|
// Third, the common case: it may be that the switch updates g, SP, and PC
|
|
// separately, as in gogo.
|
|
//
|
|
// Because gogo is the only instance, we check whether the PC lies
|
|
// within that function, and if so, not ask for a traceback. This approach
|
|
// requires knowing the size of the gogo function, which we
|
|
// record in arch_*.h and check in runtime_test.go.
|
|
//
|
|
// There is another apparently viable approach, recorded here in case
|
|
// the "PC within gogo" check turns out not to be usable.
|
|
// It would be possible to delay the update of either g or SP until immediately
|
|
// before the PC update instruction. Then, because of the stack bounds check,
|
|
// the only problematic interrupt point is just before that PC update instruction,
|
|
// and the sigprof handler can detect that instruction and simulate stepping past
|
|
// it in order to reach a consistent state. On ARM, the update of g must be made
|
|
// in two places (in R10 and also in a TLS slot), so the delayed update would
|
|
// need to be the SP update. The sigprof handler must read the instruction at
|
|
// the current PC and if it was the known instruction (for example, JMP BX or
|
|
// MOV R2, PC), use that other register in place of the PC value.
|
|
// The biggest drawback to this solution is that it requires that we can tell
|
|
// whether it's safe to read from the memory pointed at by PC.
|
|
// In a correct program, we can test PC == nil and otherwise read,
|
|
// but if a profiling signal happens at the instant that a program executes
|
|
// a bad jump (before the program manages to handle the resulting fault)
|
|
// the profiling handler could fault trying to read nonexistent memory.
|
|
//
|
|
// To recap, there are no constraints on the assembly being used for the
|
|
// transition. We simply require that g and SP match and that the PC is not
|
|
// in gogo.
|
|
traceback := true
|
|
gogo := funcPC(gogo)
|
|
if gp == nil || gp != mp.curg ||
|
|
sp < gp.stack.lo || gp.stack.hi < sp ||
|
|
(gogo <= pc && pc < gogo+_RuntimeGogoBytes) {
|
|
traceback = false
|
|
}
|
|
|
|
var stk [maxCPUProfStack]uintptr
|
|
n := 0
|
|
if traceback {
|
|
n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap)
|
|
}
|
|
if !traceback || n <= 0 {
|
|
// Normal traceback is impossible or has failed.
|
|
// See if it falls into several common cases.
|
|
n = 0
|
|
if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
|
|
// Cgo, we can't unwind and symbolize arbitrary C code,
|
|
// so instead collect Go stack that leads to the cgo call.
|
|
// This is especially important on windows, since all syscalls are cgo calls.
|
|
n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0)
|
|
}
|
|
if GOOS == "windows" && n == 0 && mp.libcallg != nil && mp.libcallpc != 0 && mp.libcallsp != 0 {
|
|
// Libcall, i.e. runtime syscall on windows.
|
|
// Collect Go stack that leads to the call.
|
|
n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg, 0, &stk[0], len(stk), nil, nil, 0)
|
|
}
|
|
if n == 0 {
|
|
// If all of the above has failed, account it against abstract "System" or "GC".
|
|
n = 2
|
|
// "ExternalCode" is better than "etext".
|
|
if pc > themoduledata.etext {
|
|
pc = funcPC(_ExternalCode) + _PCQuantum
|
|
}
|
|
stk[0] = pc
|
|
if mp.preemptoff != "" || mp.helpgc != 0 {
|
|
stk[1] = funcPC(_GC) + _PCQuantum
|
|
} else {
|
|
stk[1] = funcPC(_System) + _PCQuantum
|
|
}
|
|
}
|
|
}
|
|
|
|
if prof.hz != 0 {
|
|
// Simple cas-lock to coordinate with setcpuprofilerate.
|
|
for !cas(&prof.lock, 0, 1) {
|
|
osyield()
|
|
}
|
|
if prof.hz != 0 {
|
|
cpuprof.add(stk[:n])
|
|
}
|
|
atomicstore(&prof.lock, 0)
|
|
}
|
|
mp.mallocing--
|
|
}
|
|
|
|
// Arrange to call fn with a traceback hz times a second.
|
|
func setcpuprofilerate_m(hz int32) {
|
|
// Force sane arguments.
|
|
if hz < 0 {
|
|
hz = 0
|
|
}
|
|
|
|
// Disable preemption, otherwise we can be rescheduled to another thread
|
|
// that has profiling enabled.
|
|
_g_ := getg()
|
|
_g_.m.locks++
|
|
|
|
// Stop profiler on this thread so that it is safe to lock prof.
|
|
// if a profiling signal came in while we had prof locked,
|
|
// it would deadlock.
|
|
resetcpuprofiler(0)
|
|
|
|
for !cas(&prof.lock, 0, 1) {
|
|
osyield()
|
|
}
|
|
prof.hz = hz
|
|
atomicstore(&prof.lock, 0)
|
|
|
|
lock(&sched.lock)
|
|
sched.profilehz = hz
|
|
unlock(&sched.lock)
|
|
|
|
if hz != 0 {
|
|
resetcpuprofiler(hz)
|
|
}
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
// Change number of processors. The world is stopped, sched is locked.
|
|
// gcworkbufs are not being modified by either the GC or
|
|
// the write barrier code.
|
|
// Returns list of Ps with local work, they need to be scheduled by the caller.
|
|
func procresize(nprocs int32) *p {
|
|
old := gomaxprocs
|
|
if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
|
|
throw("procresize: invalid arg")
|
|
}
|
|
if trace.enabled {
|
|
traceGomaxprocs(nprocs)
|
|
}
|
|
|
|
// update statistics
|
|
now := nanotime()
|
|
if sched.procresizetime != 0 {
|
|
sched.totaltime += int64(old) * (now - sched.procresizetime)
|
|
}
|
|
sched.procresizetime = now
|
|
|
|
// initialize new P's
|
|
for i := int32(0); i < nprocs; i++ {
|
|
pp := allp[i]
|
|
if pp == nil {
|
|
pp = new(p)
|
|
pp.id = i
|
|
pp.status = _Pgcstop
|
|
pp.sudogcache = pp.sudogbuf[:0]
|
|
for i := range pp.deferpool {
|
|
pp.deferpool[i] = pp.deferpoolbuf[i][:0]
|
|
}
|
|
atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
|
|
}
|
|
if pp.mcache == nil {
|
|
if old == 0 && i == 0 {
|
|
if getg().m.mcache == nil {
|
|
throw("missing mcache?")
|
|
}
|
|
pp.mcache = getg().m.mcache // bootstrap
|
|
} else {
|
|
pp.mcache = allocmcache()
|
|
}
|
|
}
|
|
}
|
|
|
|
// free unused P's
|
|
for i := nprocs; i < old; i++ {
|
|
p := allp[i]
|
|
if trace.enabled {
|
|
if p == getg().m.p {
|
|
// moving to p[0], pretend that we were descheduled
|
|
// and then scheduled again to keep the trace sane.
|
|
traceGoSched()
|
|
traceProcStop(p)
|
|
}
|
|
}
|
|
// move all runable goroutines to the global queue
|
|
for p.runqhead != p.runqtail {
|
|
// pop from tail of local queue
|
|
p.runqtail--
|
|
gp := p.runq[p.runqtail%uint32(len(p.runq))]
|
|
// push onto head of global queue
|
|
gp.schedlink = sched.runqhead
|
|
sched.runqhead = gp
|
|
if sched.runqtail == nil {
|
|
sched.runqtail = gp
|
|
}
|
|
sched.runqsize++
|
|
}
|
|
for i := range p.sudogbuf {
|
|
p.sudogbuf[i] = nil
|
|
}
|
|
p.sudogcache = p.sudogbuf[:0]
|
|
for i := range p.deferpool {
|
|
for j := range p.deferpoolbuf[i] {
|
|
p.deferpoolbuf[i][j] = nil
|
|
}
|
|
p.deferpool[i] = p.deferpoolbuf[i][:0]
|
|
}
|
|
freemcache(p.mcache)
|
|
p.mcache = nil
|
|
gfpurge(p)
|
|
traceProcFree(p)
|
|
p.status = _Pdead
|
|
// can't free P itself because it can be referenced by an M in syscall
|
|
}
|
|
|
|
_g_ := getg()
|
|
if _g_.m.p != nil && _g_.m.p.id < nprocs {
|
|
// continue to use the current P
|
|
_g_.m.p.status = _Prunning
|
|
} else {
|
|
// release the current P and acquire allp[0]
|
|
if _g_.m.p != nil {
|
|
_g_.m.p.m = nil
|
|
}
|
|
_g_.m.p = nil
|
|
_g_.m.mcache = nil
|
|
p := allp[0]
|
|
p.m = nil
|
|
p.status = _Pidle
|
|
acquirep(p)
|
|
if trace.enabled {
|
|
traceGoStart()
|
|
}
|
|
}
|
|
var runnablePs *p
|
|
for i := nprocs - 1; i >= 0; i-- {
|
|
p := allp[i]
|
|
if _g_.m.p == p {
|
|
continue
|
|
}
|
|
p.status = _Pidle
|
|
if p.runqhead == p.runqtail {
|
|
pidleput(p)
|
|
} else {
|
|
p.m = mget()
|
|
p.link = runnablePs
|
|
runnablePs = p
|
|
}
|
|
}
|
|
var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
|
|
atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
|
|
return runnablePs
|
|
}
|
|
|
|
// Associate p and the current m.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func acquirep(_p_ *p) {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.p != nil || _g_.m.mcache != nil {
|
|
throw("acquirep: already in go")
|
|
}
|
|
if _p_.m != nil || _p_.status != _Pidle {
|
|
id := int32(0)
|
|
if _p_.m != nil {
|
|
id = _p_.m.id
|
|
}
|
|
print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
|
|
throw("acquirep: invalid p state")
|
|
}
|
|
// _p_.mcache holds the mcache and _p_ is in allp, so WB can be eliminated
|
|
setMcacheNoWriteBarrier(&_g_.m.mcache, _p_.mcache)
|
|
// _p_ is in allp so WB can be eliminated
|
|
setPNoWriteBarrier(&_g_.m.p, _p_)
|
|
// m is in _g_.m and is reachable through allg, so WB can be eliminated
|
|
setMNoWriteBarrier(&_p_.m, _g_.m)
|
|
_p_.status = _Prunning
|
|
|
|
if trace.enabled {
|
|
traceProcStart()
|
|
}
|
|
}
|
|
|
|
// Disassociate p and the current m.
|
|
func releasep() *p {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.p == nil || _g_.m.mcache == nil {
|
|
throw("releasep: invalid arg")
|
|
}
|
|
_p_ := _g_.m.p
|
|
if _p_.m != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
|
|
print("releasep: m=", _g_.m, " m->p=", _g_.m.p, " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
|
|
throw("releasep: invalid p state")
|
|
}
|
|
if trace.enabled {
|
|
traceProcStop(_g_.m.p)
|
|
}
|
|
_g_.m.p = nil
|
|
_g_.m.mcache = nil
|
|
_p_.m = nil
|
|
_p_.status = _Pidle
|
|
return _p_
|
|
}
|
|
|
|
func incidlelocked(v int32) {
|
|
lock(&sched.lock)
|
|
sched.nmidlelocked += v
|
|
if v > 0 {
|
|
checkdead()
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Check for deadlock situation.
|
|
// The check is based on number of running M's, if 0 -> deadlock.
|
|
func checkdead() {
|
|
// If we are dying because of a signal caught on an already idle thread,
|
|
// freezetheworld will cause all running threads to block.
|
|
// And runtime will essentially enter into deadlock state,
|
|
// except that there is a thread that will call exit soon.
|
|
if panicking > 0 {
|
|
return
|
|
}
|
|
|
|
// -1 for sysmon
|
|
run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
|
|
if run > 0 {
|
|
return
|
|
}
|
|
if run < 0 {
|
|
print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
|
|
throw("checkdead: inconsistent counts")
|
|
}
|
|
|
|
grunning := 0
|
|
lock(&allglock)
|
|
for i := 0; i < len(allgs); i++ {
|
|
gp := allgs[i]
|
|
if isSystemGoroutine(gp) {
|
|
continue
|
|
}
|
|
s := readgstatus(gp)
|
|
switch s &^ _Gscan {
|
|
case _Gwaiting:
|
|
grunning++
|
|
case _Grunnable,
|
|
_Grunning,
|
|
_Gsyscall:
|
|
unlock(&allglock)
|
|
print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
|
|
throw("checkdead: runnable g")
|
|
}
|
|
}
|
|
unlock(&allglock)
|
|
if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
|
|
throw("no goroutines (main called runtime.Goexit) - deadlock!")
|
|
}
|
|
|
|
// Maybe jump time forward for playground.
|
|
gp := timejump()
|
|
if gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
globrunqput(gp)
|
|
_p_ := pidleget()
|
|
if _p_ == nil {
|
|
throw("checkdead: no p for timer")
|
|
}
|
|
mp := mget()
|
|
if mp == nil {
|
|
newm(nil, _p_)
|
|
} else {
|
|
mp.nextp = _p_
|
|
notewakeup(&mp.park)
|
|
}
|
|
return
|
|
}
|
|
|
|
getg().m.throwing = -1 // do not dump full stacks
|
|
throw("all goroutines are asleep - deadlock!")
|
|
}
|
|
|
|
func sysmon() {
|
|
// If we go two minutes without a garbage collection, force one to run.
|
|
forcegcperiod := int64(2 * 60 * 1e9)
|
|
|
|
// If a heap span goes unused for 5 minutes after a garbage collection,
|
|
// we hand it back to the operating system.
|
|
scavengelimit := int64(5 * 60 * 1e9)
|
|
|
|
if debug.scavenge > 0 {
|
|
// Scavenge-a-lot for testing.
|
|
forcegcperiod = 10 * 1e6
|
|
scavengelimit = 20 * 1e6
|
|
}
|
|
|
|
lastscavenge := nanotime()
|
|
nscavenge := 0
|
|
|
|
// Make wake-up period small enough for the sampling to be correct.
|
|
maxsleep := forcegcperiod / 2
|
|
if scavengelimit < forcegcperiod {
|
|
maxsleep = scavengelimit / 2
|
|
}
|
|
|
|
lasttrace := int64(0)
|
|
idle := 0 // how many cycles in succession we had not wokeup somebody
|
|
delay := uint32(0)
|
|
for {
|
|
if idle == 0 { // start with 20us sleep...
|
|
delay = 20
|
|
} else if idle > 50 { // start doubling the sleep after 1ms...
|
|
delay *= 2
|
|
}
|
|
if delay > 10*1000 { // up to 10ms
|
|
delay = 10 * 1000
|
|
}
|
|
usleep(delay)
|
|
if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
|
|
lock(&sched.lock)
|
|
if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) {
|
|
atomicstore(&sched.sysmonwait, 1)
|
|
unlock(&sched.lock)
|
|
notetsleep(&sched.sysmonnote, maxsleep)
|
|
lock(&sched.lock)
|
|
atomicstore(&sched.sysmonwait, 0)
|
|
noteclear(&sched.sysmonnote)
|
|
idle = 0
|
|
delay = 20
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
// poll network if not polled for more than 10ms
|
|
lastpoll := int64(atomicload64(&sched.lastpoll))
|
|
now := nanotime()
|
|
unixnow := unixnanotime()
|
|
if lastpoll != 0 && lastpoll+10*1000*1000 < now {
|
|
cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
|
|
gp := netpoll(false) // non-blocking - returns list of goroutines
|
|
if gp != nil {
|
|
// Need to decrement number of idle locked M's
|
|
// (pretending that one more is running) before injectglist.
|
|
// Otherwise it can lead to the following situation:
|
|
// injectglist grabs all P's but before it starts M's to run the P's,
|
|
// another M returns from syscall, finishes running its G,
|
|
// observes that there is no work to do and no other running M's
|
|
// and reports deadlock.
|
|
incidlelocked(-1)
|
|
injectglist(gp)
|
|
incidlelocked(1)
|
|
}
|
|
}
|
|
// retake P's blocked in syscalls
|
|
// and preempt long running G's
|
|
if retake(now) != 0 {
|
|
idle = 0
|
|
} else {
|
|
idle++
|
|
}
|
|
// check if we need to force a GC
|
|
lastgc := int64(atomicload64(&memstats.last_gc))
|
|
if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 {
|
|
lock(&forcegc.lock)
|
|
forcegc.idle = 0
|
|
forcegc.g.schedlink = nil
|
|
injectglist(forcegc.g)
|
|
unlock(&forcegc.lock)
|
|
}
|
|
// scavenge heap once in a while
|
|
if lastscavenge+scavengelimit/2 < now {
|
|
mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
|
|
lastscavenge = now
|
|
nscavenge++
|
|
}
|
|
if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now {
|
|
lasttrace = now
|
|
schedtrace(debug.scheddetail > 0)
|
|
}
|
|
}
|
|
}
|
|
|
|
var pdesc [_MaxGomaxprocs]struct {
|
|
schedtick uint32
|
|
schedwhen int64
|
|
syscalltick uint32
|
|
syscallwhen int64
|
|
}
|
|
|
|
func retake(now int64) uint32 {
|
|
n := 0
|
|
for i := int32(0); i < gomaxprocs; i++ {
|
|
_p_ := allp[i]
|
|
if _p_ == nil {
|
|
continue
|
|
}
|
|
pd := &pdesc[i]
|
|
s := _p_.status
|
|
if s == _Psyscall {
|
|
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
|
|
t := int64(_p_.syscalltick)
|
|
if int64(pd.syscalltick) != t {
|
|
pd.syscalltick = uint32(t)
|
|
pd.syscallwhen = now
|
|
continue
|
|
}
|
|
// On the one hand we don't want to retake Ps if there is no other work to do,
|
|
// but on the other hand we want to retake them eventually
|
|
// because they can prevent the sysmon thread from deep sleep.
|
|
if _p_.runqhead == _p_.runqtail && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
|
|
continue
|
|
}
|
|
// Need to decrement number of idle locked M's
|
|
// (pretending that one more is running) before the CAS.
|
|
// Otherwise the M from which we retake can exit the syscall,
|
|
// increment nmidle and report deadlock.
|
|
incidlelocked(-1)
|
|
if cas(&_p_.status, s, _Pidle) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(_p_)
|
|
traceProcStop(_p_)
|
|
}
|
|
n++
|
|
_p_.syscalltick++
|
|
handoffp(_p_)
|
|
}
|
|
incidlelocked(1)
|
|
} else if s == _Prunning {
|
|
// Preempt G if it's running for more than 10ms.
|
|
t := int64(_p_.schedtick)
|
|
if int64(pd.schedtick) != t {
|
|
pd.schedtick = uint32(t)
|
|
pd.schedwhen = now
|
|
continue
|
|
}
|
|
if pd.schedwhen+10*1000*1000 > now {
|
|
continue
|
|
}
|
|
preemptone(_p_)
|
|
}
|
|
}
|
|
return uint32(n)
|
|
}
|
|
|
|
// Tell all goroutines that they have been preempted and they should stop.
|
|
// This function is purely best-effort. It can fail to inform a goroutine if a
|
|
// processor just started running it.
|
|
// No locks need to be held.
|
|
// Returns true if preemption request was issued to at least one goroutine.
|
|
func preemptall() bool {
|
|
res := false
|
|
for i := int32(0); i < gomaxprocs; i++ {
|
|
_p_ := allp[i]
|
|
if _p_ == nil || _p_.status != _Prunning {
|
|
continue
|
|
}
|
|
if preemptone(_p_) {
|
|
res = true
|
|
}
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Tell the goroutine running on processor P to stop.
|
|
// This function is purely best-effort. It can incorrectly fail to inform the
|
|
// goroutine. It can send inform the wrong goroutine. Even if it informs the
|
|
// correct goroutine, that goroutine might ignore the request if it is
|
|
// simultaneously executing newstack.
|
|
// No lock needs to be held.
|
|
// Returns true if preemption request was issued.
|
|
// The actual preemption will happen at some point in the future
|
|
// and will be indicated by the gp->status no longer being
|
|
// Grunning
|
|
func preemptone(_p_ *p) bool {
|
|
mp := _p_.m
|
|
if mp == nil || mp == getg().m {
|
|
return false
|
|
}
|
|
gp := mp.curg
|
|
if gp == nil || gp == mp.g0 {
|
|
return false
|
|
}
|
|
|
|
gp.preempt = true
|
|
|
|
// Every call in a go routine checks for stack overflow by
|
|
// comparing the current stack pointer to gp->stackguard0.
|
|
// Setting gp->stackguard0 to StackPreempt folds
|
|
// preemption into the normal stack overflow check.
|
|
gp.stackguard0 = stackPreempt
|
|
return true
|
|
}
|
|
|
|
var starttime int64
|
|
|
|
func schedtrace(detailed bool) {
|
|
now := nanotime()
|
|
if starttime == 0 {
|
|
starttime = now
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
|
|
if detailed {
|
|
print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
|
|
}
|
|
// We must be careful while reading data from P's, M's and G's.
|
|
// Even if we hold schedlock, most data can be changed concurrently.
|
|
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
|
|
for i := int32(0); i < gomaxprocs; i++ {
|
|
_p_ := allp[i]
|
|
if _p_ == nil {
|
|
continue
|
|
}
|
|
mp := _p_.m
|
|
h := atomicload(&_p_.runqhead)
|
|
t := atomicload(&_p_.runqtail)
|
|
if detailed {
|
|
id := int32(-1)
|
|
if mp != nil {
|
|
id = mp.id
|
|
}
|
|
print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
|
|
} else {
|
|
// In non-detailed mode format lengths of per-P run queues as:
|
|
// [len1 len2 len3 len4]
|
|
print(" ")
|
|
if i == 0 {
|
|
print("[")
|
|
}
|
|
print(t - h)
|
|
if i == gomaxprocs-1 {
|
|
print("]\n")
|
|
}
|
|
}
|
|
}
|
|
|
|
if !detailed {
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
|
|
for mp := allm; mp != nil; mp = mp.alllink {
|
|
_p_ := mp.p
|
|
gp := mp.curg
|
|
lockedg := mp.lockedg
|
|
id1 := int32(-1)
|
|
if _p_ != nil {
|
|
id1 = _p_.id
|
|
}
|
|
id2 := int64(-1)
|
|
if gp != nil {
|
|
id2 = gp.goid
|
|
}
|
|
id3 := int64(-1)
|
|
if lockedg != nil {
|
|
id3 = lockedg.goid
|
|
}
|
|
print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
|
|
}
|
|
|
|
lock(&allglock)
|
|
for gi := 0; gi < len(allgs); gi++ {
|
|
gp := allgs[gi]
|
|
mp := gp.m
|
|
lockedm := gp.lockedm
|
|
id1 := int32(-1)
|
|
if mp != nil {
|
|
id1 = mp.id
|
|
}
|
|
id2 := int32(-1)
|
|
if lockedm != nil {
|
|
id2 = lockedm.id
|
|
}
|
|
print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
|
|
}
|
|
unlock(&allglock)
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Put mp on midle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func mput(mp *m) {
|
|
// sched.midle is reachable via allm, so WB can be eliminated.
|
|
setMNoWriteBarrier(&mp.schedlink, sched.midle)
|
|
// mp is reachable via allm, so WB can be eliminated.
|
|
setMNoWriteBarrier(&sched.midle, mp)
|
|
sched.nmidle++
|
|
checkdead()
|
|
}
|
|
|
|
// Try to get an m from midle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func mget() *m {
|
|
mp := sched.midle
|
|
if mp != nil {
|
|
// mp.schedlink is reachable via mp, which is on allm, so WB can be eliminated.
|
|
setMNoWriteBarrier(&sched.midle, mp.schedlink)
|
|
sched.nmidle--
|
|
}
|
|
return mp
|
|
}
|
|
|
|
// Put gp on the global runnable queue.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func globrunqput(gp *g) {
|
|
gp.schedlink = nil
|
|
if sched.runqtail != nil {
|
|
// gp is on allg, so these three WBs can be eliminated.
|
|
setGNoWriteBarrier(&sched.runqtail.schedlink, gp)
|
|
} else {
|
|
setGNoWriteBarrier(&sched.runqhead, gp)
|
|
}
|
|
setGNoWriteBarrier(&sched.runqtail, gp)
|
|
sched.runqsize++
|
|
}
|
|
|
|
// Put a batch of runnable goroutines on the global runnable queue.
|
|
// Sched must be locked.
|
|
func globrunqputbatch(ghead *g, gtail *g, n int32) {
|
|
gtail.schedlink = nil
|
|
if sched.runqtail != nil {
|
|
sched.runqtail.schedlink = ghead
|
|
} else {
|
|
sched.runqhead = ghead
|
|
}
|
|
sched.runqtail = gtail
|
|
sched.runqsize += n
|
|
}
|
|
|
|
// Try get a batch of G's from the global runnable queue.
|
|
// Sched must be locked.
|
|
func globrunqget(_p_ *p, max int32) *g {
|
|
if sched.runqsize == 0 {
|
|
return nil
|
|
}
|
|
|
|
n := sched.runqsize/gomaxprocs + 1
|
|
if n > sched.runqsize {
|
|
n = sched.runqsize
|
|
}
|
|
if max > 0 && n > max {
|
|
n = max
|
|
}
|
|
if n > int32(len(_p_.runq))/2 {
|
|
n = int32(len(_p_.runq)) / 2
|
|
}
|
|
|
|
sched.runqsize -= n
|
|
if sched.runqsize == 0 {
|
|
sched.runqtail = nil
|
|
}
|
|
|
|
gp := sched.runqhead
|
|
sched.runqhead = gp.schedlink
|
|
n--
|
|
for ; n > 0; n-- {
|
|
gp1 := sched.runqhead
|
|
sched.runqhead = gp1.schedlink
|
|
runqput(_p_, gp1)
|
|
}
|
|
return gp
|
|
}
|
|
|
|
// Put p to on _Pidle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func pidleput(_p_ *p) {
|
|
// sched.pidle, _p_.link and _p_ are reachable via allp, so WB can be eliminated.
|
|
setPNoWriteBarrier(&_p_.link, sched.pidle)
|
|
setPNoWriteBarrier(&sched.pidle, _p_)
|
|
xadd(&sched.npidle, 1) // TODO: fast atomic
|
|
}
|
|
|
|
// Try get a p from _Pidle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrier
|
|
func pidleget() *p {
|
|
_p_ := sched.pidle
|
|
if _p_ != nil {
|
|
// _p_.link is reachable via a _p_ in allp, so WB can be eliminated.
|
|
setPNoWriteBarrier(&sched.pidle, _p_.link)
|
|
xadd(&sched.npidle, -1) // TODO: fast atomic
|
|
}
|
|
return _p_
|
|
}
|
|
|
|
// Try to put g on local runnable queue.
|
|
// If it's full, put onto global queue.
|
|
// Executed only by the owner P.
|
|
func runqput(_p_ *p, gp *g) {
|
|
retry:
|
|
h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
|
|
t := _p_.runqtail
|
|
if t-h < uint32(len(_p_.runq)) {
|
|
_p_.runq[t%uint32(len(_p_.runq))] = gp
|
|
atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
|
|
return
|
|
}
|
|
if runqputslow(_p_, gp, h, t) {
|
|
return
|
|
}
|
|
// the queue is not full, now the put above must suceed
|
|
goto retry
|
|
}
|
|
|
|
// Put g and a batch of work from local runnable queue on global queue.
|
|
// Executed only by the owner P.
|
|
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
|
|
var batch [len(_p_.runq)/2 + 1]*g
|
|
|
|
// First, grab a batch from local queue.
|
|
n := t - h
|
|
n = n / 2
|
|
if n != uint32(len(_p_.runq)/2) {
|
|
throw("runqputslow: queue is not full")
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
|
|
}
|
|
if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
|
|
return false
|
|
}
|
|
batch[n] = gp
|
|
|
|
// Link the goroutines.
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i].schedlink = batch[i+1]
|
|
}
|
|
|
|
// Now put the batch on global queue.
|
|
lock(&sched.lock)
|
|
globrunqputbatch(batch[0], batch[n], int32(n+1))
|
|
unlock(&sched.lock)
|
|
return true
|
|
}
|
|
|
|
// Get g from local runnable queue.
|
|
// Executed only by the owner P.
|
|
func runqget(_p_ *p) *g {
|
|
for {
|
|
h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := _p_.runqtail
|
|
if t == h {
|
|
return nil
|
|
}
|
|
gp := _p_.runq[h%uint32(len(_p_.runq))]
|
|
if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
|
|
return gp
|
|
}
|
|
}
|
|
}
|
|
|
|
// Grabs a batch of goroutines from local runnable queue.
|
|
// batch array must be of size len(p->runq)/2. Returns number of grabbed goroutines.
|
|
// Can be executed by any P.
|
|
func runqgrab(_p_ *p, batch []*g) uint32 {
|
|
for {
|
|
h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer
|
|
n := t - h
|
|
n = n - n/2
|
|
if n == 0 {
|
|
return 0
|
|
}
|
|
if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
|
|
continue
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
|
|
}
|
|
if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
|
|
return n
|
|
}
|
|
}
|
|
}
|
|
|
|
// Steal half of elements from local runnable queue of p2
|
|
// and put onto local runnable queue of p.
|
|
// Returns one of the stolen elements (or nil if failed).
|
|
func runqsteal(_p_, p2 *p) *g {
|
|
var batch [len(_p_.runq) / 2]*g
|
|
|
|
n := runqgrab(p2, batch[:])
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
n--
|
|
gp := batch[n]
|
|
if n == 0 {
|
|
return gp
|
|
}
|
|
h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
|
|
t := _p_.runqtail
|
|
if t-h+n >= uint32(len(_p_.runq)) {
|
|
throw("runqsteal: runq overflow")
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
_p_.runq[(t+i)%uint32(len(_p_.runq))] = batch[i]
|
|
}
|
|
atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
|
|
return gp
|
|
}
|
|
|
|
func testSchedLocalQueue() {
|
|
_p_ := new(p)
|
|
gs := make([]g, len(_p_.runq))
|
|
for i := 0; i < len(_p_.runq); i++ {
|
|
if runqget(_p_) != nil {
|
|
throw("runq is not empty initially")
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
runqput(_p_, &gs[i])
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
if runqget(_p_) != &gs[i] {
|
|
print("bad element at iter ", i, "/", j, "\n")
|
|
throw("bad element")
|
|
}
|
|
}
|
|
if runqget(_p_) != nil {
|
|
throw("runq is not empty afterwards")
|
|
}
|
|
}
|
|
}
|
|
|
|
func testSchedLocalQueueSteal() {
|
|
p1 := new(p)
|
|
p2 := new(p)
|
|
gs := make([]g, len(p1.runq))
|
|
for i := 0; i < len(p1.runq); i++ {
|
|
for j := 0; j < i; j++ {
|
|
gs[j].sig = 0
|
|
runqput(p1, &gs[j])
|
|
}
|
|
gp := runqsteal(p2, p1)
|
|
s := 0
|
|
if gp != nil {
|
|
s++
|
|
gp.sig++
|
|
}
|
|
for {
|
|
gp = runqget(p2)
|
|
if gp == nil {
|
|
break
|
|
}
|
|
s++
|
|
gp.sig++
|
|
}
|
|
for {
|
|
gp = runqget(p1)
|
|
if gp == nil {
|
|
break
|
|
}
|
|
gp.sig++
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
if gs[j].sig != 1 {
|
|
print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
|
|
throw("bad element")
|
|
}
|
|
}
|
|
if s != i/2 && s != i/2+1 {
|
|
print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
|
|
throw("bad steal")
|
|
}
|
|
}
|
|
}
|
|
|
|
func setMaxThreads(in int) (out int) {
|
|
lock(&sched.lock)
|
|
out = int(sched.maxmcount)
|
|
sched.maxmcount = int32(in)
|
|
checkmcount()
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
|
|
func haveexperiment(name string) bool {
|
|
x := goexperiment
|
|
for x != "" {
|
|
xname := ""
|
|
i := index(x, ",")
|
|
if i < 0 {
|
|
xname, x = x, ""
|
|
} else {
|
|
xname, x = x[:i], x[i+1:]
|
|
}
|
|
if xname == name {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
//go:nosplit
|
|
func procPin() int {
|
|
_g_ := getg()
|
|
mp := _g_.m
|
|
|
|
mp.locks++
|
|
return int(mp.p.id)
|
|
}
|
|
|
|
//go:nosplit
|
|
func procUnpin() {
|
|
_g_ := getg()
|
|
_g_.m.locks--
|
|
}
|
|
|
|
//go:linkname sync_runtime_procPin sync.runtime_procPin
|
|
//go:nosplit
|
|
func sync_runtime_procPin() int {
|
|
return procPin()
|
|
}
|
|
|
|
//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
|
|
//go:nosplit
|
|
func sync_runtime_procUnpin() {
|
|
procUnpin()
|
|
}
|
|
|
|
//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
|
|
//go:nosplit
|
|
func sync_atomic_runtime_procPin() int {
|
|
return procPin()
|
|
}
|
|
|
|
//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
|
|
//go:nosplit
|
|
func sync_atomic_runtime_procUnpin() {
|
|
procUnpin()
|
|
}
|
|
|
|
// Active spinning for sync.Mutex.
|
|
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
|
|
//go:nosplit
|
|
func sync_runtime_canSpin(i int) bool {
|
|
// sync.Mutex is cooperative, so we are conservative with spinning.
|
|
// Spin only few times and only if running on a multicore machine and
|
|
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
|
|
// As opposed to runtime mutex we don't do passive spinning here,
|
|
// because there can be work on global runq on on other Ps.
|
|
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
|
|
return false
|
|
}
|
|
if p := getg().m.p; p.runqhead != p.runqtail {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
|
|
//go:nosplit
|
|
func sync_runtime_doSpin() {
|
|
procyield(active_spin_cnt)
|
|
}
|