mirror of
https://github.com/golang/go
synced 2024-11-08 05:36:13 -07:00
afae876b31
On 32-bit architectures without native 64-bit atomic instructions, 64-bit atomics are emulated using spinlocks. However, the sigprof handling code expects to be able to perform 64-bit atomic operations in signal handlers. Spinning on an acquired spinlock in a signal handler leads to a livelock. This is issue #20146. The original fix for #20146 did not include arm in the list of architectures that need to work around portability issues in the sigprof handler code. The unit test designed to catch this issue does not fail on arm builds because arm uses striped spinlocks, and thus the livelock takes many minutes to reproduce. This is issue #24260. (This patch doesn't completely fix #24260 on go1.10.2 due to issue #25785, which is probably related to the arm cas kernel helpers. Those have been removed at tip.) With this patch applied, I was able to run the reproducer for issue #24260 for more than 90 minutes without reproducing the livelock. Without this patch, the livelock took as little as 8 minutes to reproduce. Fixes #20146 Updates #24260 Change-Id: I64bf53a14d53c4932367d919ac55e17c99d87484 Reviewed-on: https://go-review.googlesource.com/117057 Run-TryBot: Philip Hofer <phofer@umich.edu> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
5117 lines
142 KiB
Go
5117 lines
142 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"internal/cpu"
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
var buildVersion = sys.TheVersion
|
|
|
|
// Goroutine scheduler
|
|
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
|
|
//
|
|
// The main concepts are:
|
|
// G - goroutine.
|
|
// M - worker thread, or machine.
|
|
// P - processor, a resource that is required to execute Go code.
|
|
// M must have an associated P to execute Go code, however it can be
|
|
// blocked or in a syscall w/o an associated P.
|
|
//
|
|
// Design doc at https://golang.org/s/go11sched.
|
|
|
|
// Worker thread parking/unparking.
|
|
// We need to balance between keeping enough running worker threads to utilize
|
|
// available hardware parallelism and parking excessive running worker threads
|
|
// to conserve CPU resources and power. This is not simple for two reasons:
|
|
// (1) scheduler state is intentionally distributed (in particular, per-P work
|
|
// queues), so it is not possible to compute global predicates on fast paths;
|
|
// (2) for optimal thread management we would need to know the future (don't park
|
|
// a worker thread when a new goroutine will be readied in near future).
|
|
//
|
|
// Three rejected approaches that would work badly:
|
|
// 1. Centralize all scheduler state (would inhibit scalability).
|
|
// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
|
|
// is a spare P, unpark a thread and handoff it the thread and the goroutine.
|
|
// This would lead to thread state thrashing, as the thread that readied the
|
|
// goroutine can be out of work the very next moment, we will need to park it.
|
|
// Also, it would destroy locality of computation as we want to preserve
|
|
// dependent goroutines on the same thread; and introduce additional latency.
|
|
// 3. Unpark an additional thread whenever we ready a goroutine and there is an
|
|
// idle P, but don't do handoff. This would lead to excessive thread parking/
|
|
// unparking as the additional threads will instantly park without discovering
|
|
// any work to do.
|
|
//
|
|
// The current approach:
|
|
// We unpark an additional thread when we ready a goroutine if (1) there is an
|
|
// idle P and there are no "spinning" worker threads. A worker thread is considered
|
|
// spinning if it is out of local work and did not find work in global run queue/
|
|
// netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
|
|
// Threads unparked this way are also considered spinning; we don't do goroutine
|
|
// handoff so such threads are out of work initially. Spinning threads do some
|
|
// spinning looking for work in per-P run queues before parking. If a spinning
|
|
// thread finds work it takes itself out of the spinning state and proceeds to
|
|
// execution. If it does not find work it takes itself out of the spinning state
|
|
// and then parks.
|
|
// If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
|
|
// new threads when readying goroutines. To compensate for that, if the last spinning
|
|
// thread finds work and stops spinning, it must unpark a new spinning thread.
|
|
// This approach smooths out unjustified spikes of thread unparking,
|
|
// but at the same time guarantees eventual maximal CPU parallelism utilization.
|
|
//
|
|
// The main implementation complication is that we need to be very careful during
|
|
// spinning->non-spinning thread transition. This transition can race with submission
|
|
// of a new goroutine, and either one part or another needs to unpark another worker
|
|
// thread. If they both fail to do that, we can end up with semi-persistent CPU
|
|
// underutilization. The general pattern for goroutine readying is: submit a goroutine
|
|
// to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
|
|
// The general pattern for spinning->non-spinning transition is: decrement nmspinning,
|
|
// #StoreLoad-style memory barrier, check all per-P work queues for new work.
|
|
// Note that all this complexity does not apply to global run queue as we are not
|
|
// sloppy about thread unparking when submitting to global queue. Also see comments
|
|
// for nmspinning manipulation.
|
|
|
|
var (
|
|
m0 m
|
|
g0 g
|
|
raceprocctx0 uintptr
|
|
)
|
|
|
|
//go:linkname runtime_init runtime.init
|
|
func runtime_init()
|
|
|
|
//go:linkname main_init main.init
|
|
func main_init()
|
|
|
|
// main_init_done is a signal used by cgocallbackg that initialization
|
|
// has been completed. It is made before _cgo_notify_runtime_init_done,
|
|
// so all cgo calls can rely on it existing. When main_init is complete,
|
|
// it is closed, meaning cgocallbackg can reliably receive from it.
|
|
var main_init_done chan bool
|
|
|
|
//go:linkname main_main main.main
|
|
func main_main()
|
|
|
|
// mainStarted indicates that the main M has started.
|
|
var mainStarted bool
|
|
|
|
// runtimeInitTime is the nanotime() at which the runtime started.
|
|
var runtimeInitTime int64
|
|
|
|
// Value to use for signal mask for newly created M's.
|
|
var initSigmask sigset
|
|
|
|
// The main goroutine.
|
|
func main() {
|
|
g := getg()
|
|
|
|
// Racectx of m0->g0 is used only as the parent of the main goroutine.
|
|
// It must not be used for anything else.
|
|
g.m.g0.racectx = 0
|
|
|
|
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
|
|
// Using decimal instead of binary GB and MB because
|
|
// they look nicer in the stack overflow failure message.
|
|
if sys.PtrSize == 8 {
|
|
maxstacksize = 1000000000
|
|
} else {
|
|
maxstacksize = 250000000
|
|
}
|
|
|
|
// Allow newproc to start new Ms.
|
|
mainStarted = true
|
|
|
|
if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
|
|
systemstack(func() {
|
|
newm(sysmon, nil)
|
|
})
|
|
}
|
|
|
|
// Lock the main goroutine onto this, the main OS thread,
|
|
// during initialization. Most programs won't care, but a few
|
|
// do require certain calls to be made by the main thread.
|
|
// Those can arrange for main.main to run in the main thread
|
|
// by calling runtime.LockOSThread during initialization
|
|
// to preserve the lock.
|
|
lockOSThread()
|
|
|
|
if g.m != &m0 {
|
|
throw("runtime.main not on m0")
|
|
}
|
|
|
|
runtime_init() // must be before defer
|
|
if nanotime() == 0 {
|
|
throw("nanotime returning zero")
|
|
}
|
|
|
|
// Defer unlock so that runtime.Goexit during init does the unlock too.
|
|
needUnlock := true
|
|
defer func() {
|
|
if needUnlock {
|
|
unlockOSThread()
|
|
}
|
|
}()
|
|
|
|
// Record when the world started. Must be after runtime_init
|
|
// because nanotime on some platforms depends on startNano.
|
|
runtimeInitTime = nanotime()
|
|
|
|
gcenable()
|
|
|
|
main_init_done = make(chan bool)
|
|
if iscgo {
|
|
if _cgo_thread_start == nil {
|
|
throw("_cgo_thread_start missing")
|
|
}
|
|
if GOOS != "windows" {
|
|
if _cgo_setenv == nil {
|
|
throw("_cgo_setenv missing")
|
|
}
|
|
if _cgo_unsetenv == nil {
|
|
throw("_cgo_unsetenv missing")
|
|
}
|
|
}
|
|
if _cgo_notify_runtime_init_done == nil {
|
|
throw("_cgo_notify_runtime_init_done missing")
|
|
}
|
|
// Start the template thread in case we enter Go from
|
|
// a C-created thread and need to create a new thread.
|
|
startTemplateThread()
|
|
cgocall(_cgo_notify_runtime_init_done, nil)
|
|
}
|
|
|
|
fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
|
|
fn()
|
|
close(main_init_done)
|
|
|
|
needUnlock = false
|
|
unlockOSThread()
|
|
|
|
if isarchive || islibrary {
|
|
// A program compiled with -buildmode=c-archive or c-shared
|
|
// has a main, but it is not executed.
|
|
return
|
|
}
|
|
fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
|
|
fn()
|
|
if raceenabled {
|
|
racefini()
|
|
}
|
|
|
|
// Make racy client program work: if panicking on
|
|
// another goroutine at the same time as main returns,
|
|
// let the other goroutine finish printing the panic trace.
|
|
// Once it does, it will exit. See issues 3934 and 20018.
|
|
if atomic.Load(&runningPanicDefers) != 0 {
|
|
// Running deferred functions should not take long.
|
|
for c := 0; c < 1000; c++ {
|
|
if atomic.Load(&runningPanicDefers) == 0 {
|
|
break
|
|
}
|
|
Gosched()
|
|
}
|
|
}
|
|
if atomic.Load(&panicking) != 0 {
|
|
gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
|
|
}
|
|
|
|
exit(0)
|
|
for {
|
|
var x *int32
|
|
*x = 0
|
|
}
|
|
}
|
|
|
|
// os_beforeExit is called from os.Exit(0).
|
|
//go:linkname os_beforeExit os.runtime_beforeExit
|
|
func os_beforeExit() {
|
|
if raceenabled {
|
|
racefini()
|
|
}
|
|
}
|
|
|
|
// start forcegc helper goroutine
|
|
func init() {
|
|
go forcegchelper()
|
|
}
|
|
|
|
func forcegchelper() {
|
|
forcegc.g = getg()
|
|
for {
|
|
lock(&forcegc.lock)
|
|
if forcegc.idle != 0 {
|
|
throw("forcegc: phase error")
|
|
}
|
|
atomic.Store(&forcegc.idle, 1)
|
|
goparkunlock(&forcegc.lock, waitReasonForceGGIdle, traceEvGoBlock, 1)
|
|
// this goroutine is explicitly resumed by sysmon
|
|
if debug.gctrace > 0 {
|
|
println("GC forced")
|
|
}
|
|
// Time-triggered, fully concurrent.
|
|
gcStart(gcBackgroundMode, gcTrigger{kind: gcTriggerTime, now: nanotime()})
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// Gosched yields the processor, allowing other goroutines to run. It does not
|
|
// suspend the current goroutine, so execution resumes automatically.
|
|
func Gosched() {
|
|
mcall(gosched_m)
|
|
}
|
|
|
|
// goschedguarded yields the processor like gosched, but also checks
|
|
// for forbidden states and opts out of the yield in those cases.
|
|
//go:nosplit
|
|
func goschedguarded() {
|
|
mcall(goschedguarded_m)
|
|
}
|
|
|
|
// Puts the current goroutine into a waiting state and calls unlockf.
|
|
// If unlockf returns false, the goroutine is resumed.
|
|
// unlockf must not access this G's stack, as it may be moved between
|
|
// the call to gopark and the call to unlockf.
|
|
// Reason explains why the goroutine has been parked.
|
|
// It is displayed in stack traces and heap dumps.
|
|
// Reasons should be unique and descriptive.
|
|
// Do not re-use reasons, add new ones.
|
|
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
|
|
mp := acquirem()
|
|
gp := mp.curg
|
|
status := readgstatus(gp)
|
|
if status != _Grunning && status != _Gscanrunning {
|
|
throw("gopark: bad g status")
|
|
}
|
|
mp.waitlock = lock
|
|
mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
|
|
gp.waitreason = reason
|
|
mp.waittraceev = traceEv
|
|
mp.waittraceskip = traceskip
|
|
releasem(mp)
|
|
// can't do anything that might move the G between Ms here.
|
|
mcall(park_m)
|
|
}
|
|
|
|
// Puts the current goroutine into a waiting state and unlocks the lock.
|
|
// The goroutine can be made runnable again by calling goready(gp).
|
|
func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) {
|
|
gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
|
|
}
|
|
|
|
func goready(gp *g, traceskip int) {
|
|
systemstack(func() {
|
|
ready(gp, traceskip, true)
|
|
})
|
|
}
|
|
|
|
//go:nosplit
|
|
func acquireSudog() *sudog {
|
|
// Delicate dance: the semaphore implementation calls
|
|
// acquireSudog, acquireSudog calls new(sudog),
|
|
// new calls malloc, malloc can call the garbage collector,
|
|
// and the garbage collector calls the semaphore implementation
|
|
// in stopTheWorld.
|
|
// Break the cycle by doing acquirem/releasem around new(sudog).
|
|
// The acquirem/releasem increments m.locks during new(sudog),
|
|
// which keeps the garbage collector from being invoked.
|
|
mp := acquirem()
|
|
pp := mp.p.ptr()
|
|
if len(pp.sudogcache) == 0 {
|
|
lock(&sched.sudoglock)
|
|
// First, try to grab a batch from central cache.
|
|
for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
|
|
s := sched.sudogcache
|
|
sched.sudogcache = s.next
|
|
s.next = nil
|
|
pp.sudogcache = append(pp.sudogcache, s)
|
|
}
|
|
unlock(&sched.sudoglock)
|
|
// If the central cache is empty, allocate a new one.
|
|
if len(pp.sudogcache) == 0 {
|
|
pp.sudogcache = append(pp.sudogcache, new(sudog))
|
|
}
|
|
}
|
|
n := len(pp.sudogcache)
|
|
s := pp.sudogcache[n-1]
|
|
pp.sudogcache[n-1] = nil
|
|
pp.sudogcache = pp.sudogcache[:n-1]
|
|
if s.elem != nil {
|
|
throw("acquireSudog: found s.elem != nil in cache")
|
|
}
|
|
releasem(mp)
|
|
return s
|
|
}
|
|
|
|
//go:nosplit
|
|
func releaseSudog(s *sudog) {
|
|
if s.elem != nil {
|
|
throw("runtime: sudog with non-nil elem")
|
|
}
|
|
if s.isSelect {
|
|
throw("runtime: sudog with non-false isSelect")
|
|
}
|
|
if s.next != nil {
|
|
throw("runtime: sudog with non-nil next")
|
|
}
|
|
if s.prev != nil {
|
|
throw("runtime: sudog with non-nil prev")
|
|
}
|
|
if s.waitlink != nil {
|
|
throw("runtime: sudog with non-nil waitlink")
|
|
}
|
|
if s.c != nil {
|
|
throw("runtime: sudog with non-nil c")
|
|
}
|
|
gp := getg()
|
|
if gp.param != nil {
|
|
throw("runtime: releaseSudog with non-nil gp.param")
|
|
}
|
|
mp := acquirem() // avoid rescheduling to another P
|
|
pp := mp.p.ptr()
|
|
if len(pp.sudogcache) == cap(pp.sudogcache) {
|
|
// Transfer half of local cache to the central cache.
|
|
var first, last *sudog
|
|
for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
|
|
n := len(pp.sudogcache)
|
|
p := pp.sudogcache[n-1]
|
|
pp.sudogcache[n-1] = nil
|
|
pp.sudogcache = pp.sudogcache[:n-1]
|
|
if first == nil {
|
|
first = p
|
|
} else {
|
|
last.next = p
|
|
}
|
|
last = p
|
|
}
|
|
lock(&sched.sudoglock)
|
|
last.next = sched.sudogcache
|
|
sched.sudogcache = first
|
|
unlock(&sched.sudoglock)
|
|
}
|
|
pp.sudogcache = append(pp.sudogcache, s)
|
|
releasem(mp)
|
|
}
|
|
|
|
// funcPC returns the entry PC of the function f.
|
|
// It assumes that f is a func value. Otherwise the behavior is undefined.
|
|
// CAREFUL: In programs with plugins, funcPC can return different values
|
|
// for the same function (because there are actually multiple copies of
|
|
// the same function in the address space). To be safe, don't use the
|
|
// results of this function in any == expression. It is only safe to
|
|
// use the result as an address at which to start executing code.
|
|
//go:nosplit
|
|
func funcPC(f interface{}) uintptr {
|
|
return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize))
|
|
}
|
|
|
|
// called from assembly
|
|
func badmcall(fn func(*g)) {
|
|
throw("runtime: mcall called on m->g0 stack")
|
|
}
|
|
|
|
func badmcall2(fn func(*g)) {
|
|
throw("runtime: mcall function returned")
|
|
}
|
|
|
|
func badreflectcall() {
|
|
panic(plainError("arg size to reflect.call more than 1GB"))
|
|
}
|
|
|
|
var badmorestackg0Msg = "fatal: morestack on g0\n"
|
|
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func badmorestackg0() {
|
|
sp := stringStructOf(&badmorestackg0Msg)
|
|
write(2, sp.str, int32(sp.len))
|
|
}
|
|
|
|
var badmorestackgsignalMsg = "fatal: morestack on gsignal\n"
|
|
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func badmorestackgsignal() {
|
|
sp := stringStructOf(&badmorestackgsignalMsg)
|
|
write(2, sp.str, int32(sp.len))
|
|
}
|
|
|
|
//go:nosplit
|
|
func badctxt() {
|
|
throw("ctxt != 0")
|
|
}
|
|
|
|
func lockedOSThread() bool {
|
|
gp := getg()
|
|
return gp.lockedm != 0 && gp.m.lockedg != 0
|
|
}
|
|
|
|
var (
|
|
allgs []*g
|
|
allglock mutex
|
|
)
|
|
|
|
func allgadd(gp *g) {
|
|
if readgstatus(gp) == _Gidle {
|
|
throw("allgadd: bad status Gidle")
|
|
}
|
|
|
|
lock(&allglock)
|
|
allgs = append(allgs, gp)
|
|
allglen = uintptr(len(allgs))
|
|
unlock(&allglock)
|
|
}
|
|
|
|
const (
|
|
// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
|
|
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
|
|
_GoidCacheBatch = 16
|
|
)
|
|
|
|
//go:linkname internal_cpu_initialize internal/cpu.initialize
|
|
func internal_cpu_initialize(env string)
|
|
|
|
//go:linkname internal_cpu_debugOptions internal/cpu.debugOptions
|
|
var internal_cpu_debugOptions bool
|
|
|
|
// cpuinit extracts the environment variable GODEBUGCPU from the environment on
|
|
// Linux and Darwin if the GOEXPERIMENT debugcpu was set and calls internal/cpu.initialize.
|
|
func cpuinit() {
|
|
const prefix = "GODEBUGCPU="
|
|
var env string
|
|
|
|
if haveexperiment("debugcpu") && (GOOS == "linux" || GOOS == "darwin") {
|
|
internal_cpu_debugOptions = true
|
|
|
|
// Similar to goenv_unix but extracts the environment value for
|
|
// GODEBUGCPU directly.
|
|
// TODO(moehrmann): remove when general goenvs() can be called before cpuinit()
|
|
n := int32(0)
|
|
for argv_index(argv, argc+1+n) != nil {
|
|
n++
|
|
}
|
|
|
|
for i := int32(0); i < n; i++ {
|
|
p := argv_index(argv, argc+1+i)
|
|
s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)}))
|
|
|
|
if hasprefix(s, prefix) {
|
|
env = gostring(p)[len(prefix):]
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
internal_cpu_initialize(env)
|
|
|
|
support_erms = cpu.X86.HasERMS
|
|
support_popcnt = cpu.X86.HasPOPCNT
|
|
support_sse2 = cpu.X86.HasSSE2
|
|
support_sse41 = cpu.X86.HasSSE41
|
|
}
|
|
|
|
// The bootstrap sequence is:
|
|
//
|
|
// call osinit
|
|
// call schedinit
|
|
// make & queue new G
|
|
// call runtime·mstart
|
|
//
|
|
// The new G calls runtime·main.
|
|
func schedinit() {
|
|
// raceinit must be the first call to race detector.
|
|
// In particular, it must be done before mallocinit below calls racemapshadow.
|
|
_g_ := getg()
|
|
if raceenabled {
|
|
_g_.racectx, raceprocctx0 = raceinit()
|
|
}
|
|
|
|
sched.maxmcount = 10000
|
|
|
|
tracebackinit()
|
|
moduledataverify()
|
|
stackinit()
|
|
mallocinit()
|
|
mcommoninit(_g_.m)
|
|
cpuinit() // must run before alginit
|
|
alginit() // maps must not be used before this call
|
|
modulesinit() // provides activeModules
|
|
typelinksinit() // uses maps, activeModules
|
|
itabsinit() // uses activeModules
|
|
|
|
msigsave(_g_.m)
|
|
initSigmask = _g_.m.sigmask
|
|
|
|
goargs()
|
|
goenvs()
|
|
parsedebugvars()
|
|
gcinit()
|
|
|
|
sched.lastpoll = uint64(nanotime())
|
|
procs := ncpu
|
|
if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
|
|
procs = n
|
|
}
|
|
if procresize(procs) != nil {
|
|
throw("unknown runnable goroutine during bootstrap")
|
|
}
|
|
|
|
// For cgocheck > 1, we turn on the write barrier at all times
|
|
// and check all pointer writes. We can't do this until after
|
|
// procresize because the write barrier needs a P.
|
|
if debug.cgocheck > 1 {
|
|
writeBarrier.cgo = true
|
|
writeBarrier.enabled = true
|
|
for _, p := range allp {
|
|
p.wbBuf.reset()
|
|
}
|
|
}
|
|
|
|
if buildVersion == "" {
|
|
// Condition should never trigger. This code just serves
|
|
// to ensure runtime·buildVersion is kept in the resulting binary.
|
|
buildVersion = "unknown"
|
|
}
|
|
}
|
|
|
|
func dumpgstatus(gp *g) {
|
|
_g_ := getg()
|
|
print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
|
|
print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
|
|
}
|
|
|
|
func checkmcount() {
|
|
// sched lock is held
|
|
if mcount() > sched.maxmcount {
|
|
print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
|
|
throw("thread exhaustion")
|
|
}
|
|
}
|
|
|
|
func mcommoninit(mp *m) {
|
|
_g_ := getg()
|
|
|
|
// g0 stack won't make sense for user (and is not necessary unwindable).
|
|
if _g_ != _g_.m.g0 {
|
|
callers(1, mp.createstack[:])
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
if sched.mnext+1 < sched.mnext {
|
|
throw("runtime: thread ID overflow")
|
|
}
|
|
mp.id = sched.mnext
|
|
sched.mnext++
|
|
checkmcount()
|
|
|
|
mp.fastrand[0] = 1597334677 * uint32(mp.id)
|
|
mp.fastrand[1] = uint32(cputicks())
|
|
if mp.fastrand[0]|mp.fastrand[1] == 0 {
|
|
mp.fastrand[1] = 1
|
|
}
|
|
|
|
mpreinit(mp)
|
|
if mp.gsignal != nil {
|
|
mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
|
|
}
|
|
|
|
// Add to allm so garbage collector doesn't free g->m
|
|
// when it is just in a register or thread-local storage.
|
|
mp.alllink = allm
|
|
|
|
// NumCgoCall() iterates over allm w/o schedlock,
|
|
// so we need to publish it safely.
|
|
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
|
|
unlock(&sched.lock)
|
|
|
|
// Allocate memory to hold a cgo traceback if the cgo call crashes.
|
|
if iscgo || GOOS == "solaris" || GOOS == "windows" {
|
|
mp.cgoCallers = new(cgoCallers)
|
|
}
|
|
}
|
|
|
|
// Mark gp ready to run.
|
|
func ready(gp *g, traceskip int, next bool) {
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, traceskip)
|
|
}
|
|
|
|
status := readgstatus(gp)
|
|
|
|
// Mark runnable.
|
|
_g_ := getg()
|
|
_g_.m.locks++ // disable preemption because it can be holding p in a local var
|
|
if status&^_Gscan != _Gwaiting {
|
|
dumpgstatus(gp)
|
|
throw("bad g->status in ready")
|
|
}
|
|
|
|
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
runqput(_g_.m.p.ptr(), gp, next)
|
|
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
|
|
wakep()
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
}
|
|
|
|
func gcprocs() int32 {
|
|
// Figure out how many CPUs to use during GC.
|
|
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
|
|
lock(&sched.lock)
|
|
n := gomaxprocs
|
|
if n > ncpu {
|
|
n = ncpu
|
|
}
|
|
if n > _MaxGcproc {
|
|
n = _MaxGcproc
|
|
}
|
|
if n > sched.nmidle+1 { // one M is currently running
|
|
n = sched.nmidle + 1
|
|
}
|
|
unlock(&sched.lock)
|
|
return n
|
|
}
|
|
|
|
func needaddgcproc() bool {
|
|
lock(&sched.lock)
|
|
n := gomaxprocs
|
|
if n > ncpu {
|
|
n = ncpu
|
|
}
|
|
if n > _MaxGcproc {
|
|
n = _MaxGcproc
|
|
}
|
|
n -= sched.nmidle + 1 // one M is currently running
|
|
unlock(&sched.lock)
|
|
return n > 0
|
|
}
|
|
|
|
func helpgc(nproc int32) {
|
|
_g_ := getg()
|
|
lock(&sched.lock)
|
|
pos := 0
|
|
for n := int32(1); n < nproc; n++ { // one M is currently running
|
|
if allp[pos].mcache == _g_.m.mcache {
|
|
pos++
|
|
}
|
|
mp := mget()
|
|
if mp == nil {
|
|
throw("gcprocs inconsistency")
|
|
}
|
|
mp.helpgc = n
|
|
mp.p.set(allp[pos])
|
|
mp.mcache = allp[pos].mcache
|
|
pos++
|
|
notewakeup(&mp.park)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// freezeStopWait is a large value that freezetheworld sets
|
|
// sched.stopwait to in order to request that all Gs permanently stop.
|
|
const freezeStopWait = 0x7fffffff
|
|
|
|
// freezing is set to non-zero if the runtime is trying to freeze the
|
|
// world.
|
|
var freezing uint32
|
|
|
|
// Similar to stopTheWorld but best-effort and can be called several times.
|
|
// There is no reverse operation, used during crashing.
|
|
// This function must not lock any mutexes.
|
|
func freezetheworld() {
|
|
atomic.Store(&freezing, 1)
|
|
// stopwait and preemption requests can be lost
|
|
// due to races with concurrently executing threads,
|
|
// so try several times
|
|
for i := 0; i < 5; i++ {
|
|
// this should tell the scheduler to not start any new goroutines
|
|
sched.stopwait = freezeStopWait
|
|
atomic.Store(&sched.gcwaiting, 1)
|
|
// this should stop running goroutines
|
|
if !preemptall() {
|
|
break // no running goroutines
|
|
}
|
|
usleep(1000)
|
|
}
|
|
// to be sure
|
|
usleep(1000)
|
|
preemptall()
|
|
usleep(1000)
|
|
}
|
|
|
|
func isscanstatus(status uint32) bool {
|
|
if status == _Gscan {
|
|
throw("isscanstatus: Bad status Gscan")
|
|
}
|
|
return status&_Gscan == _Gscan
|
|
}
|
|
|
|
// All reads and writes of g's status go through readgstatus, casgstatus
|
|
// castogscanstatus, casfrom_Gscanstatus.
|
|
//go:nosplit
|
|
func readgstatus(gp *g) uint32 {
|
|
return atomic.Load(&gp.atomicstatus)
|
|
}
|
|
|
|
// Ownership of gcscanvalid:
|
|
//
|
|
// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
|
|
// then gp owns gp.gcscanvalid, and other goroutines must not modify it.
|
|
//
|
|
// Otherwise, a second goroutine can lock the scan state by setting _Gscan
|
|
// in the status bit and then modify gcscanvalid, and then unlock the scan state.
|
|
//
|
|
// Note that the first condition implies an exception to the second:
|
|
// if a second goroutine changes gp's status to _Grunning|_Gscan,
|
|
// that second goroutine still does not have the right to modify gcscanvalid.
|
|
|
|
// The Gscanstatuses are acting like locks and this releases them.
|
|
// If it proves to be a performance hit we should be able to make these
|
|
// simple atomic stores but for now we are going to throw if
|
|
// we see an inconsistent state.
|
|
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
|
|
success := false
|
|
|
|
// Check that transition is valid.
|
|
switch oldval {
|
|
default:
|
|
print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
|
|
dumpgstatus(gp)
|
|
throw("casfrom_Gscanstatus:top gp->status is not in scan state")
|
|
case _Gscanrunnable,
|
|
_Gscanwaiting,
|
|
_Gscanrunning,
|
|
_Gscansyscall:
|
|
if newval == oldval&^_Gscan {
|
|
success = atomic.Cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
}
|
|
if !success {
|
|
print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
|
|
dumpgstatus(gp)
|
|
throw("casfrom_Gscanstatus: gp->status is not in scan state")
|
|
}
|
|
}
|
|
|
|
// This will return false if the gp is not in the expected status and the cas fails.
|
|
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
|
|
func castogscanstatus(gp *g, oldval, newval uint32) bool {
|
|
switch oldval {
|
|
case _Grunnable,
|
|
_Grunning,
|
|
_Gwaiting,
|
|
_Gsyscall:
|
|
if newval == oldval|_Gscan {
|
|
return atomic.Cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
}
|
|
print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
|
|
throw("castogscanstatus")
|
|
panic("not reached")
|
|
}
|
|
|
|
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
|
|
// and casfrom_Gscanstatus instead.
|
|
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
|
|
// put it in the Gscan state is finished.
|
|
//go:nosplit
|
|
func casgstatus(gp *g, oldval, newval uint32) {
|
|
if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
|
|
systemstack(func() {
|
|
print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
|
|
throw("casgstatus: bad incoming values")
|
|
})
|
|
}
|
|
|
|
if oldval == _Grunning && gp.gcscanvalid {
|
|
// If oldvall == _Grunning, then the actual status must be
|
|
// _Grunning or _Grunning|_Gscan; either way,
|
|
// we own gp.gcscanvalid, so it's safe to read.
|
|
// gp.gcscanvalid must not be true when we are running.
|
|
systemstack(func() {
|
|
print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
|
|
throw("casgstatus")
|
|
})
|
|
}
|
|
|
|
// See https://golang.org/cl/21503 for justification of the yield delay.
|
|
const yieldDelay = 5 * 1000
|
|
var nextYield int64
|
|
|
|
// loop if gp->atomicstatus is in a scan state giving
|
|
// GC time to finish and change the state to oldval.
|
|
for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
|
|
if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
|
|
throw("casgstatus: waiting for Gwaiting but is Grunnable")
|
|
}
|
|
// Help GC if needed.
|
|
// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
|
|
// gp.preemptscan = false
|
|
// systemstack(func() {
|
|
// gcphasework(gp)
|
|
// })
|
|
// }
|
|
// But meanwhile just yield.
|
|
if i == 0 {
|
|
nextYield = nanotime() + yieldDelay
|
|
}
|
|
if nanotime() < nextYield {
|
|
for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
|
|
procyield(1)
|
|
}
|
|
} else {
|
|
osyield()
|
|
nextYield = nanotime() + yieldDelay/2
|
|
}
|
|
}
|
|
if newval == _Grunning {
|
|
gp.gcscanvalid = false
|
|
}
|
|
}
|
|
|
|
// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
|
|
// Returns old status. Cannot call casgstatus directly, because we are racing with an
|
|
// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
|
|
// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
|
|
// it would loop waiting for the status to go back to Gwaiting, which it never will.
|
|
//go:nosplit
|
|
func casgcopystack(gp *g) uint32 {
|
|
for {
|
|
oldstatus := readgstatus(gp) &^ _Gscan
|
|
if oldstatus != _Gwaiting && oldstatus != _Grunnable {
|
|
throw("copystack: bad status, not Gwaiting or Grunnable")
|
|
}
|
|
if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
|
|
return oldstatus
|
|
}
|
|
}
|
|
}
|
|
|
|
// scang blocks until gp's stack has been scanned.
|
|
// It might be scanned by scang or it might be scanned by the goroutine itself.
|
|
// Either way, the stack scan has completed when scang returns.
|
|
func scang(gp *g, gcw *gcWork) {
|
|
// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
|
|
// Nothing is racing with us now, but gcscandone might be set to true left over
|
|
// from an earlier round of stack scanning (we scan twice per GC).
|
|
// We use gcscandone to record whether the scan has been done during this round.
|
|
|
|
gp.gcscandone = false
|
|
|
|
// See https://golang.org/cl/21503 for justification of the yield delay.
|
|
const yieldDelay = 10 * 1000
|
|
var nextYield int64
|
|
|
|
// Endeavor to get gcscandone set to true,
|
|
// either by doing the stack scan ourselves or by coercing gp to scan itself.
|
|
// gp.gcscandone can transition from false to true when we're not looking
|
|
// (if we asked for preemption), so any time we lock the status using
|
|
// castogscanstatus we have to double-check that the scan is still not done.
|
|
loop:
|
|
for i := 0; !gp.gcscandone; i++ {
|
|
switch s := readgstatus(gp); s {
|
|
default:
|
|
dumpgstatus(gp)
|
|
throw("stopg: invalid status")
|
|
|
|
case _Gdead:
|
|
// No stack.
|
|
gp.gcscandone = true
|
|
break loop
|
|
|
|
case _Gcopystack:
|
|
// Stack being switched. Go around again.
|
|
|
|
case _Grunnable, _Gsyscall, _Gwaiting:
|
|
// Claim goroutine by setting scan bit.
|
|
// Racing with execution or readying of gp.
|
|
// The scan bit keeps them from running
|
|
// the goroutine until we're done.
|
|
if castogscanstatus(gp, s, s|_Gscan) {
|
|
if !gp.gcscandone {
|
|
scanstack(gp, gcw)
|
|
gp.gcscandone = true
|
|
}
|
|
restartg(gp)
|
|
break loop
|
|
}
|
|
|
|
case _Gscanwaiting:
|
|
// newstack is doing a scan for us right now. Wait.
|
|
|
|
case _Grunning:
|
|
// Goroutine running. Try to preempt execution so it can scan itself.
|
|
// The preemption handler (in newstack) does the actual scan.
|
|
|
|
// Optimization: if there is already a pending preemption request
|
|
// (from the previous loop iteration), don't bother with the atomics.
|
|
if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
|
|
break
|
|
}
|
|
|
|
// Ask for preemption and self scan.
|
|
if castogscanstatus(gp, _Grunning, _Gscanrunning) {
|
|
if !gp.gcscandone {
|
|
gp.preemptscan = true
|
|
gp.preempt = true
|
|
gp.stackguard0 = stackPreempt
|
|
}
|
|
casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
|
|
}
|
|
}
|
|
|
|
if i == 0 {
|
|
nextYield = nanotime() + yieldDelay
|
|
}
|
|
if nanotime() < nextYield {
|
|
procyield(10)
|
|
} else {
|
|
osyield()
|
|
nextYield = nanotime() + yieldDelay/2
|
|
}
|
|
}
|
|
|
|
gp.preemptscan = false // cancel scan request if no longer needed
|
|
}
|
|
|
|
// The GC requests that this routine be moved from a scanmumble state to a mumble state.
|
|
func restartg(gp *g) {
|
|
s := readgstatus(gp)
|
|
switch s {
|
|
default:
|
|
dumpgstatus(gp)
|
|
throw("restartg: unexpected status")
|
|
|
|
case _Gdead:
|
|
// ok
|
|
|
|
case _Gscanrunnable,
|
|
_Gscanwaiting,
|
|
_Gscansyscall:
|
|
casfrom_Gscanstatus(gp, s, s&^_Gscan)
|
|
}
|
|
}
|
|
|
|
// stopTheWorld stops all P's from executing goroutines, interrupting
|
|
// all goroutines at GC safe points and records reason as the reason
|
|
// for the stop. On return, only the current goroutine's P is running.
|
|
// stopTheWorld must not be called from a system stack and the caller
|
|
// must not hold worldsema. The caller must call startTheWorld when
|
|
// other P's should resume execution.
|
|
//
|
|
// stopTheWorld is safe for multiple goroutines to call at the
|
|
// same time. Each will execute its own stop, and the stops will
|
|
// be serialized.
|
|
//
|
|
// This is also used by routines that do stack dumps. If the system is
|
|
// in panic or being exited, this may not reliably stop all
|
|
// goroutines.
|
|
func stopTheWorld(reason string) {
|
|
semacquire(&worldsema)
|
|
getg().m.preemptoff = reason
|
|
systemstack(stopTheWorldWithSema)
|
|
}
|
|
|
|
// startTheWorld undoes the effects of stopTheWorld.
|
|
func startTheWorld() {
|
|
systemstack(func() { startTheWorldWithSema(false) })
|
|
// worldsema must be held over startTheWorldWithSema to ensure
|
|
// gomaxprocs cannot change while worldsema is held.
|
|
semrelease(&worldsema)
|
|
getg().m.preemptoff = ""
|
|
}
|
|
|
|
// Holding worldsema grants an M the right to try to stop the world
|
|
// and prevents gomaxprocs from changing concurrently.
|
|
var worldsema uint32 = 1
|
|
|
|
// stopTheWorldWithSema is the core implementation of stopTheWorld.
|
|
// The caller is responsible for acquiring worldsema and disabling
|
|
// preemption first and then should stopTheWorldWithSema on the system
|
|
// stack:
|
|
//
|
|
// semacquire(&worldsema, 0)
|
|
// m.preemptoff = "reason"
|
|
// systemstack(stopTheWorldWithSema)
|
|
//
|
|
// When finished, the caller must either call startTheWorld or undo
|
|
// these three operations separately:
|
|
//
|
|
// m.preemptoff = ""
|
|
// systemstack(startTheWorldWithSema)
|
|
// semrelease(&worldsema)
|
|
//
|
|
// It is allowed to acquire worldsema once and then execute multiple
|
|
// startTheWorldWithSema/stopTheWorldWithSema pairs.
|
|
// Other P's are able to execute between successive calls to
|
|
// startTheWorldWithSema and stopTheWorldWithSema.
|
|
// Holding worldsema causes any other goroutines invoking
|
|
// stopTheWorld to block.
|
|
func stopTheWorldWithSema() {
|
|
_g_ := getg()
|
|
|
|
// If we hold a lock, then we won't be able to stop another M
|
|
// that is blocked trying to acquire the lock.
|
|
if _g_.m.locks > 0 {
|
|
throw("stopTheWorld: holding locks")
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
sched.stopwait = gomaxprocs
|
|
atomic.Store(&sched.gcwaiting, 1)
|
|
preemptall()
|
|
// stop current P
|
|
_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
|
|
sched.stopwait--
|
|
// try to retake all P's in Psyscall status
|
|
for _, p := range allp {
|
|
s := p.status
|
|
if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(p)
|
|
traceProcStop(p)
|
|
}
|
|
p.syscalltick++
|
|
sched.stopwait--
|
|
}
|
|
}
|
|
// stop idle P's
|
|
for {
|
|
p := pidleget()
|
|
if p == nil {
|
|
break
|
|
}
|
|
p.status = _Pgcstop
|
|
sched.stopwait--
|
|
}
|
|
wait := sched.stopwait > 0
|
|
unlock(&sched.lock)
|
|
|
|
// wait for remaining P's to stop voluntarily
|
|
if wait {
|
|
for {
|
|
// wait for 100us, then try to re-preempt in case of any races
|
|
if notetsleep(&sched.stopnote, 100*1000) {
|
|
noteclear(&sched.stopnote)
|
|
break
|
|
}
|
|
preemptall()
|
|
}
|
|
}
|
|
|
|
// sanity checks
|
|
bad := ""
|
|
if sched.stopwait != 0 {
|
|
bad = "stopTheWorld: not stopped (stopwait != 0)"
|
|
} else {
|
|
for _, p := range allp {
|
|
if p.status != _Pgcstop {
|
|
bad = "stopTheWorld: not stopped (status != _Pgcstop)"
|
|
}
|
|
}
|
|
}
|
|
if atomic.Load(&freezing) != 0 {
|
|
// Some other thread is panicking. This can cause the
|
|
// sanity checks above to fail if the panic happens in
|
|
// the signal handler on a stopped thread. Either way,
|
|
// we should halt this thread.
|
|
lock(&deadlock)
|
|
lock(&deadlock)
|
|
}
|
|
if bad != "" {
|
|
throw(bad)
|
|
}
|
|
}
|
|
|
|
func mhelpgc() {
|
|
_g_ := getg()
|
|
_g_.m.helpgc = -1
|
|
}
|
|
|
|
func startTheWorldWithSema(emitTraceEvent bool) int64 {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // disable preemption because it can be holding p in a local var
|
|
if netpollinited() {
|
|
gp := netpoll(false) // non-blocking
|
|
injectglist(gp)
|
|
}
|
|
add := needaddgcproc()
|
|
lock(&sched.lock)
|
|
|
|
procs := gomaxprocs
|
|
if newprocs != 0 {
|
|
procs = newprocs
|
|
newprocs = 0
|
|
}
|
|
p1 := procresize(procs)
|
|
sched.gcwaiting = 0
|
|
if sched.sysmonwait != 0 {
|
|
sched.sysmonwait = 0
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
|
|
for p1 != nil {
|
|
p := p1
|
|
p1 = p1.link.ptr()
|
|
if p.m != 0 {
|
|
mp := p.m.ptr()
|
|
p.m = 0
|
|
if mp.nextp != 0 {
|
|
throw("startTheWorld: inconsistent mp->nextp")
|
|
}
|
|
mp.nextp.set(p)
|
|
notewakeup(&mp.park)
|
|
} else {
|
|
// Start M to run P. Do not start another M below.
|
|
newm(nil, p)
|
|
add = false
|
|
}
|
|
}
|
|
|
|
// Capture start-the-world time before doing clean-up tasks.
|
|
startTime := nanotime()
|
|
if emitTraceEvent {
|
|
traceGCSTWDone()
|
|
}
|
|
|
|
// Wakeup an additional proc in case we have excessive runnable goroutines
|
|
// in local queues or in the global queue. If we don't, the proc will park itself.
|
|
// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
|
|
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
|
|
wakep()
|
|
}
|
|
|
|
if add {
|
|
// If GC could have used another helper proc, start one now,
|
|
// in the hope that it will be available next time.
|
|
// It would have been even better to start it before the collection,
|
|
// but doing so requires allocating memory, so it's tricky to
|
|
// coordinate. This lazy approach works out in practice:
|
|
// we don't mind if the first couple gc rounds don't have quite
|
|
// the maximum number of procs.
|
|
newm(mhelpgc, nil)
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
|
|
return startTime
|
|
}
|
|
|
|
// Called to start an M.
|
|
//
|
|
// This must not split the stack because we may not even have stack
|
|
// bounds set up yet.
|
|
//
|
|
// May run during STW (because it doesn't have a P yet), so write
|
|
// barriers are not allowed.
|
|
//
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func mstart() {
|
|
_g_ := getg()
|
|
|
|
osStack := _g_.stack.lo == 0
|
|
if osStack {
|
|
// Initialize stack bounds from system stack.
|
|
// Cgo may have left stack size in stack.hi.
|
|
size := _g_.stack.hi
|
|
if size == 0 {
|
|
size = 8192 * sys.StackGuardMultiplier
|
|
}
|
|
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
|
|
_g_.stack.lo = _g_.stack.hi - size + 1024
|
|
}
|
|
// Initialize stack guards so that we can start calling
|
|
// both Go and C functions with stack growth prologues.
|
|
_g_.stackguard0 = _g_.stack.lo + _StackGuard
|
|
_g_.stackguard1 = _g_.stackguard0
|
|
mstart1()
|
|
|
|
// Exit this thread.
|
|
if GOOS == "windows" || GOOS == "solaris" || GOOS == "plan9" || GOOS == "darwin" {
|
|
// Window, Solaris, Darwin and Plan 9 always system-allocate
|
|
// the stack, but put it in _g_.stack before mstart,
|
|
// so the logic above hasn't set osStack yet.
|
|
osStack = true
|
|
}
|
|
mexit(osStack)
|
|
}
|
|
|
|
func mstart1() {
|
|
_g_ := getg()
|
|
|
|
if _g_ != _g_.m.g0 {
|
|
throw("bad runtime·mstart")
|
|
}
|
|
|
|
// Record the caller for use as the top of stack in mcall and
|
|
// for terminating the thread.
|
|
// We're never coming back to mstart1 after we call schedule,
|
|
// so other calls can reuse the current frame.
|
|
save(getcallerpc(), getcallersp())
|
|
asminit()
|
|
minit()
|
|
|
|
// Install signal handlers; after minit so that minit can
|
|
// prepare the thread to be able to handle the signals.
|
|
if _g_.m == &m0 {
|
|
mstartm0()
|
|
}
|
|
|
|
if fn := _g_.m.mstartfn; fn != nil {
|
|
fn()
|
|
}
|
|
|
|
if _g_.m.helpgc != 0 {
|
|
_g_.m.helpgc = 0
|
|
stopm()
|
|
} else if _g_.m != &m0 {
|
|
acquirep(_g_.m.nextp.ptr())
|
|
_g_.m.nextp = 0
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
// mstartm0 implements part of mstart1 that only runs on the m0.
|
|
//
|
|
// Write barriers are allowed here because we know the GC can't be
|
|
// running yet, so they'll be no-ops.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func mstartm0() {
|
|
// Create an extra M for callbacks on threads not created by Go.
|
|
// An extra M is also needed on Windows for callbacks created by
|
|
// syscall.NewCallback. See issue #6751 for details.
|
|
if (iscgo || GOOS == "windows") && !cgoHasExtraM {
|
|
cgoHasExtraM = true
|
|
newextram()
|
|
}
|
|
initsig(false)
|
|
}
|
|
|
|
// mexit tears down and exits the current thread.
|
|
//
|
|
// Don't call this directly to exit the thread, since it must run at
|
|
// the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to
|
|
// unwind the stack to the point that exits the thread.
|
|
//
|
|
// It is entered with m.p != nil, so write barriers are allowed. It
|
|
// will release the P before exiting.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func mexit(osStack bool) {
|
|
g := getg()
|
|
m := g.m
|
|
|
|
if m == &m0 {
|
|
// This is the main thread. Just wedge it.
|
|
//
|
|
// On Linux, exiting the main thread puts the process
|
|
// into a non-waitable zombie state. On Plan 9,
|
|
// exiting the main thread unblocks wait even though
|
|
// other threads are still running. On Solaris we can
|
|
// neither exitThread nor return from mstart. Other
|
|
// bad things probably happen on other platforms.
|
|
//
|
|
// We could try to clean up this M more before wedging
|
|
// it, but that complicates signal handling.
|
|
handoffp(releasep())
|
|
lock(&sched.lock)
|
|
sched.nmfreed++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
notesleep(&m.park)
|
|
throw("locked m0 woke up")
|
|
}
|
|
|
|
sigblock()
|
|
unminit()
|
|
|
|
// Free the gsignal stack.
|
|
if m.gsignal != nil {
|
|
stackfree(m.gsignal.stack)
|
|
}
|
|
|
|
// Remove m from allm.
|
|
lock(&sched.lock)
|
|
for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink {
|
|
if *pprev == m {
|
|
*pprev = m.alllink
|
|
goto found
|
|
}
|
|
}
|
|
throw("m not found in allm")
|
|
found:
|
|
if !osStack {
|
|
// Delay reaping m until it's done with the stack.
|
|
//
|
|
// If this is using an OS stack, the OS will free it
|
|
// so there's no need for reaping.
|
|
atomic.Store(&m.freeWait, 1)
|
|
// Put m on the free list, though it will not be reaped until
|
|
// freeWait is 0. Note that the free list must not be linked
|
|
// through alllink because some functions walk allm without
|
|
// locking, so may be using alllink.
|
|
m.freelink = sched.freem
|
|
sched.freem = m
|
|
}
|
|
unlock(&sched.lock)
|
|
|
|
// Release the P.
|
|
handoffp(releasep())
|
|
// After this point we must not have write barriers.
|
|
|
|
// Invoke the deadlock detector. This must happen after
|
|
// handoffp because it may have started a new M to take our
|
|
// P's work.
|
|
lock(&sched.lock)
|
|
sched.nmfreed++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
|
|
if osStack {
|
|
// Return from mstart and let the system thread
|
|
// library free the g0 stack and terminate the thread.
|
|
return
|
|
}
|
|
|
|
// mstart is the thread's entry point, so there's nothing to
|
|
// return to. Exit the thread directly. exitThread will clear
|
|
// m.freeWait when it's done with the stack and the m can be
|
|
// reaped.
|
|
exitThread(&m.freeWait)
|
|
}
|
|
|
|
// forEachP calls fn(p) for every P p when p reaches a GC safe point.
|
|
// If a P is currently executing code, this will bring the P to a GC
|
|
// safe point and execute fn on that P. If the P is not executing code
|
|
// (it is idle or in a syscall), this will call fn(p) directly while
|
|
// preventing the P from exiting its state. This does not ensure that
|
|
// fn will run on every CPU executing Go code, but it acts as a global
|
|
// memory barrier. GC uses this as a "ragged barrier."
|
|
//
|
|
// The caller must hold worldsema.
|
|
//
|
|
//go:systemstack
|
|
func forEachP(fn func(*p)) {
|
|
mp := acquirem()
|
|
_p_ := getg().m.p.ptr()
|
|
|
|
lock(&sched.lock)
|
|
if sched.safePointWait != 0 {
|
|
throw("forEachP: sched.safePointWait != 0")
|
|
}
|
|
sched.safePointWait = gomaxprocs - 1
|
|
sched.safePointFn = fn
|
|
|
|
// Ask all Ps to run the safe point function.
|
|
for _, p := range allp {
|
|
if p != _p_ {
|
|
atomic.Store(&p.runSafePointFn, 1)
|
|
}
|
|
}
|
|
preemptall()
|
|
|
|
// Any P entering _Pidle or _Psyscall from now on will observe
|
|
// p.runSafePointFn == 1 and will call runSafePointFn when
|
|
// changing its status to _Pidle/_Psyscall.
|
|
|
|
// Run safe point function for all idle Ps. sched.pidle will
|
|
// not change because we hold sched.lock.
|
|
for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
|
|
if atomic.Cas(&p.runSafePointFn, 1, 0) {
|
|
fn(p)
|
|
sched.safePointWait--
|
|
}
|
|
}
|
|
|
|
wait := sched.safePointWait > 0
|
|
unlock(&sched.lock)
|
|
|
|
// Run fn for the current P.
|
|
fn(_p_)
|
|
|
|
// Force Ps currently in _Psyscall into _Pidle and hand them
|
|
// off to induce safe point function execution.
|
|
for _, p := range allp {
|
|
s := p.status
|
|
if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(p)
|
|
traceProcStop(p)
|
|
}
|
|
p.syscalltick++
|
|
handoffp(p)
|
|
}
|
|
}
|
|
|
|
// Wait for remaining Ps to run fn.
|
|
if wait {
|
|
for {
|
|
// Wait for 100us, then try to re-preempt in
|
|
// case of any races.
|
|
//
|
|
// Requires system stack.
|
|
if notetsleep(&sched.safePointNote, 100*1000) {
|
|
noteclear(&sched.safePointNote)
|
|
break
|
|
}
|
|
preemptall()
|
|
}
|
|
}
|
|
if sched.safePointWait != 0 {
|
|
throw("forEachP: not done")
|
|
}
|
|
for _, p := range allp {
|
|
if p.runSafePointFn != 0 {
|
|
throw("forEachP: P did not run fn")
|
|
}
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
sched.safePointFn = nil
|
|
unlock(&sched.lock)
|
|
releasem(mp)
|
|
}
|
|
|
|
// runSafePointFn runs the safe point function, if any, for this P.
|
|
// This should be called like
|
|
//
|
|
// if getg().m.p.runSafePointFn != 0 {
|
|
// runSafePointFn()
|
|
// }
|
|
//
|
|
// runSafePointFn must be checked on any transition in to _Pidle or
|
|
// _Psyscall to avoid a race where forEachP sees that the P is running
|
|
// just before the P goes into _Pidle/_Psyscall and neither forEachP
|
|
// nor the P run the safe-point function.
|
|
func runSafePointFn() {
|
|
p := getg().m.p.ptr()
|
|
// Resolve the race between forEachP running the safe-point
|
|
// function on this P's behalf and this P running the
|
|
// safe-point function directly.
|
|
if !atomic.Cas(&p.runSafePointFn, 1, 0) {
|
|
return
|
|
}
|
|
sched.safePointFn(p)
|
|
lock(&sched.lock)
|
|
sched.safePointWait--
|
|
if sched.safePointWait == 0 {
|
|
notewakeup(&sched.safePointNote)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// When running with cgo, we call _cgo_thread_start
|
|
// to start threads for us so that we can play nicely with
|
|
// foreign code.
|
|
var cgoThreadStart unsafe.Pointer
|
|
|
|
type cgothreadstart struct {
|
|
g guintptr
|
|
tls *uint64
|
|
fn unsafe.Pointer
|
|
}
|
|
|
|
// Allocate a new m unassociated with any thread.
|
|
// Can use p for allocation context if needed.
|
|
// fn is recorded as the new m's m.mstartfn.
|
|
//
|
|
// This function is allowed to have write barriers even if the caller
|
|
// isn't because it borrows _p_.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func allocm(_p_ *p, fn func()) *m {
|
|
_g_ := getg()
|
|
_g_.m.locks++ // disable GC because it can be called from sysmon
|
|
if _g_.m.p == 0 {
|
|
acquirep(_p_) // temporarily borrow p for mallocs in this function
|
|
}
|
|
|
|
// Release the free M list. We need to do this somewhere and
|
|
// this may free up a stack we can use.
|
|
if sched.freem != nil {
|
|
lock(&sched.lock)
|
|
var newList *m
|
|
for freem := sched.freem; freem != nil; {
|
|
if freem.freeWait != 0 {
|
|
next := freem.freelink
|
|
freem.freelink = newList
|
|
newList = freem
|
|
freem = next
|
|
continue
|
|
}
|
|
stackfree(freem.g0.stack)
|
|
freem = freem.freelink
|
|
}
|
|
sched.freem = newList
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
mp := new(m)
|
|
mp.mstartfn = fn
|
|
mcommoninit(mp)
|
|
|
|
// In case of cgo or Solaris or Darwin, pthread_create will make us a stack.
|
|
// Windows and Plan 9 will layout sched stack on OS stack.
|
|
if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" || GOOS == "darwin" {
|
|
mp.g0 = malg(-1)
|
|
} else {
|
|
mp.g0 = malg(8192 * sys.StackGuardMultiplier)
|
|
}
|
|
mp.g0.m = mp
|
|
|
|
if _p_ == _g_.m.p.ptr() {
|
|
releasep()
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
|
|
return mp
|
|
}
|
|
|
|
// needm is called when a cgo callback happens on a
|
|
// thread without an m (a thread not created by Go).
|
|
// In this case, needm is expected to find an m to use
|
|
// and return with m, g initialized correctly.
|
|
// Since m and g are not set now (likely nil, but see below)
|
|
// needm is limited in what routines it can call. In particular
|
|
// it can only call nosplit functions (textflag 7) and cannot
|
|
// do any scheduling that requires an m.
|
|
//
|
|
// In order to avoid needing heavy lifting here, we adopt
|
|
// the following strategy: there is a stack of available m's
|
|
// that can be stolen. Using compare-and-swap
|
|
// to pop from the stack has ABA races, so we simulate
|
|
// a lock by doing an exchange (via casp) to steal the stack
|
|
// head and replace the top pointer with MLOCKED (1).
|
|
// This serves as a simple spin lock that we can use even
|
|
// without an m. The thread that locks the stack in this way
|
|
// unlocks the stack by storing a valid stack head pointer.
|
|
//
|
|
// In order to make sure that there is always an m structure
|
|
// available to be stolen, we maintain the invariant that there
|
|
// is always one more than needed. At the beginning of the
|
|
// program (if cgo is in use) the list is seeded with a single m.
|
|
// If needm finds that it has taken the last m off the list, its job
|
|
// is - once it has installed its own m so that it can do things like
|
|
// allocate memory - to create a spare m and put it on the list.
|
|
//
|
|
// Each of these extra m's also has a g0 and a curg that are
|
|
// pressed into service as the scheduling stack and current
|
|
// goroutine for the duration of the cgo callback.
|
|
//
|
|
// When the callback is done with the m, it calls dropm to
|
|
// put the m back on the list.
|
|
//go:nosplit
|
|
func needm(x byte) {
|
|
if (iscgo || GOOS == "windows") && !cgoHasExtraM {
|
|
// Can happen if C/C++ code calls Go from a global ctor.
|
|
// Can also happen on Windows if a global ctor uses a
|
|
// callback created by syscall.NewCallback. See issue #6751
|
|
// for details.
|
|
//
|
|
// Can not throw, because scheduler is not initialized yet.
|
|
write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
|
|
exit(1)
|
|
}
|
|
|
|
// Lock extra list, take head, unlock popped list.
|
|
// nilokay=false is safe here because of the invariant above,
|
|
// that the extra list always contains or will soon contain
|
|
// at least one m.
|
|
mp := lockextra(false)
|
|
|
|
// Set needextram when we've just emptied the list,
|
|
// so that the eventual call into cgocallbackg will
|
|
// allocate a new m for the extra list. We delay the
|
|
// allocation until then so that it can be done
|
|
// after exitsyscall makes sure it is okay to be
|
|
// running at all (that is, there's no garbage collection
|
|
// running right now).
|
|
mp.needextram = mp.schedlink == 0
|
|
extraMCount--
|
|
unlockextra(mp.schedlink.ptr())
|
|
|
|
// Save and block signals before installing g.
|
|
// Once g is installed, any incoming signals will try to execute,
|
|
// but we won't have the sigaltstack settings and other data
|
|
// set up appropriately until the end of minit, which will
|
|
// unblock the signals. This is the same dance as when
|
|
// starting a new m to run Go code via newosproc.
|
|
msigsave(mp)
|
|
sigblock()
|
|
|
|
// Install g (= m->g0) and set the stack bounds
|
|
// to match the current stack. We don't actually know
|
|
// how big the stack is, like we don't know how big any
|
|
// scheduling stack is, but we assume there's at least 32 kB,
|
|
// which is more than enough for us.
|
|
setg(mp.g0)
|
|
_g_ := getg()
|
|
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
|
|
_g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
|
|
_g_.stackguard0 = _g_.stack.lo + _StackGuard
|
|
|
|
// Initialize this thread to use the m.
|
|
asminit()
|
|
minit()
|
|
|
|
// mp.curg is now a real goroutine.
|
|
casgstatus(mp.curg, _Gdead, _Gsyscall)
|
|
atomic.Xadd(&sched.ngsys, -1)
|
|
}
|
|
|
|
var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
|
|
|
|
// newextram allocates m's and puts them on the extra list.
|
|
// It is called with a working local m, so that it can do things
|
|
// like call schedlock and allocate.
|
|
func newextram() {
|
|
c := atomic.Xchg(&extraMWaiters, 0)
|
|
if c > 0 {
|
|
for i := uint32(0); i < c; i++ {
|
|
oneNewExtraM()
|
|
}
|
|
} else {
|
|
// Make sure there is at least one extra M.
|
|
mp := lockextra(true)
|
|
unlockextra(mp)
|
|
if mp == nil {
|
|
oneNewExtraM()
|
|
}
|
|
}
|
|
}
|
|
|
|
// oneNewExtraM allocates an m and puts it on the extra list.
|
|
func oneNewExtraM() {
|
|
// Create extra goroutine locked to extra m.
|
|
// The goroutine is the context in which the cgo callback will run.
|
|
// The sched.pc will never be returned to, but setting it to
|
|
// goexit makes clear to the traceback routines where
|
|
// the goroutine stack ends.
|
|
mp := allocm(nil, nil)
|
|
gp := malg(4096)
|
|
gp.sched.pc = funcPC(goexit) + sys.PCQuantum
|
|
gp.sched.sp = gp.stack.hi
|
|
gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame
|
|
gp.sched.lr = 0
|
|
gp.sched.g = guintptr(unsafe.Pointer(gp))
|
|
gp.syscallpc = gp.sched.pc
|
|
gp.syscallsp = gp.sched.sp
|
|
gp.stktopsp = gp.sched.sp
|
|
gp.gcscanvalid = true
|
|
gp.gcscandone = true
|
|
// malg returns status as _Gidle. Change to _Gdead before
|
|
// adding to allg where GC can see it. We use _Gdead to hide
|
|
// this from tracebacks and stack scans since it isn't a
|
|
// "real" goroutine until needm grabs it.
|
|
casgstatus(gp, _Gidle, _Gdead)
|
|
gp.m = mp
|
|
mp.curg = gp
|
|
mp.lockedInt++
|
|
mp.lockedg.set(gp)
|
|
gp.lockedm.set(mp)
|
|
gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
|
|
if raceenabled {
|
|
gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum)
|
|
}
|
|
// put on allg for garbage collector
|
|
allgadd(gp)
|
|
|
|
// gp is now on the allg list, but we don't want it to be
|
|
// counted by gcount. It would be more "proper" to increment
|
|
// sched.ngfree, but that requires locking. Incrementing ngsys
|
|
// has the same effect.
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
|
|
// Add m to the extra list.
|
|
mnext := lockextra(true)
|
|
mp.schedlink.set(mnext)
|
|
extraMCount++
|
|
unlockextra(mp)
|
|
}
|
|
|
|
// dropm is called when a cgo callback has called needm but is now
|
|
// done with the callback and returning back into the non-Go thread.
|
|
// It puts the current m back onto the extra list.
|
|
//
|
|
// The main expense here is the call to signalstack to release the
|
|
// m's signal stack, and then the call to needm on the next callback
|
|
// from this thread. It is tempting to try to save the m for next time,
|
|
// which would eliminate both these costs, but there might not be
|
|
// a next time: the current thread (which Go does not control) might exit.
|
|
// If we saved the m for that thread, there would be an m leak each time
|
|
// such a thread exited. Instead, we acquire and release an m on each
|
|
// call. These should typically not be scheduling operations, just a few
|
|
// atomics, so the cost should be small.
|
|
//
|
|
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
|
|
// variable using pthread_key_create. Unlike the pthread keys we already use
|
|
// on OS X, this dummy key would never be read by Go code. It would exist
|
|
// only so that we could register at thread-exit-time destructor.
|
|
// That destructor would put the m back onto the extra list.
|
|
// This is purely a performance optimization. The current version,
|
|
// in which dropm happens on each cgo call, is still correct too.
|
|
// We may have to keep the current version on systems with cgo
|
|
// but without pthreads, like Windows.
|
|
func dropm() {
|
|
// Clear m and g, and return m to the extra list.
|
|
// After the call to setg we can only call nosplit functions
|
|
// with no pointer manipulation.
|
|
mp := getg().m
|
|
|
|
// Return mp.curg to dead state.
|
|
casgstatus(mp.curg, _Gsyscall, _Gdead)
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
|
|
// Block signals before unminit.
|
|
// Unminit unregisters the signal handling stack (but needs g on some systems).
|
|
// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
|
|
// It's important not to try to handle a signal between those two steps.
|
|
sigmask := mp.sigmask
|
|
sigblock()
|
|
unminit()
|
|
|
|
mnext := lockextra(true)
|
|
extraMCount++
|
|
mp.schedlink.set(mnext)
|
|
|
|
setg(nil)
|
|
|
|
// Commit the release of mp.
|
|
unlockextra(mp)
|
|
|
|
msigrestore(sigmask)
|
|
}
|
|
|
|
// A helper function for EnsureDropM.
|
|
func getm() uintptr {
|
|
return uintptr(unsafe.Pointer(getg().m))
|
|
}
|
|
|
|
var extram uintptr
|
|
var extraMCount uint32 // Protected by lockextra
|
|
var extraMWaiters uint32
|
|
|
|
// lockextra locks the extra list and returns the list head.
|
|
// The caller must unlock the list by storing a new list head
|
|
// to extram. If nilokay is true, then lockextra will
|
|
// return a nil list head if that's what it finds. If nilokay is false,
|
|
// lockextra will keep waiting until the list head is no longer nil.
|
|
//go:nosplit
|
|
func lockextra(nilokay bool) *m {
|
|
const locked = 1
|
|
|
|
incr := false
|
|
for {
|
|
old := atomic.Loaduintptr(&extram)
|
|
if old == locked {
|
|
yield := osyield
|
|
yield()
|
|
continue
|
|
}
|
|
if old == 0 && !nilokay {
|
|
if !incr {
|
|
// Add 1 to the number of threads
|
|
// waiting for an M.
|
|
// This is cleared by newextram.
|
|
atomic.Xadd(&extraMWaiters, 1)
|
|
incr = true
|
|
}
|
|
usleep(1)
|
|
continue
|
|
}
|
|
if atomic.Casuintptr(&extram, old, locked) {
|
|
return (*m)(unsafe.Pointer(old))
|
|
}
|
|
yield := osyield
|
|
yield()
|
|
continue
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
func unlockextra(mp *m) {
|
|
atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
|
|
}
|
|
|
|
// execLock serializes exec and clone to avoid bugs or unspecified behaviour
|
|
// around exec'ing while creating/destroying threads. See issue #19546.
|
|
var execLock rwmutex
|
|
|
|
// newmHandoff contains a list of m structures that need new OS threads.
|
|
// This is used by newm in situations where newm itself can't safely
|
|
// start an OS thread.
|
|
var newmHandoff struct {
|
|
lock mutex
|
|
|
|
// newm points to a list of M structures that need new OS
|
|
// threads. The list is linked through m.schedlink.
|
|
newm muintptr
|
|
|
|
// waiting indicates that wake needs to be notified when an m
|
|
// is put on the list.
|
|
waiting bool
|
|
wake note
|
|
|
|
// haveTemplateThread indicates that the templateThread has
|
|
// been started. This is not protected by lock. Use cas to set
|
|
// to 1.
|
|
haveTemplateThread uint32
|
|
}
|
|
|
|
// Create a new m. It will start off with a call to fn, or else the scheduler.
|
|
// fn needs to be static and not a heap allocated closure.
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func newm(fn func(), _p_ *p) {
|
|
mp := allocm(_p_, fn)
|
|
mp.nextp.set(_p_)
|
|
mp.sigmask = initSigmask
|
|
if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" {
|
|
// We're on a locked M or a thread that may have been
|
|
// started by C. The kernel state of this thread may
|
|
// be strange (the user may have locked it for that
|
|
// purpose). We don't want to clone that into another
|
|
// thread. Instead, ask a known-good thread to create
|
|
// the thread for us.
|
|
//
|
|
// This is disabled on Plan 9. See golang.org/issue/22227.
|
|
//
|
|
// TODO: This may be unnecessary on Windows, which
|
|
// doesn't model thread creation off fork.
|
|
lock(&newmHandoff.lock)
|
|
if newmHandoff.haveTemplateThread == 0 {
|
|
throw("on a locked thread with no template thread")
|
|
}
|
|
mp.schedlink = newmHandoff.newm
|
|
newmHandoff.newm.set(mp)
|
|
if newmHandoff.waiting {
|
|
newmHandoff.waiting = false
|
|
notewakeup(&newmHandoff.wake)
|
|
}
|
|
unlock(&newmHandoff.lock)
|
|
return
|
|
}
|
|
newm1(mp)
|
|
}
|
|
|
|
func newm1(mp *m) {
|
|
if iscgo {
|
|
var ts cgothreadstart
|
|
if _cgo_thread_start == nil {
|
|
throw("_cgo_thread_start missing")
|
|
}
|
|
ts.g.set(mp.g0)
|
|
ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
|
|
ts.fn = unsafe.Pointer(funcPC(mstart))
|
|
if msanenabled {
|
|
msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
|
|
}
|
|
execLock.rlock() // Prevent process clone.
|
|
asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
|
|
execLock.runlock()
|
|
return
|
|
}
|
|
execLock.rlock() // Prevent process clone.
|
|
newosproc(mp)
|
|
execLock.runlock()
|
|
}
|
|
|
|
// startTemplateThread starts the template thread if it is not already
|
|
// running.
|
|
//
|
|
// The calling thread must itself be in a known-good state.
|
|
func startTemplateThread() {
|
|
if GOARCH == "wasm" { // no threads on wasm yet
|
|
return
|
|
}
|
|
if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) {
|
|
return
|
|
}
|
|
newm(templateThread, nil)
|
|
}
|
|
|
|
// templateThread is a thread in a known-good state that exists solely
|
|
// to start new threads in known-good states when the calling thread
|
|
// may not be a a good state.
|
|
//
|
|
// Many programs never need this, so templateThread is started lazily
|
|
// when we first enter a state that might lead to running on a thread
|
|
// in an unknown state.
|
|
//
|
|
// templateThread runs on an M without a P, so it must not have write
|
|
// barriers.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func templateThread() {
|
|
lock(&sched.lock)
|
|
sched.nmsys++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
|
|
for {
|
|
lock(&newmHandoff.lock)
|
|
for newmHandoff.newm != 0 {
|
|
newm := newmHandoff.newm.ptr()
|
|
newmHandoff.newm = 0
|
|
unlock(&newmHandoff.lock)
|
|
for newm != nil {
|
|
next := newm.schedlink.ptr()
|
|
newm.schedlink = 0
|
|
newm1(newm)
|
|
newm = next
|
|
}
|
|
lock(&newmHandoff.lock)
|
|
}
|
|
newmHandoff.waiting = true
|
|
noteclear(&newmHandoff.wake)
|
|
unlock(&newmHandoff.lock)
|
|
notesleep(&newmHandoff.wake)
|
|
}
|
|
}
|
|
|
|
// Stops execution of the current m until new work is available.
|
|
// Returns with acquired P.
|
|
func stopm() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.locks != 0 {
|
|
throw("stopm holding locks")
|
|
}
|
|
if _g_.m.p != 0 {
|
|
throw("stopm holding p")
|
|
}
|
|
if _g_.m.spinning {
|
|
throw("stopm spinning")
|
|
}
|
|
|
|
retry:
|
|
lock(&sched.lock)
|
|
mput(_g_.m)
|
|
unlock(&sched.lock)
|
|
notesleep(&_g_.m.park)
|
|
noteclear(&_g_.m.park)
|
|
if _g_.m.helpgc != 0 {
|
|
// helpgc() set _g_.m.p and _g_.m.mcache, so we have a P.
|
|
gchelper()
|
|
// Undo the effects of helpgc().
|
|
_g_.m.helpgc = 0
|
|
_g_.m.mcache = nil
|
|
_g_.m.p = 0
|
|
goto retry
|
|
}
|
|
acquirep(_g_.m.nextp.ptr())
|
|
_g_.m.nextp = 0
|
|
}
|
|
|
|
func mspinning() {
|
|
// startm's caller incremented nmspinning. Set the new M's spinning.
|
|
getg().m.spinning = true
|
|
}
|
|
|
|
// Schedules some M to run the p (creates an M if necessary).
|
|
// If p==nil, tries to get an idle P, if no idle P's does nothing.
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
|
// If spinning is set, the caller has incremented nmspinning and startm will
|
|
// either decrement nmspinning or set m.spinning in the newly started M.
|
|
//go:nowritebarrierrec
|
|
func startm(_p_ *p, spinning bool) {
|
|
lock(&sched.lock)
|
|
if _p_ == nil {
|
|
_p_ = pidleget()
|
|
if _p_ == nil {
|
|
unlock(&sched.lock)
|
|
if spinning {
|
|
// The caller incremented nmspinning, but there are no idle Ps,
|
|
// so it's okay to just undo the increment and give up.
|
|
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
|
|
throw("startm: negative nmspinning")
|
|
}
|
|
}
|
|
return
|
|
}
|
|
}
|
|
mp := mget()
|
|
unlock(&sched.lock)
|
|
if mp == nil {
|
|
var fn func()
|
|
if spinning {
|
|
// The caller incremented nmspinning, so set m.spinning in the new M.
|
|
fn = mspinning
|
|
}
|
|
newm(fn, _p_)
|
|
return
|
|
}
|
|
if mp.spinning {
|
|
throw("startm: m is spinning")
|
|
}
|
|
if mp.nextp != 0 {
|
|
throw("startm: m has p")
|
|
}
|
|
if spinning && !runqempty(_p_) {
|
|
throw("startm: p has runnable gs")
|
|
}
|
|
// The caller incremented nmspinning, so set m.spinning in the new M.
|
|
mp.spinning = spinning
|
|
mp.nextp.set(_p_)
|
|
notewakeup(&mp.park)
|
|
}
|
|
|
|
// Hands off P from syscall or locked M.
|
|
// Always runs without a P, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func handoffp(_p_ *p) {
|
|
// handoffp must start an M in any situation where
|
|
// findrunnable would return a G to run on _p_.
|
|
|
|
// if it has local work, start it straight away
|
|
if !runqempty(_p_) || sched.runqsize != 0 {
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// if it has GC work, start it straight away
|
|
if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// no local work, check that there are no spinning/idle M's,
|
|
// otherwise our help is not required
|
|
if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
|
|
startm(_p_, true)
|
|
return
|
|
}
|
|
lock(&sched.lock)
|
|
if sched.gcwaiting != 0 {
|
|
_p_.status = _Pgcstop
|
|
sched.stopwait--
|
|
if sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
|
|
sched.safePointFn(_p_)
|
|
sched.safePointWait--
|
|
if sched.safePointWait == 0 {
|
|
notewakeup(&sched.safePointNote)
|
|
}
|
|
}
|
|
if sched.runqsize != 0 {
|
|
unlock(&sched.lock)
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// If this is the last running P and nobody is polling network,
|
|
// need to wakeup another M to poll network.
|
|
if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
|
|
unlock(&sched.lock)
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
pidleput(_p_)
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Tries to add one more P to execute G's.
|
|
// Called when a G is made runnable (newproc, ready).
|
|
func wakep() {
|
|
// be conservative about spinning threads
|
|
if !atomic.Cas(&sched.nmspinning, 0, 1) {
|
|
return
|
|
}
|
|
startm(nil, true)
|
|
}
|
|
|
|
// Stops execution of the current m that is locked to a g until the g is runnable again.
|
|
// Returns with acquired P.
|
|
func stoplockedm() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m {
|
|
throw("stoplockedm: inconsistent locking")
|
|
}
|
|
if _g_.m.p != 0 {
|
|
// Schedule another M to run this p.
|
|
_p_ := releasep()
|
|
handoffp(_p_)
|
|
}
|
|
incidlelocked(1)
|
|
// Wait until another thread schedules lockedg again.
|
|
notesleep(&_g_.m.park)
|
|
noteclear(&_g_.m.park)
|
|
status := readgstatus(_g_.m.lockedg.ptr())
|
|
if status&^_Gscan != _Grunnable {
|
|
print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
|
|
dumpgstatus(_g_)
|
|
throw("stoplockedm: not runnable")
|
|
}
|
|
acquirep(_g_.m.nextp.ptr())
|
|
_g_.m.nextp = 0
|
|
}
|
|
|
|
// Schedules the locked m to run the locked gp.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func startlockedm(gp *g) {
|
|
_g_ := getg()
|
|
|
|
mp := gp.lockedm.ptr()
|
|
if mp == _g_.m {
|
|
throw("startlockedm: locked to me")
|
|
}
|
|
if mp.nextp != 0 {
|
|
throw("startlockedm: m has p")
|
|
}
|
|
// directly handoff current P to the locked m
|
|
incidlelocked(-1)
|
|
_p_ := releasep()
|
|
mp.nextp.set(_p_)
|
|
notewakeup(&mp.park)
|
|
stopm()
|
|
}
|
|
|
|
// Stops the current m for stopTheWorld.
|
|
// Returns when the world is restarted.
|
|
func gcstopm() {
|
|
_g_ := getg()
|
|
|
|
if sched.gcwaiting == 0 {
|
|
throw("gcstopm: not waiting for gc")
|
|
}
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
// OK to just drop nmspinning here,
|
|
// startTheWorld will unpark threads as necessary.
|
|
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
|
|
throw("gcstopm: negative nmspinning")
|
|
}
|
|
}
|
|
_p_ := releasep()
|
|
lock(&sched.lock)
|
|
_p_.status = _Pgcstop
|
|
sched.stopwait--
|
|
if sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
stopm()
|
|
}
|
|
|
|
// Schedules gp to run on the current M.
|
|
// If inheritTime is true, gp inherits the remaining time in the
|
|
// current time slice. Otherwise, it starts a new time slice.
|
|
// Never returns.
|
|
//
|
|
// Write barriers are allowed because this is called immediately after
|
|
// acquiring a P in several places.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func execute(gp *g, inheritTime bool) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Grunnable, _Grunning)
|
|
gp.waitsince = 0
|
|
gp.preempt = false
|
|
gp.stackguard0 = gp.stack.lo + _StackGuard
|
|
if !inheritTime {
|
|
_g_.m.p.ptr().schedtick++
|
|
}
|
|
_g_.m.curg = gp
|
|
gp.m = _g_.m
|
|
|
|
// Check whether the profiler needs to be turned on or off.
|
|
hz := sched.profilehz
|
|
if _g_.m.profilehz != hz {
|
|
setThreadCPUProfiler(hz)
|
|
}
|
|
|
|
if trace.enabled {
|
|
// GoSysExit has to happen when we have a P, but before GoStart.
|
|
// So we emit it here.
|
|
if gp.syscallsp != 0 && gp.sysblocktraced {
|
|
traceGoSysExit(gp.sysexitticks)
|
|
}
|
|
traceGoStart()
|
|
}
|
|
|
|
gogo(&gp.sched)
|
|
}
|
|
|
|
// Finds a runnable goroutine to execute.
|
|
// Tries to steal from other P's, get g from global queue, poll network.
|
|
func findrunnable() (gp *g, inheritTime bool) {
|
|
_g_ := getg()
|
|
|
|
// The conditions here and in handoffp must agree: if
|
|
// findrunnable would return a G to run, handoffp must start
|
|
// an M.
|
|
|
|
top:
|
|
_p_ := _g_.m.p.ptr()
|
|
if sched.gcwaiting != 0 {
|
|
gcstopm()
|
|
goto top
|
|
}
|
|
if _p_.runSafePointFn != 0 {
|
|
runSafePointFn()
|
|
}
|
|
if fingwait && fingwake {
|
|
if gp := wakefing(); gp != nil {
|
|
ready(gp, 0, true)
|
|
}
|
|
}
|
|
if *cgo_yield != nil {
|
|
asmcgocall(*cgo_yield, nil)
|
|
}
|
|
|
|
// local runq
|
|
if gp, inheritTime := runqget(_p_); gp != nil {
|
|
return gp, inheritTime
|
|
}
|
|
|
|
// global runq
|
|
if sched.runqsize != 0 {
|
|
lock(&sched.lock)
|
|
gp := globrunqget(_p_, 0)
|
|
unlock(&sched.lock)
|
|
if gp != nil {
|
|
return gp, false
|
|
}
|
|
}
|
|
|
|
// Poll network.
|
|
// This netpoll is only an optimization before we resort to stealing.
|
|
// We can safely skip it if there are no waiters or a thread is blocked
|
|
// in netpoll already. If there is any kind of logical race with that
|
|
// blocked thread (e.g. it has already returned from netpoll, but does
|
|
// not set lastpoll yet), this thread will do blocking netpoll below
|
|
// anyway.
|
|
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
|
|
if gp := netpoll(false); gp != nil { // non-blocking
|
|
// netpoll returns list of goroutines linked by schedlink.
|
|
injectglist(gp.schedlink.ptr())
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
}
|
|
|
|
// Steal work from other P's.
|
|
procs := uint32(gomaxprocs)
|
|
if atomic.Load(&sched.npidle) == procs-1 {
|
|
// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
|
|
// New work can appear from returning syscall/cgocall, network or timers.
|
|
// Neither of that submits to local run queues, so no point in stealing.
|
|
goto stop
|
|
}
|
|
// If number of spinning M's >= number of busy P's, block.
|
|
// This is necessary to prevent excessive CPU consumption
|
|
// when GOMAXPROCS>>1 but the program parallelism is low.
|
|
if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
|
|
goto stop
|
|
}
|
|
if !_g_.m.spinning {
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
}
|
|
for i := 0; i < 4; i++ {
|
|
for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
|
|
if sched.gcwaiting != 0 {
|
|
goto top
|
|
}
|
|
stealRunNextG := i > 2 // first look for ready queues with more than 1 g
|
|
if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
|
|
return gp, false
|
|
}
|
|
}
|
|
}
|
|
|
|
stop:
|
|
|
|
// We have nothing to do. If we're in the GC mark phase, can
|
|
// safely scan and blacken objects, and have work to do, run
|
|
// idle-time marking rather than give up the P.
|
|
if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
|
|
_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
|
|
gp := _p_.gcBgMarkWorker.ptr()
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
|
|
// Before we drop our P, make a snapshot of the allp slice,
|
|
// which can change underfoot once we no longer block
|
|
// safe-points. We don't need to snapshot the contents because
|
|
// everything up to cap(allp) is immutable.
|
|
allpSnapshot := allp
|
|
|
|
// return P and block
|
|
lock(&sched.lock)
|
|
if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
|
|
unlock(&sched.lock)
|
|
goto top
|
|
}
|
|
if sched.runqsize != 0 {
|
|
gp := globrunqget(_p_, 0)
|
|
unlock(&sched.lock)
|
|
return gp, false
|
|
}
|
|
if releasep() != _p_ {
|
|
throw("findrunnable: wrong p")
|
|
}
|
|
pidleput(_p_)
|
|
unlock(&sched.lock)
|
|
|
|
// Delicate dance: thread transitions from spinning to non-spinning state,
|
|
// potentially concurrently with submission of new goroutines. We must
|
|
// drop nmspinning first and then check all per-P queues again (with
|
|
// #StoreLoad memory barrier in between). If we do it the other way around,
|
|
// another thread can submit a goroutine after we've checked all run queues
|
|
// but before we drop nmspinning; as the result nobody will unpark a thread
|
|
// to run the goroutine.
|
|
// If we discover new work below, we need to restore m.spinning as a signal
|
|
// for resetspinning to unpark a new worker thread (because there can be more
|
|
// than one starving goroutine). However, if after discovering new work
|
|
// we also observe no idle Ps, it is OK to just park the current thread:
|
|
// the system is fully loaded so no spinning threads are required.
|
|
// Also see "Worker thread parking/unparking" comment at the top of the file.
|
|
wasSpinning := _g_.m.spinning
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
|
|
throw("findrunnable: negative nmspinning")
|
|
}
|
|
}
|
|
|
|
// check all runqueues once again
|
|
for _, _p_ := range allpSnapshot {
|
|
if !runqempty(_p_) {
|
|
lock(&sched.lock)
|
|
_p_ = pidleget()
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
if wasSpinning {
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
}
|
|
goto top
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
// Check for idle-priority GC work again.
|
|
if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) {
|
|
lock(&sched.lock)
|
|
_p_ = pidleget()
|
|
if _p_ != nil && _p_.gcBgMarkWorker == 0 {
|
|
pidleput(_p_)
|
|
_p_ = nil
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
if wasSpinning {
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
}
|
|
// Go back to idle GC check.
|
|
goto stop
|
|
}
|
|
}
|
|
|
|
// poll network
|
|
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
|
|
if _g_.m.p != 0 {
|
|
throw("findrunnable: netpoll with p")
|
|
}
|
|
if _g_.m.spinning {
|
|
throw("findrunnable: netpoll with spinning")
|
|
}
|
|
gp := netpoll(true) // block until new work is available
|
|
atomic.Store64(&sched.lastpoll, uint64(nanotime()))
|
|
if gp != nil {
|
|
lock(&sched.lock)
|
|
_p_ = pidleget()
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
injectglist(gp.schedlink.ptr())
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
injectglist(gp)
|
|
}
|
|
}
|
|
stopm()
|
|
goto top
|
|
}
|
|
|
|
// pollWork returns true if there is non-background work this P could
|
|
// be doing. This is a fairly lightweight check to be used for
|
|
// background work loops, like idle GC. It checks a subset of the
|
|
// conditions checked by the actual scheduler.
|
|
func pollWork() bool {
|
|
if sched.runqsize != 0 {
|
|
return true
|
|
}
|
|
p := getg().m.p.ptr()
|
|
if !runqempty(p) {
|
|
return true
|
|
}
|
|
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 {
|
|
if gp := netpoll(false); gp != nil {
|
|
injectglist(gp)
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func resetspinning() {
|
|
_g_ := getg()
|
|
if !_g_.m.spinning {
|
|
throw("resetspinning: not a spinning m")
|
|
}
|
|
_g_.m.spinning = false
|
|
nmspinning := atomic.Xadd(&sched.nmspinning, -1)
|
|
if int32(nmspinning) < 0 {
|
|
throw("findrunnable: negative nmspinning")
|
|
}
|
|
// M wakeup policy is deliberately somewhat conservative, so check if we
|
|
// need to wakeup another P here. See "Worker thread parking/unparking"
|
|
// comment at the top of the file for details.
|
|
if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
|
|
wakep()
|
|
}
|
|
}
|
|
|
|
// Injects the list of runnable G's into the scheduler.
|
|
// Can run concurrently with GC.
|
|
func injectglist(glist *g) {
|
|
if glist == nil {
|
|
return
|
|
}
|
|
if trace.enabled {
|
|
for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
}
|
|
lock(&sched.lock)
|
|
var n int
|
|
for n = 0; glist != nil; n++ {
|
|
gp := glist
|
|
glist = gp.schedlink.ptr()
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
globrunqput(gp)
|
|
}
|
|
unlock(&sched.lock)
|
|
for ; n != 0 && sched.npidle != 0; n-- {
|
|
startm(nil, false)
|
|
}
|
|
}
|
|
|
|
// One round of scheduler: find a runnable goroutine and execute it.
|
|
// Never returns.
|
|
func schedule() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.locks != 0 {
|
|
throw("schedule: holding locks")
|
|
}
|
|
|
|
if _g_.m.lockedg != 0 {
|
|
stoplockedm()
|
|
execute(_g_.m.lockedg.ptr(), false) // Never returns.
|
|
}
|
|
|
|
// We should not schedule away from a g that is executing a cgo call,
|
|
// since the cgo call is using the m's g0 stack.
|
|
if _g_.m.incgo {
|
|
throw("schedule: in cgo")
|
|
}
|
|
|
|
top:
|
|
if sched.gcwaiting != 0 {
|
|
gcstopm()
|
|
goto top
|
|
}
|
|
if _g_.m.p.ptr().runSafePointFn != 0 {
|
|
runSafePointFn()
|
|
}
|
|
|
|
var gp *g
|
|
var inheritTime bool
|
|
if trace.enabled || trace.shutdown {
|
|
gp = traceReader()
|
|
if gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
}
|
|
if gp == nil && gcBlackenEnabled != 0 {
|
|
gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
|
|
}
|
|
if gp == nil {
|
|
// Check the global runnable queue once in a while to ensure fairness.
|
|
// Otherwise two goroutines can completely occupy the local runqueue
|
|
// by constantly respawning each other.
|
|
if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
|
|
lock(&sched.lock)
|
|
gp = globrunqget(_g_.m.p.ptr(), 1)
|
|
unlock(&sched.lock)
|
|
}
|
|
}
|
|
if gp == nil {
|
|
gp, inheritTime = runqget(_g_.m.p.ptr())
|
|
if gp != nil && _g_.m.spinning {
|
|
throw("schedule: spinning with local work")
|
|
}
|
|
}
|
|
if gp == nil {
|
|
gp, inheritTime = findrunnable() // blocks until work is available
|
|
}
|
|
|
|
// This thread is going to run a goroutine and is not spinning anymore,
|
|
// so if it was marked as spinning we need to reset it now and potentially
|
|
// start a new spinning M.
|
|
if _g_.m.spinning {
|
|
resetspinning()
|
|
}
|
|
|
|
if gp.lockedm != 0 {
|
|
// Hands off own p to the locked m,
|
|
// then blocks waiting for a new p.
|
|
startlockedm(gp)
|
|
goto top
|
|
}
|
|
|
|
execute(gp, inheritTime)
|
|
}
|
|
|
|
// dropg removes the association between m and the current goroutine m->curg (gp for short).
|
|
// Typically a caller sets gp's status away from Grunning and then
|
|
// immediately calls dropg to finish the job. The caller is also responsible
|
|
// for arranging that gp will be restarted using ready at an
|
|
// appropriate time. After calling dropg and arranging for gp to be
|
|
// readied later, the caller can do other work but eventually should
|
|
// call schedule to restart the scheduling of goroutines on this m.
|
|
func dropg() {
|
|
_g_ := getg()
|
|
|
|
setMNoWB(&_g_.m.curg.m, nil)
|
|
setGNoWB(&_g_.m.curg, nil)
|
|
}
|
|
|
|
func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
|
|
unlock((*mutex)(lock))
|
|
return true
|
|
}
|
|
|
|
// park continuation on g0.
|
|
func park_m(gp *g) {
|
|
_g_ := getg()
|
|
|
|
if trace.enabled {
|
|
traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip)
|
|
}
|
|
|
|
casgstatus(gp, _Grunning, _Gwaiting)
|
|
dropg()
|
|
|
|
if _g_.m.waitunlockf != nil {
|
|
fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
|
|
ok := fn(gp, _g_.m.waitlock)
|
|
_g_.m.waitunlockf = nil
|
|
_g_.m.waitlock = nil
|
|
if !ok {
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 2)
|
|
}
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
execute(gp, true) // Schedule it back, never returns.
|
|
}
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
func goschedImpl(gp *g) {
|
|
status := readgstatus(gp)
|
|
if status&^_Gscan != _Grunning {
|
|
dumpgstatus(gp)
|
|
throw("bad g status")
|
|
}
|
|
casgstatus(gp, _Grunning, _Grunnable)
|
|
dropg()
|
|
lock(&sched.lock)
|
|
globrunqput(gp)
|
|
unlock(&sched.lock)
|
|
|
|
schedule()
|
|
}
|
|
|
|
// Gosched continuation on g0.
|
|
func gosched_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoSched()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
// goschedguarded is a forbidden-states-avoided version of gosched_m
|
|
func goschedguarded_m(gp *g) {
|
|
|
|
if gp.m.locks != 0 || gp.m.mallocing != 0 || gp.m.preemptoff != "" || gp.m.p.ptr().status != _Prunning {
|
|
gogo(&gp.sched) // never return
|
|
}
|
|
|
|
if trace.enabled {
|
|
traceGoSched()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
func gopreempt_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoPreempt()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
// Finishes execution of the current goroutine.
|
|
func goexit1() {
|
|
if raceenabled {
|
|
racegoend()
|
|
}
|
|
if trace.enabled {
|
|
traceGoEnd()
|
|
}
|
|
mcall(goexit0)
|
|
}
|
|
|
|
// goexit continuation on g0.
|
|
func goexit0(gp *g) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Grunning, _Gdead)
|
|
if isSystemGoroutine(gp) {
|
|
atomic.Xadd(&sched.ngsys, -1)
|
|
}
|
|
gp.m = nil
|
|
locked := gp.lockedm != 0
|
|
gp.lockedm = 0
|
|
_g_.m.lockedg = 0
|
|
gp.paniconfault = false
|
|
gp._defer = nil // should be true already but just in case.
|
|
gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
|
|
gp.writebuf = nil
|
|
gp.waitreason = 0
|
|
gp.param = nil
|
|
gp.labels = nil
|
|
gp.timer = nil
|
|
|
|
if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 {
|
|
// Flush assist credit to the global pool. This gives
|
|
// better information to pacing if the application is
|
|
// rapidly creating an exiting goroutines.
|
|
scanCredit := int64(gcController.assistWorkPerByte * float64(gp.gcAssistBytes))
|
|
atomic.Xaddint64(&gcController.bgScanCredit, scanCredit)
|
|
gp.gcAssistBytes = 0
|
|
}
|
|
|
|
// Note that gp's stack scan is now "valid" because it has no
|
|
// stack.
|
|
gp.gcscanvalid = true
|
|
dropg()
|
|
|
|
if GOARCH == "wasm" { // no threads yet on wasm
|
|
gfput(_g_.m.p.ptr(), gp)
|
|
schedule() // never returns
|
|
}
|
|
|
|
if _g_.m.lockedInt != 0 {
|
|
print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n")
|
|
throw("internal lockOSThread error")
|
|
}
|
|
_g_.m.lockedExt = 0
|
|
gfput(_g_.m.p.ptr(), gp)
|
|
if locked {
|
|
// The goroutine may have locked this thread because
|
|
// it put it in an unusual kernel state. Kill it
|
|
// rather than returning it to the thread pool.
|
|
|
|
// Return to mstart, which will release the P and exit
|
|
// the thread.
|
|
if GOOS != "plan9" { // See golang.org/issue/22227.
|
|
gogo(&_g_.m.g0.sched)
|
|
}
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
// save updates getg().sched to refer to pc and sp so that a following
|
|
// gogo will restore pc and sp.
|
|
//
|
|
// save must not have write barriers because invoking a write barrier
|
|
// can clobber getg().sched.
|
|
//
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func save(pc, sp uintptr) {
|
|
_g_ := getg()
|
|
|
|
_g_.sched.pc = pc
|
|
_g_.sched.sp = sp
|
|
_g_.sched.lr = 0
|
|
_g_.sched.ret = 0
|
|
_g_.sched.g = guintptr(unsafe.Pointer(_g_))
|
|
// We need to ensure ctxt is zero, but can't have a write
|
|
// barrier here. However, it should always already be zero.
|
|
// Assert that.
|
|
if _g_.sched.ctxt != nil {
|
|
badctxt()
|
|
}
|
|
}
|
|
|
|
// The goroutine g is about to enter a system call.
|
|
// Record that it's not using the cpu anymore.
|
|
// This is called only from the go syscall library and cgocall,
|
|
// not from the low-level system calls used by the runtime.
|
|
//
|
|
// Entersyscall cannot split the stack: the gosave must
|
|
// make g->sched refer to the caller's stack segment, because
|
|
// entersyscall is going to return immediately after.
|
|
//
|
|
// Nothing entersyscall calls can split the stack either.
|
|
// We cannot safely move the stack during an active call to syscall,
|
|
// because we do not know which of the uintptr arguments are
|
|
// really pointers (back into the stack).
|
|
// In practice, this means that we make the fast path run through
|
|
// entersyscall doing no-split things, and the slow path has to use systemstack
|
|
// to run bigger things on the system stack.
|
|
//
|
|
// reentersyscall is the entry point used by cgo callbacks, where explicitly
|
|
// saved SP and PC are restored. This is needed when exitsyscall will be called
|
|
// from a function further up in the call stack than the parent, as g->syscallsp
|
|
// must always point to a valid stack frame. entersyscall below is the normal
|
|
// entry point for syscalls, which obtains the SP and PC from the caller.
|
|
//
|
|
// Syscall tracing:
|
|
// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
|
|
// If the syscall does not block, that is it, we do not emit any other events.
|
|
// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
|
|
// when syscall returns we emit traceGoSysExit and when the goroutine starts running
|
|
// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
|
|
// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
|
|
// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
|
|
// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
|
|
// and we wait for the increment before emitting traceGoSysExit.
|
|
// Note that the increment is done even if tracing is not enabled,
|
|
// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
|
|
//
|
|
//go:nosplit
|
|
func reentersyscall(pc, sp uintptr) {
|
|
_g_ := getg()
|
|
|
|
// Disable preemption because during this function g is in Gsyscall status,
|
|
// but can have inconsistent g->sched, do not let GC observe it.
|
|
_g_.m.locks++
|
|
|
|
// Entersyscall must not call any function that might split/grow the stack.
|
|
// (See details in comment above.)
|
|
// Catch calls that might, by replacing the stack guard with something that
|
|
// will trip any stack check and leaving a flag to tell newstack to die.
|
|
_g_.stackguard0 = stackPreempt
|
|
_g_.throwsplit = true
|
|
|
|
// Leave SP around for GC and traceback.
|
|
save(pc, sp)
|
|
_g_.syscallsp = sp
|
|
_g_.syscallpc = pc
|
|
casgstatus(_g_, _Grunning, _Gsyscall)
|
|
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
|
|
systemstack(func() {
|
|
print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
|
|
throw("entersyscall")
|
|
})
|
|
}
|
|
|
|
if trace.enabled {
|
|
systemstack(traceGoSysCall)
|
|
// systemstack itself clobbers g.sched.{pc,sp} and we might
|
|
// need them later when the G is genuinely blocked in a
|
|
// syscall
|
|
save(pc, sp)
|
|
}
|
|
|
|
if atomic.Load(&sched.sysmonwait) != 0 {
|
|
systemstack(entersyscall_sysmon)
|
|
save(pc, sp)
|
|
}
|
|
|
|
if _g_.m.p.ptr().runSafePointFn != 0 {
|
|
// runSafePointFn may stack split if run on this stack
|
|
systemstack(runSafePointFn)
|
|
save(pc, sp)
|
|
}
|
|
|
|
_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
|
|
_g_.sysblocktraced = true
|
|
_g_.m.mcache = nil
|
|
_g_.m.p.ptr().m = 0
|
|
atomic.Store(&_g_.m.p.ptr().status, _Psyscall)
|
|
if sched.gcwaiting != 0 {
|
|
systemstack(entersyscall_gcwait)
|
|
save(pc, sp)
|
|
}
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
// Standard syscall entry used by the go syscall library and normal cgo calls.
|
|
//go:nosplit
|
|
func entersyscall() {
|
|
reentersyscall(getcallerpc(), getcallersp())
|
|
}
|
|
|
|
func entersyscall_sysmon() {
|
|
lock(&sched.lock)
|
|
if atomic.Load(&sched.sysmonwait) != 0 {
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
func entersyscall_gcwait() {
|
|
_g_ := getg()
|
|
_p_ := _g_.m.p.ptr()
|
|
|
|
lock(&sched.lock)
|
|
if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(_p_)
|
|
traceProcStop(_p_)
|
|
}
|
|
_p_.syscalltick++
|
|
if sched.stopwait--; sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// The same as entersyscall(), but with a hint that the syscall is blocking.
|
|
//go:nosplit
|
|
func entersyscallblock() {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // see comment in entersyscall
|
|
_g_.throwsplit = true
|
|
_g_.stackguard0 = stackPreempt // see comment in entersyscall
|
|
_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
|
|
_g_.sysblocktraced = true
|
|
_g_.m.p.ptr().syscalltick++
|
|
|
|
// Leave SP around for GC and traceback.
|
|
pc := getcallerpc()
|
|
sp := getcallersp()
|
|
save(pc, sp)
|
|
_g_.syscallsp = _g_.sched.sp
|
|
_g_.syscallpc = _g_.sched.pc
|
|
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
|
|
sp1 := sp
|
|
sp2 := _g_.sched.sp
|
|
sp3 := _g_.syscallsp
|
|
systemstack(func() {
|
|
print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
|
|
throw("entersyscallblock")
|
|
})
|
|
}
|
|
casgstatus(_g_, _Grunning, _Gsyscall)
|
|
if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
|
|
systemstack(func() {
|
|
print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
|
|
throw("entersyscallblock")
|
|
})
|
|
}
|
|
|
|
systemstack(entersyscallblock_handoff)
|
|
|
|
// Resave for traceback during blocked call.
|
|
save(getcallerpc(), getcallersp())
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
func entersyscallblock_handoff() {
|
|
if trace.enabled {
|
|
traceGoSysCall()
|
|
traceGoSysBlock(getg().m.p.ptr())
|
|
}
|
|
handoffp(releasep())
|
|
}
|
|
|
|
// The goroutine g exited its system call.
|
|
// Arrange for it to run on a cpu again.
|
|
// This is called only from the go syscall library, not
|
|
// from the low-level system calls used by the runtime.
|
|
//
|
|
// Write barriers are not allowed because our P may have been stolen.
|
|
//
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func exitsyscall() {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // see comment in entersyscall
|
|
if getcallersp() > _g_.syscallsp {
|
|
throw("exitsyscall: syscall frame is no longer valid")
|
|
}
|
|
|
|
_g_.waitsince = 0
|
|
oldp := _g_.m.p.ptr()
|
|
if exitsyscallfast() {
|
|
if _g_.m.mcache == nil {
|
|
throw("lost mcache")
|
|
}
|
|
if trace.enabled {
|
|
if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
|
|
systemstack(traceGoStart)
|
|
}
|
|
}
|
|
// There's a cpu for us, so we can run.
|
|
_g_.m.p.ptr().syscalltick++
|
|
// We need to cas the status and scan before resuming...
|
|
casgstatus(_g_, _Gsyscall, _Grunning)
|
|
|
|
// Garbage collector isn't running (since we are),
|
|
// so okay to clear syscallsp.
|
|
_g_.syscallsp = 0
|
|
_g_.m.locks--
|
|
if _g_.preempt {
|
|
// restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
} else {
|
|
// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
|
|
_g_.stackguard0 = _g_.stack.lo + _StackGuard
|
|
}
|
|
_g_.throwsplit = false
|
|
return
|
|
}
|
|
|
|
_g_.sysexitticks = 0
|
|
if trace.enabled {
|
|
// Wait till traceGoSysBlock event is emitted.
|
|
// This ensures consistency of the trace (the goroutine is started after it is blocked).
|
|
for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
|
|
osyield()
|
|
}
|
|
// We can't trace syscall exit right now because we don't have a P.
|
|
// Tracing code can invoke write barriers that cannot run without a P.
|
|
// So instead we remember the syscall exit time and emit the event
|
|
// in execute when we have a P.
|
|
_g_.sysexitticks = cputicks()
|
|
}
|
|
|
|
_g_.m.locks--
|
|
|
|
// Call the scheduler.
|
|
mcall(exitsyscall0)
|
|
|
|
if _g_.m.mcache == nil {
|
|
throw("lost mcache")
|
|
}
|
|
|
|
// Scheduler returned, so we're allowed to run now.
|
|
// Delete the syscallsp information that we left for
|
|
// the garbage collector during the system call.
|
|
// Must wait until now because until gosched returns
|
|
// we don't know for sure that the garbage collector
|
|
// is not running.
|
|
_g_.syscallsp = 0
|
|
_g_.m.p.ptr().syscalltick++
|
|
_g_.throwsplit = false
|
|
}
|
|
|
|
//go:nosplit
|
|
func exitsyscallfast() bool {
|
|
_g_ := getg()
|
|
|
|
// Freezetheworld sets stopwait but does not retake P's.
|
|
if sched.stopwait == freezeStopWait {
|
|
_g_.m.mcache = nil
|
|
_g_.m.p = 0
|
|
return false
|
|
}
|
|
|
|
// Try to re-acquire the last P.
|
|
if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && atomic.Cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
|
|
// There's a cpu for us, so we can run.
|
|
exitsyscallfast_reacquired()
|
|
return true
|
|
}
|
|
|
|
// Try to get any other idle P.
|
|
oldp := _g_.m.p.ptr()
|
|
_g_.m.mcache = nil
|
|
_g_.m.p = 0
|
|
if sched.pidle != 0 {
|
|
var ok bool
|
|
systemstack(func() {
|
|
ok = exitsyscallfast_pidle()
|
|
if ok && trace.enabled {
|
|
if oldp != nil {
|
|
// Wait till traceGoSysBlock event is emitted.
|
|
// This ensures consistency of the trace (the goroutine is started after it is blocked).
|
|
for oldp.syscalltick == _g_.m.syscalltick {
|
|
osyield()
|
|
}
|
|
}
|
|
traceGoSysExit(0)
|
|
}
|
|
})
|
|
if ok {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// exitsyscallfast_reacquired is the exitsyscall path on which this G
|
|
// has successfully reacquired the P it was running on before the
|
|
// syscall.
|
|
//
|
|
// This function is allowed to have write barriers because exitsyscall
|
|
// has acquired a P at this point.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
//go:nosplit
|
|
func exitsyscallfast_reacquired() {
|
|
_g_ := getg()
|
|
_g_.m.mcache = _g_.m.p.ptr().mcache
|
|
_g_.m.p.ptr().m.set(_g_.m)
|
|
if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
|
|
if trace.enabled {
|
|
// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
|
|
// traceGoSysBlock for this syscall was already emitted,
|
|
// but here we effectively retake the p from the new syscall running on the same p.
|
|
systemstack(func() {
|
|
// Denote blocking of the new syscall.
|
|
traceGoSysBlock(_g_.m.p.ptr())
|
|
// Denote completion of the current syscall.
|
|
traceGoSysExit(0)
|
|
})
|
|
}
|
|
_g_.m.p.ptr().syscalltick++
|
|
}
|
|
}
|
|
|
|
func exitsyscallfast_pidle() bool {
|
|
lock(&sched.lock)
|
|
_p_ := pidleget()
|
|
if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 {
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// exitsyscall slow path on g0.
|
|
// Failed to acquire P, enqueue gp as runnable.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func exitsyscall0(gp *g) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Gsyscall, _Grunnable)
|
|
dropg()
|
|
lock(&sched.lock)
|
|
_p_ := pidleget()
|
|
if _p_ == nil {
|
|
globrunqput(gp)
|
|
} else if atomic.Load(&sched.sysmonwait) != 0 {
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
execute(gp, false) // Never returns.
|
|
}
|
|
if _g_.m.lockedg != 0 {
|
|
// Wait until another thread schedules gp and so m again.
|
|
stoplockedm()
|
|
execute(gp, false) // Never returns.
|
|
}
|
|
stopm()
|
|
schedule() // Never returns.
|
|
}
|
|
|
|
func beforefork() {
|
|
gp := getg().m.curg
|
|
|
|
// Block signals during a fork, so that the child does not run
|
|
// a signal handler before exec if a signal is sent to the process
|
|
// group. See issue #18600.
|
|
gp.m.locks++
|
|
msigsave(gp.m)
|
|
sigblock()
|
|
|
|
// This function is called before fork in syscall package.
|
|
// Code between fork and exec must not allocate memory nor even try to grow stack.
|
|
// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
|
|
// runtime_AfterFork will undo this in parent process, but not in child.
|
|
gp.stackguard0 = stackFork
|
|
}
|
|
|
|
// Called from syscall package before fork.
|
|
//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
|
|
//go:nosplit
|
|
func syscall_runtime_BeforeFork() {
|
|
systemstack(beforefork)
|
|
}
|
|
|
|
func afterfork() {
|
|
gp := getg().m.curg
|
|
|
|
// See the comments in beforefork.
|
|
gp.stackguard0 = gp.stack.lo + _StackGuard
|
|
|
|
msigrestore(gp.m.sigmask)
|
|
|
|
gp.m.locks--
|
|
}
|
|
|
|
// Called from syscall package after fork in parent.
|
|
//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
|
|
//go:nosplit
|
|
func syscall_runtime_AfterFork() {
|
|
systemstack(afterfork)
|
|
}
|
|
|
|
// inForkedChild is true while manipulating signals in the child process.
|
|
// This is used to avoid calling libc functions in case we are using vfork.
|
|
var inForkedChild bool
|
|
|
|
// Called from syscall package after fork in child.
|
|
// It resets non-sigignored signals to the default handler, and
|
|
// restores the signal mask in preparation for the exec.
|
|
//
|
|
// Because this might be called during a vfork, and therefore may be
|
|
// temporarily sharing address space with the parent process, this must
|
|
// not change any global variables or calling into C code that may do so.
|
|
//
|
|
//go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func syscall_runtime_AfterForkInChild() {
|
|
// It's OK to change the global variable inForkedChild here
|
|
// because we are going to change it back. There is no race here,
|
|
// because if we are sharing address space with the parent process,
|
|
// then the parent process can not be running concurrently.
|
|
inForkedChild = true
|
|
|
|
clearSignalHandlers()
|
|
|
|
// When we are the child we are the only thread running,
|
|
// so we know that nothing else has changed gp.m.sigmask.
|
|
msigrestore(getg().m.sigmask)
|
|
|
|
inForkedChild = false
|
|
}
|
|
|
|
// Called from syscall package before Exec.
|
|
//go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec
|
|
func syscall_runtime_BeforeExec() {
|
|
// Prevent thread creation during exec.
|
|
execLock.lock()
|
|
}
|
|
|
|
// Called from syscall package after Exec.
|
|
//go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec
|
|
func syscall_runtime_AfterExec() {
|
|
execLock.unlock()
|
|
}
|
|
|
|
// Allocate a new g, with a stack big enough for stacksize bytes.
|
|
func malg(stacksize int32) *g {
|
|
newg := new(g)
|
|
if stacksize >= 0 {
|
|
stacksize = round2(_StackSystem + stacksize)
|
|
systemstack(func() {
|
|
newg.stack = stackalloc(uint32(stacksize))
|
|
})
|
|
newg.stackguard0 = newg.stack.lo + _StackGuard
|
|
newg.stackguard1 = ^uintptr(0)
|
|
}
|
|
return newg
|
|
}
|
|
|
|
// Create a new g running fn with siz bytes of arguments.
|
|
// Put it on the queue of g's waiting to run.
|
|
// The compiler turns a go statement into a call to this.
|
|
// Cannot split the stack because it assumes that the arguments
|
|
// are available sequentially after &fn; they would not be
|
|
// copied if a stack split occurred.
|
|
//go:nosplit
|
|
func newproc(siz int32, fn *funcval) {
|
|
argp := add(unsafe.Pointer(&fn), sys.PtrSize)
|
|
gp := getg()
|
|
pc := getcallerpc()
|
|
systemstack(func() {
|
|
newproc1(fn, (*uint8)(argp), siz, gp, pc)
|
|
})
|
|
}
|
|
|
|
// Create a new g running fn with narg bytes of arguments starting
|
|
// at argp. callerpc is the address of the go statement that created
|
|
// this. The new g is put on the queue of g's waiting to run.
|
|
func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
|
|
_g_ := getg()
|
|
|
|
if fn == nil {
|
|
_g_.m.throwing = -1 // do not dump full stacks
|
|
throw("go of nil func value")
|
|
}
|
|
_g_.m.locks++ // disable preemption because it can be holding p in a local var
|
|
siz := narg
|
|
siz = (siz + 7) &^ 7
|
|
|
|
// We could allocate a larger initial stack if necessary.
|
|
// Not worth it: this is almost always an error.
|
|
// 4*sizeof(uintreg): extra space added below
|
|
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
|
|
if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
|
|
throw("newproc: function arguments too large for new goroutine")
|
|
}
|
|
|
|
_p_ := _g_.m.p.ptr()
|
|
newg := gfget(_p_)
|
|
if newg == nil {
|
|
newg = malg(_StackMin)
|
|
casgstatus(newg, _Gidle, _Gdead)
|
|
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
|
|
}
|
|
if newg.stack.hi == 0 {
|
|
throw("newproc1: newg missing stack")
|
|
}
|
|
|
|
if readgstatus(newg) != _Gdead {
|
|
throw("newproc1: new g is not Gdead")
|
|
}
|
|
|
|
totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
|
|
totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
|
|
sp := newg.stack.hi - totalSize
|
|
spArg := sp
|
|
if usesLR {
|
|
// caller's LR
|
|
*(*uintptr)(unsafe.Pointer(sp)) = 0
|
|
prepGoExitFrame(sp)
|
|
spArg += sys.MinFrameSize
|
|
}
|
|
if narg > 0 {
|
|
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
|
|
// This is a stack-to-stack copy. If write barriers
|
|
// are enabled and the source stack is grey (the
|
|
// destination is always black), then perform a
|
|
// barrier copy. We do this *after* the memmove
|
|
// because the destination stack may have garbage on
|
|
// it.
|
|
if writeBarrier.needed && !_g_.m.curg.gcscandone {
|
|
f := findfunc(fn.fn)
|
|
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
|
|
// We're in the prologue, so it's always stack map index 0.
|
|
bv := stackmapdata(stkmap, 0)
|
|
bulkBarrierBitmap(spArg, spArg, uintptr(narg), 0, bv.bytedata)
|
|
}
|
|
}
|
|
|
|
memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
|
|
newg.sched.sp = sp
|
|
newg.stktopsp = sp
|
|
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
|
|
newg.sched.g = guintptr(unsafe.Pointer(newg))
|
|
gostartcallfn(&newg.sched, fn)
|
|
newg.gopc = callerpc
|
|
newg.ancestors = saveAncestors(callergp)
|
|
newg.startpc = fn.fn
|
|
if _g_.m.curg != nil {
|
|
newg.labels = _g_.m.curg.labels
|
|
}
|
|
if isSystemGoroutine(newg) {
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
}
|
|
newg.gcscanvalid = false
|
|
casgstatus(newg, _Gdead, _Grunnable)
|
|
|
|
if _p_.goidcache == _p_.goidcacheend {
|
|
// Sched.goidgen is the last allocated id,
|
|
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
|
|
// At startup sched.goidgen=0, so main goroutine receives goid=1.
|
|
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
|
|
_p_.goidcache -= _GoidCacheBatch - 1
|
|
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
|
|
}
|
|
newg.goid = int64(_p_.goidcache)
|
|
_p_.goidcache++
|
|
if raceenabled {
|
|
newg.racectx = racegostart(callerpc)
|
|
}
|
|
if trace.enabled {
|
|
traceGoCreate(newg, newg.startpc)
|
|
}
|
|
runqput(_p_, newg, true)
|
|
|
|
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
|
|
wakep()
|
|
}
|
|
_g_.m.locks--
|
|
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
|
|
_g_.stackguard0 = stackPreempt
|
|
}
|
|
}
|
|
|
|
// saveAncestors copies previous ancestors of the given caller g and
|
|
// includes infor for the current caller into a new set of tracebacks for
|
|
// a g being created.
|
|
func saveAncestors(callergp *g) *[]ancestorInfo {
|
|
// Copy all prior info, except for the root goroutine (goid 0).
|
|
if debug.tracebackancestors <= 0 || callergp.goid == 0 {
|
|
return nil
|
|
}
|
|
var callerAncestors []ancestorInfo
|
|
if callergp.ancestors != nil {
|
|
callerAncestors = *callergp.ancestors
|
|
}
|
|
n := int32(len(callerAncestors)) + 1
|
|
if n > debug.tracebackancestors {
|
|
n = debug.tracebackancestors
|
|
}
|
|
ancestors := make([]ancestorInfo, n)
|
|
copy(ancestors[1:], callerAncestors)
|
|
|
|
var pcs [_TracebackMaxFrames]uintptr
|
|
npcs := gcallers(callergp, 0, pcs[:])
|
|
ipcs := make([]uintptr, npcs)
|
|
copy(ipcs, pcs[:])
|
|
ancestors[0] = ancestorInfo{
|
|
pcs: ipcs,
|
|
goid: callergp.goid,
|
|
gopc: callergp.gopc,
|
|
}
|
|
|
|
ancestorsp := new([]ancestorInfo)
|
|
*ancestorsp = ancestors
|
|
return ancestorsp
|
|
}
|
|
|
|
// Put on gfree list.
|
|
// If local list is too long, transfer a batch to the global list.
|
|
func gfput(_p_ *p, gp *g) {
|
|
if readgstatus(gp) != _Gdead {
|
|
throw("gfput: bad status (not Gdead)")
|
|
}
|
|
|
|
stksize := gp.stack.hi - gp.stack.lo
|
|
|
|
if stksize != _FixedStack {
|
|
// non-standard stack size - free it.
|
|
stackfree(gp.stack)
|
|
gp.stack.lo = 0
|
|
gp.stack.hi = 0
|
|
gp.stackguard0 = 0
|
|
}
|
|
|
|
gp.schedlink.set(_p_.gfree)
|
|
_p_.gfree = gp
|
|
_p_.gfreecnt++
|
|
if _p_.gfreecnt >= 64 {
|
|
lock(&sched.gflock)
|
|
for _p_.gfreecnt >= 32 {
|
|
_p_.gfreecnt--
|
|
gp = _p_.gfree
|
|
_p_.gfree = gp.schedlink.ptr()
|
|
if gp.stack.lo == 0 {
|
|
gp.schedlink.set(sched.gfreeNoStack)
|
|
sched.gfreeNoStack = gp
|
|
} else {
|
|
gp.schedlink.set(sched.gfreeStack)
|
|
sched.gfreeStack = gp
|
|
}
|
|
sched.ngfree++
|
|
}
|
|
unlock(&sched.gflock)
|
|
}
|
|
}
|
|
|
|
// Get from gfree list.
|
|
// If local list is empty, grab a batch from global list.
|
|
func gfget(_p_ *p) *g {
|
|
retry:
|
|
gp := _p_.gfree
|
|
if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) {
|
|
lock(&sched.gflock)
|
|
for _p_.gfreecnt < 32 {
|
|
if sched.gfreeStack != nil {
|
|
// Prefer Gs with stacks.
|
|
gp = sched.gfreeStack
|
|
sched.gfreeStack = gp.schedlink.ptr()
|
|
} else if sched.gfreeNoStack != nil {
|
|
gp = sched.gfreeNoStack
|
|
sched.gfreeNoStack = gp.schedlink.ptr()
|
|
} else {
|
|
break
|
|
}
|
|
_p_.gfreecnt++
|
|
sched.ngfree--
|
|
gp.schedlink.set(_p_.gfree)
|
|
_p_.gfree = gp
|
|
}
|
|
unlock(&sched.gflock)
|
|
goto retry
|
|
}
|
|
if gp != nil {
|
|
_p_.gfree = gp.schedlink.ptr()
|
|
_p_.gfreecnt--
|
|
if gp.stack.lo == 0 {
|
|
// Stack was deallocated in gfput. Allocate a new one.
|
|
systemstack(func() {
|
|
gp.stack = stackalloc(_FixedStack)
|
|
})
|
|
gp.stackguard0 = gp.stack.lo + _StackGuard
|
|
} else {
|
|
if raceenabled {
|
|
racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)
|
|
}
|
|
if msanenabled {
|
|
msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo)
|
|
}
|
|
}
|
|
}
|
|
return gp
|
|
}
|
|
|
|
// Purge all cached G's from gfree list to the global list.
|
|
func gfpurge(_p_ *p) {
|
|
lock(&sched.gflock)
|
|
for _p_.gfreecnt != 0 {
|
|
_p_.gfreecnt--
|
|
gp := _p_.gfree
|
|
_p_.gfree = gp.schedlink.ptr()
|
|
if gp.stack.lo == 0 {
|
|
gp.schedlink.set(sched.gfreeNoStack)
|
|
sched.gfreeNoStack = gp
|
|
} else {
|
|
gp.schedlink.set(sched.gfreeStack)
|
|
sched.gfreeStack = gp
|
|
}
|
|
sched.ngfree++
|
|
}
|
|
unlock(&sched.gflock)
|
|
}
|
|
|
|
// Breakpoint executes a breakpoint trap.
|
|
func Breakpoint() {
|
|
breakpoint()
|
|
}
|
|
|
|
// dolockOSThread is called by LockOSThread and lockOSThread below
|
|
// after they modify m.locked. Do not allow preemption during this call,
|
|
// or else the m might be different in this function than in the caller.
|
|
//go:nosplit
|
|
func dolockOSThread() {
|
|
if GOARCH == "wasm" {
|
|
return // no threads on wasm yet
|
|
}
|
|
_g_ := getg()
|
|
_g_.m.lockedg.set(_g_)
|
|
_g_.lockedm.set(_g_.m)
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// LockOSThread wires the calling goroutine to its current operating system thread.
|
|
// The calling goroutine will always execute in that thread,
|
|
// and no other goroutine will execute in it,
|
|
// until the calling goroutine has made as many calls to
|
|
// UnlockOSThread as to LockOSThread.
|
|
// If the calling goroutine exits without unlocking the thread,
|
|
// the thread will be terminated.
|
|
//
|
|
// All init functions are run on the startup thread. Calling LockOSThread
|
|
// from an init function will cause the main function to be invoked on
|
|
// that thread.
|
|
//
|
|
// A goroutine should call LockOSThread before calling OS services or
|
|
// non-Go library functions that depend on per-thread state.
|
|
func LockOSThread() {
|
|
if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" {
|
|
// If we need to start a new thread from the locked
|
|
// thread, we need the template thread. Start it now
|
|
// while we're in a known-good state.
|
|
startTemplateThread()
|
|
}
|
|
_g_ := getg()
|
|
_g_.m.lockedExt++
|
|
if _g_.m.lockedExt == 0 {
|
|
_g_.m.lockedExt--
|
|
panic("LockOSThread nesting overflow")
|
|
}
|
|
dolockOSThread()
|
|
}
|
|
|
|
//go:nosplit
|
|
func lockOSThread() {
|
|
getg().m.lockedInt++
|
|
dolockOSThread()
|
|
}
|
|
|
|
// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
|
|
// after they update m->locked. Do not allow preemption during this call,
|
|
// or else the m might be in different in this function than in the caller.
|
|
//go:nosplit
|
|
func dounlockOSThread() {
|
|
if GOARCH == "wasm" {
|
|
return // no threads on wasm yet
|
|
}
|
|
_g_ := getg()
|
|
if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 {
|
|
return
|
|
}
|
|
_g_.m.lockedg = 0
|
|
_g_.lockedm = 0
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// UnlockOSThread undoes an earlier call to LockOSThread.
|
|
// If this drops the number of active LockOSThread calls on the
|
|
// calling goroutine to zero, it unwires the calling goroutine from
|
|
// its fixed operating system thread.
|
|
// If there are no active LockOSThread calls, this is a no-op.
|
|
//
|
|
// Before calling UnlockOSThread, the caller must ensure that the OS
|
|
// thread is suitable for running other goroutines. If the caller made
|
|
// any permanent changes to the state of the thread that would affect
|
|
// other goroutines, it should not call this function and thus leave
|
|
// the goroutine locked to the OS thread until the goroutine (and
|
|
// hence the thread) exits.
|
|
func UnlockOSThread() {
|
|
_g_ := getg()
|
|
if _g_.m.lockedExt == 0 {
|
|
return
|
|
}
|
|
_g_.m.lockedExt--
|
|
dounlockOSThread()
|
|
}
|
|
|
|
//go:nosplit
|
|
func unlockOSThread() {
|
|
_g_ := getg()
|
|
if _g_.m.lockedInt == 0 {
|
|
systemstack(badunlockosthread)
|
|
}
|
|
_g_.m.lockedInt--
|
|
dounlockOSThread()
|
|
}
|
|
|
|
func badunlockosthread() {
|
|
throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
|
|
}
|
|
|
|
func gcount() int32 {
|
|
n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys))
|
|
for _, _p_ := range allp {
|
|
n -= _p_.gfreecnt
|
|
}
|
|
|
|
// All these variables can be changed concurrently, so the result can be inconsistent.
|
|
// But at least the current goroutine is running.
|
|
if n < 1 {
|
|
n = 1
|
|
}
|
|
return n
|
|
}
|
|
|
|
func mcount() int32 {
|
|
return int32(sched.mnext - sched.nmfreed)
|
|
}
|
|
|
|
var prof struct {
|
|
signalLock uint32
|
|
hz int32
|
|
}
|
|
|
|
func _System() { _System() }
|
|
func _ExternalCode() { _ExternalCode() }
|
|
func _LostExternalCode() { _LostExternalCode() }
|
|
func _GC() { _GC() }
|
|
func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() }
|
|
func _VDSO() { _VDSO() }
|
|
|
|
// Counts SIGPROFs received while in atomic64 critical section, on mips{,le}
|
|
var lostAtomic64Count uint64
|
|
|
|
// Called if we receive a SIGPROF signal.
|
|
// Called by the signal handler, may run during STW.
|
|
//go:nowritebarrierrec
|
|
func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
|
|
if prof.hz == 0 {
|
|
return
|
|
}
|
|
|
|
// On mips{,le}, 64bit atomics are emulated with spinlocks, in
|
|
// runtime/internal/atomic. If SIGPROF arrives while the program is inside
|
|
// the critical section, it creates a deadlock (when writing the sample).
|
|
// As a workaround, create a counter of SIGPROFs while in critical section
|
|
// to store the count, and pass it to sigprof.add() later when SIGPROF is
|
|
// received from somewhere else (with _LostSIGPROFDuringAtomic64 as pc).
|
|
if GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "arm" {
|
|
if f := findfunc(pc); f.valid() {
|
|
if hasprefix(funcname(f), "runtime/internal/atomic") {
|
|
lostAtomic64Count++
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// Profiling runs concurrently with GC, so it must not allocate.
|
|
// Set a trap in case the code does allocate.
|
|
// Note that on windows, one thread takes profiles of all the
|
|
// other threads, so mp is usually not getg().m.
|
|
// In fact mp may not even be stopped.
|
|
// See golang.org/issue/17165.
|
|
getg().m.mallocing++
|
|
|
|
// Define that a "user g" is a user-created goroutine, and a "system g"
|
|
// is one that is m->g0 or m->gsignal.
|
|
//
|
|
// We might be interrupted for profiling halfway through a
|
|
// goroutine switch. The switch involves updating three (or four) values:
|
|
// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
|
|
// because once it gets updated the new g is running.
|
|
//
|
|
// When switching from a user g to a system g, LR is not considered live,
|
|
// so the update only affects g, SP, and PC. Since PC must be last, there
|
|
// the possible partial transitions in ordinary execution are (1) g alone is updated,
|
|
// (2) both g and SP are updated, and (3) SP alone is updated.
|
|
// If SP or g alone is updated, we can detect the partial transition by checking
|
|
// whether the SP is within g's stack bounds. (We could also require that SP
|
|
// be changed only after g, but the stack bounds check is needed by other
|
|
// cases, so there is no need to impose an additional requirement.)
|
|
//
|
|
// There is one exceptional transition to a system g, not in ordinary execution.
|
|
// When a signal arrives, the operating system starts the signal handler running
|
|
// with an updated PC and SP. The g is updated last, at the beginning of the
|
|
// handler. There are two reasons this is okay. First, until g is updated the
|
|
// g and SP do not match, so the stack bounds check detects the partial transition.
|
|
// Second, signal handlers currently run with signals disabled, so a profiling
|
|
// signal cannot arrive during the handler.
|
|
//
|
|
// When switching from a system g to a user g, there are three possibilities.
|
|
//
|
|
// First, it may be that the g switch has no PC update, because the SP
|
|
// either corresponds to a user g throughout (as in asmcgocall)
|
|
// or because it has been arranged to look like a user g frame
|
|
// (as in cgocallback_gofunc). In this case, since the entire
|
|
// transition is a g+SP update, a partial transition updating just one of
|
|
// those will be detected by the stack bounds check.
|
|
//
|
|
// Second, when returning from a signal handler, the PC and SP updates
|
|
// are performed by the operating system in an atomic update, so the g
|
|
// update must be done before them. The stack bounds check detects
|
|
// the partial transition here, and (again) signal handlers run with signals
|
|
// disabled, so a profiling signal cannot arrive then anyway.
|
|
//
|
|
// Third, the common case: it may be that the switch updates g, SP, and PC
|
|
// separately. If the PC is within any of the functions that does this,
|
|
// we don't ask for a traceback. C.F. the function setsSP for more about this.
|
|
//
|
|
// There is another apparently viable approach, recorded here in case
|
|
// the "PC within setsSP function" check turns out not to be usable.
|
|
// It would be possible to delay the update of either g or SP until immediately
|
|
// before the PC update instruction. Then, because of the stack bounds check,
|
|
// the only problematic interrupt point is just before that PC update instruction,
|
|
// and the sigprof handler can detect that instruction and simulate stepping past
|
|
// it in order to reach a consistent state. On ARM, the update of g must be made
|
|
// in two places (in R10 and also in a TLS slot), so the delayed update would
|
|
// need to be the SP update. The sigprof handler must read the instruction at
|
|
// the current PC and if it was the known instruction (for example, JMP BX or
|
|
// MOV R2, PC), use that other register in place of the PC value.
|
|
// The biggest drawback to this solution is that it requires that we can tell
|
|
// whether it's safe to read from the memory pointed at by PC.
|
|
// In a correct program, we can test PC == nil and otherwise read,
|
|
// but if a profiling signal happens at the instant that a program executes
|
|
// a bad jump (before the program manages to handle the resulting fault)
|
|
// the profiling handler could fault trying to read nonexistent memory.
|
|
//
|
|
// To recap, there are no constraints on the assembly being used for the
|
|
// transition. We simply require that g and SP match and that the PC is not
|
|
// in gogo.
|
|
traceback := true
|
|
if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) || (mp != nil && mp.vdsoSP != 0) {
|
|
traceback = false
|
|
}
|
|
var stk [maxCPUProfStack]uintptr
|
|
n := 0
|
|
if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
|
|
cgoOff := 0
|
|
// Check cgoCallersUse to make sure that we are not
|
|
// interrupting other code that is fiddling with
|
|
// cgoCallers. We are running in a signal handler
|
|
// with all signals blocked, so we don't have to worry
|
|
// about any other code interrupting us.
|
|
if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 {
|
|
for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 {
|
|
cgoOff++
|
|
}
|
|
copy(stk[:], mp.cgoCallers[:cgoOff])
|
|
mp.cgoCallers[0] = 0
|
|
}
|
|
|
|
// Collect Go stack that leads to the cgo call.
|
|
n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0)
|
|
} else if traceback {
|
|
n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
|
|
}
|
|
|
|
if n <= 0 {
|
|
// Normal traceback is impossible or has failed.
|
|
// See if it falls into several common cases.
|
|
n = 0
|
|
if (GOOS == "windows" || GOOS == "solaris" || GOOS == "darwin") && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
|
|
// Libcall, i.e. runtime syscall on windows.
|
|
// Collect Go stack that leads to the call.
|
|
n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
|
|
}
|
|
if n == 0 && mp != nil && mp.vdsoSP != 0 {
|
|
n = gentraceback(mp.vdsoPC, mp.vdsoSP, 0, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
|
|
}
|
|
if n == 0 {
|
|
// If all of the above has failed, account it against abstract "System" or "GC".
|
|
n = 2
|
|
if inVDSOPage(pc) {
|
|
pc = funcPC(_VDSO) + sys.PCQuantum
|
|
} else if pc > firstmoduledata.etext {
|
|
// "ExternalCode" is better than "etext".
|
|
pc = funcPC(_ExternalCode) + sys.PCQuantum
|
|
}
|
|
stk[0] = pc
|
|
if mp.preemptoff != "" || mp.helpgc != 0 {
|
|
stk[1] = funcPC(_GC) + sys.PCQuantum
|
|
} else {
|
|
stk[1] = funcPC(_System) + sys.PCQuantum
|
|
}
|
|
}
|
|
}
|
|
|
|
if prof.hz != 0 {
|
|
if (GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "arm") && lostAtomic64Count > 0 {
|
|
cpuprof.addLostAtomic64(lostAtomic64Count)
|
|
lostAtomic64Count = 0
|
|
}
|
|
cpuprof.add(gp, stk[:n])
|
|
}
|
|
getg().m.mallocing--
|
|
}
|
|
|
|
// If the signal handler receives a SIGPROF signal on a non-Go thread,
|
|
// it tries to collect a traceback into sigprofCallers.
|
|
// sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
|
|
var sigprofCallers cgoCallers
|
|
var sigprofCallersUse uint32
|
|
|
|
// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
|
|
// and the signal handler collected a stack trace in sigprofCallers.
|
|
// When this is called, sigprofCallersUse will be non-zero.
|
|
// g is nil, and what we can do is very limited.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigprofNonGo() {
|
|
if prof.hz != 0 {
|
|
n := 0
|
|
for n < len(sigprofCallers) && sigprofCallers[n] != 0 {
|
|
n++
|
|
}
|
|
cpuprof.addNonGo(sigprofCallers[:n])
|
|
}
|
|
|
|
atomic.Store(&sigprofCallersUse, 0)
|
|
}
|
|
|
|
// sigprofNonGoPC is called when a profiling signal arrived on a
|
|
// non-Go thread and we have a single PC value, not a stack trace.
|
|
// g is nil, and what we can do is very limited.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigprofNonGoPC(pc uintptr) {
|
|
if prof.hz != 0 {
|
|
stk := []uintptr{
|
|
pc,
|
|
funcPC(_ExternalCode) + sys.PCQuantum,
|
|
}
|
|
cpuprof.addNonGo(stk)
|
|
}
|
|
}
|
|
|
|
// Reports whether a function will set the SP
|
|
// to an absolute value. Important that
|
|
// we don't traceback when these are at the bottom
|
|
// of the stack since we can't be sure that we will
|
|
// find the caller.
|
|
//
|
|
// If the function is not on the bottom of the stack
|
|
// we assume that it will have set it up so that traceback will be consistent,
|
|
// either by being a traceback terminating function
|
|
// or putting one on the stack at the right offset.
|
|
func setsSP(pc uintptr) bool {
|
|
f := findfunc(pc)
|
|
if !f.valid() {
|
|
// couldn't find the function for this PC,
|
|
// so assume the worst and stop traceback
|
|
return true
|
|
}
|
|
switch f.funcID {
|
|
case funcID_gogo, funcID_systemstack, funcID_mcall, funcID_morestack:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// setcpuprofilerate sets the CPU profiling rate to hz times per second.
|
|
// If hz <= 0, setcpuprofilerate turns off CPU profiling.
|
|
func setcpuprofilerate(hz int32) {
|
|
// Force sane arguments.
|
|
if hz < 0 {
|
|
hz = 0
|
|
}
|
|
|
|
// Disable preemption, otherwise we can be rescheduled to another thread
|
|
// that has profiling enabled.
|
|
_g_ := getg()
|
|
_g_.m.locks++
|
|
|
|
// Stop profiler on this thread so that it is safe to lock prof.
|
|
// if a profiling signal came in while we had prof locked,
|
|
// it would deadlock.
|
|
setThreadCPUProfiler(0)
|
|
|
|
for !atomic.Cas(&prof.signalLock, 0, 1) {
|
|
osyield()
|
|
}
|
|
if prof.hz != hz {
|
|
setProcessCPUProfiler(hz)
|
|
prof.hz = hz
|
|
}
|
|
atomic.Store(&prof.signalLock, 0)
|
|
|
|
lock(&sched.lock)
|
|
sched.profilehz = hz
|
|
unlock(&sched.lock)
|
|
|
|
if hz != 0 {
|
|
setThreadCPUProfiler(hz)
|
|
}
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
// Change number of processors. The world is stopped, sched is locked.
|
|
// gcworkbufs are not being modified by either the GC or
|
|
// the write barrier code.
|
|
// Returns list of Ps with local work, they need to be scheduled by the caller.
|
|
func procresize(nprocs int32) *p {
|
|
old := gomaxprocs
|
|
if old < 0 || nprocs <= 0 {
|
|
throw("procresize: invalid arg")
|
|
}
|
|
if trace.enabled {
|
|
traceGomaxprocs(nprocs)
|
|
}
|
|
|
|
// update statistics
|
|
now := nanotime()
|
|
if sched.procresizetime != 0 {
|
|
sched.totaltime += int64(old) * (now - sched.procresizetime)
|
|
}
|
|
sched.procresizetime = now
|
|
|
|
// Grow allp if necessary.
|
|
if nprocs > int32(len(allp)) {
|
|
// Synchronize with retake, which could be running
|
|
// concurrently since it doesn't run on a P.
|
|
lock(&allpLock)
|
|
if nprocs <= int32(cap(allp)) {
|
|
allp = allp[:nprocs]
|
|
} else {
|
|
nallp := make([]*p, nprocs)
|
|
// Copy everything up to allp's cap so we
|
|
// never lose old allocated Ps.
|
|
copy(nallp, allp[:cap(allp)])
|
|
allp = nallp
|
|
}
|
|
unlock(&allpLock)
|
|
}
|
|
|
|
// initialize new P's
|
|
for i := int32(0); i < nprocs; i++ {
|
|
pp := allp[i]
|
|
if pp == nil {
|
|
pp = new(p)
|
|
pp.id = i
|
|
pp.status = _Pgcstop
|
|
pp.sudogcache = pp.sudogbuf[:0]
|
|
for i := range pp.deferpool {
|
|
pp.deferpool[i] = pp.deferpoolbuf[i][:0]
|
|
}
|
|
pp.wbBuf.reset()
|
|
atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
|
|
}
|
|
if pp.mcache == nil {
|
|
if old == 0 && i == 0 {
|
|
if getg().m.mcache == nil {
|
|
throw("missing mcache?")
|
|
}
|
|
pp.mcache = getg().m.mcache // bootstrap
|
|
} else {
|
|
pp.mcache = allocmcache()
|
|
}
|
|
}
|
|
if raceenabled && pp.racectx == 0 {
|
|
if old == 0 && i == 0 {
|
|
pp.racectx = raceprocctx0
|
|
raceprocctx0 = 0 // bootstrap
|
|
} else {
|
|
pp.racectx = raceproccreate()
|
|
}
|
|
}
|
|
}
|
|
|
|
// free unused P's
|
|
for i := nprocs; i < old; i++ {
|
|
p := allp[i]
|
|
if trace.enabled && p == getg().m.p.ptr() {
|
|
// moving to p[0], pretend that we were descheduled
|
|
// and then scheduled again to keep the trace sane.
|
|
traceGoSched()
|
|
traceProcStop(p)
|
|
}
|
|
// move all runnable goroutines to the global queue
|
|
for p.runqhead != p.runqtail {
|
|
// pop from tail of local queue
|
|
p.runqtail--
|
|
gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
|
|
// push onto head of global queue
|
|
globrunqputhead(gp)
|
|
}
|
|
if p.runnext != 0 {
|
|
globrunqputhead(p.runnext.ptr())
|
|
p.runnext = 0
|
|
}
|
|
// if there's a background worker, make it runnable and put
|
|
// it on the global queue so it can clean itself up
|
|
if gp := p.gcBgMarkWorker.ptr(); gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
globrunqput(gp)
|
|
// This assignment doesn't race because the
|
|
// world is stopped.
|
|
p.gcBgMarkWorker.set(nil)
|
|
}
|
|
// Flush p's write barrier buffer.
|
|
if gcphase != _GCoff {
|
|
wbBufFlush1(p)
|
|
p.gcw.dispose()
|
|
}
|
|
for i := range p.sudogbuf {
|
|
p.sudogbuf[i] = nil
|
|
}
|
|
p.sudogcache = p.sudogbuf[:0]
|
|
for i := range p.deferpool {
|
|
for j := range p.deferpoolbuf[i] {
|
|
p.deferpoolbuf[i][j] = nil
|
|
}
|
|
p.deferpool[i] = p.deferpoolbuf[i][:0]
|
|
}
|
|
freemcache(p.mcache)
|
|
p.mcache = nil
|
|
gfpurge(p)
|
|
traceProcFree(p)
|
|
if raceenabled {
|
|
raceprocdestroy(p.racectx)
|
|
p.racectx = 0
|
|
}
|
|
p.gcAssistTime = 0
|
|
p.status = _Pdead
|
|
// can't free P itself because it can be referenced by an M in syscall
|
|
}
|
|
|
|
// Trim allp.
|
|
if int32(len(allp)) != nprocs {
|
|
lock(&allpLock)
|
|
allp = allp[:nprocs]
|
|
unlock(&allpLock)
|
|
}
|
|
|
|
_g_ := getg()
|
|
if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
|
|
// continue to use the current P
|
|
_g_.m.p.ptr().status = _Prunning
|
|
} else {
|
|
// release the current P and acquire allp[0]
|
|
if _g_.m.p != 0 {
|
|
_g_.m.p.ptr().m = 0
|
|
}
|
|
_g_.m.p = 0
|
|
_g_.m.mcache = nil
|
|
p := allp[0]
|
|
p.m = 0
|
|
p.status = _Pidle
|
|
acquirep(p)
|
|
if trace.enabled {
|
|
traceGoStart()
|
|
}
|
|
}
|
|
var runnablePs *p
|
|
for i := nprocs - 1; i >= 0; i-- {
|
|
p := allp[i]
|
|
if _g_.m.p.ptr() == p {
|
|
continue
|
|
}
|
|
p.status = _Pidle
|
|
if runqempty(p) {
|
|
pidleput(p)
|
|
} else {
|
|
p.m.set(mget())
|
|
p.link.set(runnablePs)
|
|
runnablePs = p
|
|
}
|
|
}
|
|
stealOrder.reset(uint32(nprocs))
|
|
var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
|
|
atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
|
|
return runnablePs
|
|
}
|
|
|
|
// Associate p and the current m.
|
|
//
|
|
// This function is allowed to have write barriers even if the caller
|
|
// isn't because it immediately acquires _p_.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func acquirep(_p_ *p) {
|
|
// Do the part that isn't allowed to have write barriers.
|
|
acquirep1(_p_)
|
|
|
|
// have p; write barriers now allowed
|
|
_g_ := getg()
|
|
_g_.m.mcache = _p_.mcache
|
|
|
|
if trace.enabled {
|
|
traceProcStart()
|
|
}
|
|
}
|
|
|
|
// acquirep1 is the first step of acquirep, which actually acquires
|
|
// _p_. This is broken out so we can disallow write barriers for this
|
|
// part, since we don't yet have a P.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func acquirep1(_p_ *p) {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.p != 0 || _g_.m.mcache != nil {
|
|
throw("acquirep: already in go")
|
|
}
|
|
if _p_.m != 0 || _p_.status != _Pidle {
|
|
id := int64(0)
|
|
if _p_.m != 0 {
|
|
id = _p_.m.ptr().id
|
|
}
|
|
print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
|
|
throw("acquirep: invalid p state")
|
|
}
|
|
_g_.m.p.set(_p_)
|
|
_p_.m.set(_g_.m)
|
|
_p_.status = _Prunning
|
|
}
|
|
|
|
// Disassociate p and the current m.
|
|
func releasep() *p {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.p == 0 || _g_.m.mcache == nil {
|
|
throw("releasep: invalid arg")
|
|
}
|
|
_p_ := _g_.m.p.ptr()
|
|
if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
|
|
print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
|
|
throw("releasep: invalid p state")
|
|
}
|
|
if trace.enabled {
|
|
traceProcStop(_g_.m.p.ptr())
|
|
}
|
|
_g_.m.p = 0
|
|
_g_.m.mcache = nil
|
|
_p_.m = 0
|
|
_p_.status = _Pidle
|
|
return _p_
|
|
}
|
|
|
|
func incidlelocked(v int32) {
|
|
lock(&sched.lock)
|
|
sched.nmidlelocked += v
|
|
if v > 0 {
|
|
checkdead()
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Check for deadlock situation.
|
|
// The check is based on number of running M's, if 0 -> deadlock.
|
|
// sched.lock must be held.
|
|
func checkdead() {
|
|
// For -buildmode=c-shared or -buildmode=c-archive it's OK if
|
|
// there are no running goroutines. The calling program is
|
|
// assumed to be running.
|
|
if islibrary || isarchive {
|
|
return
|
|
}
|
|
|
|
// If we are dying because of a signal caught on an already idle thread,
|
|
// freezetheworld will cause all running threads to block.
|
|
// And runtime will essentially enter into deadlock state,
|
|
// except that there is a thread that will call exit soon.
|
|
if panicking > 0 {
|
|
return
|
|
}
|
|
|
|
// If we are not running under cgo, but we have an extra M then account
|
|
// for it. (It is possible to have an extra M on Windows without cgo to
|
|
// accommodate callbacks created by syscall.NewCallback. See issue #6751
|
|
// for details.)
|
|
var run0 int32
|
|
if !iscgo && cgoHasExtraM {
|
|
run0 = 1
|
|
}
|
|
|
|
run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys
|
|
if run > run0 {
|
|
return
|
|
}
|
|
if run < 0 {
|
|
print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n")
|
|
throw("checkdead: inconsistent counts")
|
|
}
|
|
|
|
grunning := 0
|
|
lock(&allglock)
|
|
for i := 0; i < len(allgs); i++ {
|
|
gp := allgs[i]
|
|
if isSystemGoroutine(gp) {
|
|
continue
|
|
}
|
|
s := readgstatus(gp)
|
|
switch s &^ _Gscan {
|
|
case _Gwaiting:
|
|
grunning++
|
|
case _Grunnable,
|
|
_Grunning,
|
|
_Gsyscall:
|
|
unlock(&allglock)
|
|
print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
|
|
throw("checkdead: runnable g")
|
|
}
|
|
}
|
|
unlock(&allglock)
|
|
if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
|
|
throw("no goroutines (main called runtime.Goexit) - deadlock!")
|
|
}
|
|
|
|
// Maybe jump time forward for playground.
|
|
gp := timejump()
|
|
if gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
globrunqput(gp)
|
|
_p_ := pidleget()
|
|
if _p_ == nil {
|
|
throw("checkdead: no p for timer")
|
|
}
|
|
mp := mget()
|
|
if mp == nil {
|
|
// There should always be a free M since
|
|
// nothing is running.
|
|
throw("checkdead: no m for timer")
|
|
}
|
|
mp.nextp.set(_p_)
|
|
notewakeup(&mp.park)
|
|
return
|
|
}
|
|
|
|
getg().m.throwing = -1 // do not dump full stacks
|
|
throw("all goroutines are asleep - deadlock!")
|
|
}
|
|
|
|
// forcegcperiod is the maximum time in nanoseconds between garbage
|
|
// collections. If we go this long without a garbage collection, one
|
|
// is forced to run.
|
|
//
|
|
// This is a variable for testing purposes. It normally doesn't change.
|
|
var forcegcperiod int64 = 2 * 60 * 1e9
|
|
|
|
// Always runs without a P, so write barriers are not allowed.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func sysmon() {
|
|
lock(&sched.lock)
|
|
sched.nmsys++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
|
|
// If a heap span goes unused for 5 minutes after a garbage collection,
|
|
// we hand it back to the operating system.
|
|
scavengelimit := int64(5 * 60 * 1e9)
|
|
|
|
if debug.scavenge > 0 {
|
|
// Scavenge-a-lot for testing.
|
|
forcegcperiod = 10 * 1e6
|
|
scavengelimit = 20 * 1e6
|
|
}
|
|
|
|
lastscavenge := nanotime()
|
|
nscavenge := 0
|
|
|
|
lasttrace := int64(0)
|
|
idle := 0 // how many cycles in succession we had not wokeup somebody
|
|
delay := uint32(0)
|
|
for {
|
|
if idle == 0 { // start with 20us sleep...
|
|
delay = 20
|
|
} else if idle > 50 { // start doubling the sleep after 1ms...
|
|
delay *= 2
|
|
}
|
|
if delay > 10*1000 { // up to 10ms
|
|
delay = 10 * 1000
|
|
}
|
|
usleep(delay)
|
|
if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
|
|
lock(&sched.lock)
|
|
if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
|
|
atomic.Store(&sched.sysmonwait, 1)
|
|
unlock(&sched.lock)
|
|
// Make wake-up period small enough
|
|
// for the sampling to be correct.
|
|
maxsleep := forcegcperiod / 2
|
|
if scavengelimit < forcegcperiod {
|
|
maxsleep = scavengelimit / 2
|
|
}
|
|
shouldRelax := true
|
|
if osRelaxMinNS > 0 {
|
|
next := timeSleepUntil()
|
|
now := nanotime()
|
|
if next-now < osRelaxMinNS {
|
|
shouldRelax = false
|
|
}
|
|
}
|
|
if shouldRelax {
|
|
osRelax(true)
|
|
}
|
|
notetsleep(&sched.sysmonnote, maxsleep)
|
|
if shouldRelax {
|
|
osRelax(false)
|
|
}
|
|
lock(&sched.lock)
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
noteclear(&sched.sysmonnote)
|
|
idle = 0
|
|
delay = 20
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
// trigger libc interceptors if needed
|
|
if *cgo_yield != nil {
|
|
asmcgocall(*cgo_yield, nil)
|
|
}
|
|
// poll network if not polled for more than 10ms
|
|
lastpoll := int64(atomic.Load64(&sched.lastpoll))
|
|
now := nanotime()
|
|
if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
|
|
atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
|
|
gp := netpoll(false) // non-blocking - returns list of goroutines
|
|
if gp != nil {
|
|
// Need to decrement number of idle locked M's
|
|
// (pretending that one more is running) before injectglist.
|
|
// Otherwise it can lead to the following situation:
|
|
// injectglist grabs all P's but before it starts M's to run the P's,
|
|
// another M returns from syscall, finishes running its G,
|
|
// observes that there is no work to do and no other running M's
|
|
// and reports deadlock.
|
|
incidlelocked(-1)
|
|
injectglist(gp)
|
|
incidlelocked(1)
|
|
}
|
|
}
|
|
// retake P's blocked in syscalls
|
|
// and preempt long running G's
|
|
if retake(now) != 0 {
|
|
idle = 0
|
|
} else {
|
|
idle++
|
|
}
|
|
// check if we need to force a GC
|
|
if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
|
|
lock(&forcegc.lock)
|
|
forcegc.idle = 0
|
|
forcegc.g.schedlink = 0
|
|
injectglist(forcegc.g)
|
|
unlock(&forcegc.lock)
|
|
}
|
|
// scavenge heap once in a while
|
|
if lastscavenge+scavengelimit/2 < now {
|
|
mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
|
|
lastscavenge = now
|
|
nscavenge++
|
|
}
|
|
if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
|
|
lasttrace = now
|
|
schedtrace(debug.scheddetail > 0)
|
|
}
|
|
}
|
|
}
|
|
|
|
type sysmontick struct {
|
|
schedtick uint32
|
|
schedwhen int64
|
|
syscalltick uint32
|
|
syscallwhen int64
|
|
}
|
|
|
|
// forcePreemptNS is the time slice given to a G before it is
|
|
// preempted.
|
|
const forcePreemptNS = 10 * 1000 * 1000 // 10ms
|
|
|
|
func retake(now int64) uint32 {
|
|
n := 0
|
|
// Prevent allp slice changes. This lock will be completely
|
|
// uncontended unless we're already stopping the world.
|
|
lock(&allpLock)
|
|
// We can't use a range loop over allp because we may
|
|
// temporarily drop the allpLock. Hence, we need to re-fetch
|
|
// allp each time around the loop.
|
|
for i := 0; i < len(allp); i++ {
|
|
_p_ := allp[i]
|
|
if _p_ == nil {
|
|
// This can happen if procresize has grown
|
|
// allp but not yet created new Ps.
|
|
continue
|
|
}
|
|
pd := &_p_.sysmontick
|
|
s := _p_.status
|
|
if s == _Psyscall {
|
|
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
|
|
t := int64(_p_.syscalltick)
|
|
if int64(pd.syscalltick) != t {
|
|
pd.syscalltick = uint32(t)
|
|
pd.syscallwhen = now
|
|
continue
|
|
}
|
|
// On the one hand we don't want to retake Ps if there is no other work to do,
|
|
// but on the other hand we want to retake them eventually
|
|
// because they can prevent the sysmon thread from deep sleep.
|
|
if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
|
|
continue
|
|
}
|
|
// Drop allpLock so we can take sched.lock.
|
|
unlock(&allpLock)
|
|
// Need to decrement number of idle locked M's
|
|
// (pretending that one more is running) before the CAS.
|
|
// Otherwise the M from which we retake can exit the syscall,
|
|
// increment nmidle and report deadlock.
|
|
incidlelocked(-1)
|
|
if atomic.Cas(&_p_.status, s, _Pidle) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(_p_)
|
|
traceProcStop(_p_)
|
|
}
|
|
n++
|
|
_p_.syscalltick++
|
|
handoffp(_p_)
|
|
}
|
|
incidlelocked(1)
|
|
lock(&allpLock)
|
|
} else if s == _Prunning {
|
|
// Preempt G if it's running for too long.
|
|
t := int64(_p_.schedtick)
|
|
if int64(pd.schedtick) != t {
|
|
pd.schedtick = uint32(t)
|
|
pd.schedwhen = now
|
|
continue
|
|
}
|
|
if pd.schedwhen+forcePreemptNS > now {
|
|
continue
|
|
}
|
|
preemptone(_p_)
|
|
}
|
|
}
|
|
unlock(&allpLock)
|
|
return uint32(n)
|
|
}
|
|
|
|
// Tell all goroutines that they have been preempted and they should stop.
|
|
// This function is purely best-effort. It can fail to inform a goroutine if a
|
|
// processor just started running it.
|
|
// No locks need to be held.
|
|
// Returns true if preemption request was issued to at least one goroutine.
|
|
func preemptall() bool {
|
|
res := false
|
|
for _, _p_ := range allp {
|
|
if _p_.status != _Prunning {
|
|
continue
|
|
}
|
|
if preemptone(_p_) {
|
|
res = true
|
|
}
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Tell the goroutine running on processor P to stop.
|
|
// This function is purely best-effort. It can incorrectly fail to inform the
|
|
// goroutine. It can send inform the wrong goroutine. Even if it informs the
|
|
// correct goroutine, that goroutine might ignore the request if it is
|
|
// simultaneously executing newstack.
|
|
// No lock needs to be held.
|
|
// Returns true if preemption request was issued.
|
|
// The actual preemption will happen at some point in the future
|
|
// and will be indicated by the gp->status no longer being
|
|
// Grunning
|
|
func preemptone(_p_ *p) bool {
|
|
mp := _p_.m.ptr()
|
|
if mp == nil || mp == getg().m {
|
|
return false
|
|
}
|
|
gp := mp.curg
|
|
if gp == nil || gp == mp.g0 {
|
|
return false
|
|
}
|
|
|
|
gp.preempt = true
|
|
|
|
// Every call in a go routine checks for stack overflow by
|
|
// comparing the current stack pointer to gp->stackguard0.
|
|
// Setting gp->stackguard0 to StackPreempt folds
|
|
// preemption into the normal stack overflow check.
|
|
gp.stackguard0 = stackPreempt
|
|
return true
|
|
}
|
|
|
|
var starttime int64
|
|
|
|
func schedtrace(detailed bool) {
|
|
now := nanotime()
|
|
if starttime == 0 {
|
|
starttime = now
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
|
|
if detailed {
|
|
print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
|
|
}
|
|
// We must be careful while reading data from P's, M's and G's.
|
|
// Even if we hold schedlock, most data can be changed concurrently.
|
|
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
|
|
for i, _p_ := range allp {
|
|
mp := _p_.m.ptr()
|
|
h := atomic.Load(&_p_.runqhead)
|
|
t := atomic.Load(&_p_.runqtail)
|
|
if detailed {
|
|
id := int64(-1)
|
|
if mp != nil {
|
|
id = mp.id
|
|
}
|
|
print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
|
|
} else {
|
|
// In non-detailed mode format lengths of per-P run queues as:
|
|
// [len1 len2 len3 len4]
|
|
print(" ")
|
|
if i == 0 {
|
|
print("[")
|
|
}
|
|
print(t - h)
|
|
if i == len(allp)-1 {
|
|
print("]\n")
|
|
}
|
|
}
|
|
}
|
|
|
|
if !detailed {
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
|
|
for mp := allm; mp != nil; mp = mp.alllink {
|
|
_p_ := mp.p.ptr()
|
|
gp := mp.curg
|
|
lockedg := mp.lockedg.ptr()
|
|
id1 := int32(-1)
|
|
if _p_ != nil {
|
|
id1 = _p_.id
|
|
}
|
|
id2 := int64(-1)
|
|
if gp != nil {
|
|
id2 = gp.goid
|
|
}
|
|
id3 := int64(-1)
|
|
if lockedg != nil {
|
|
id3 = lockedg.goid
|
|
}
|
|
print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
|
|
}
|
|
|
|
lock(&allglock)
|
|
for gi := 0; gi < len(allgs); gi++ {
|
|
gp := allgs[gi]
|
|
mp := gp.m
|
|
lockedm := gp.lockedm.ptr()
|
|
id1 := int64(-1)
|
|
if mp != nil {
|
|
id1 = mp.id
|
|
}
|
|
id2 := int64(-1)
|
|
if lockedm != nil {
|
|
id2 = lockedm.id
|
|
}
|
|
print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason.String(), ") m=", id1, " lockedm=", id2, "\n")
|
|
}
|
|
unlock(&allglock)
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Put mp on midle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func mput(mp *m) {
|
|
mp.schedlink = sched.midle
|
|
sched.midle.set(mp)
|
|
sched.nmidle++
|
|
checkdead()
|
|
}
|
|
|
|
// Try to get an m from midle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func mget() *m {
|
|
mp := sched.midle.ptr()
|
|
if mp != nil {
|
|
sched.midle = mp.schedlink
|
|
sched.nmidle--
|
|
}
|
|
return mp
|
|
}
|
|
|
|
// Put gp on the global runnable queue.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func globrunqput(gp *g) {
|
|
gp.schedlink = 0
|
|
if sched.runqtail != 0 {
|
|
sched.runqtail.ptr().schedlink.set(gp)
|
|
} else {
|
|
sched.runqhead.set(gp)
|
|
}
|
|
sched.runqtail.set(gp)
|
|
sched.runqsize++
|
|
}
|
|
|
|
// Put gp at the head of the global runnable queue.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func globrunqputhead(gp *g) {
|
|
gp.schedlink = sched.runqhead
|
|
sched.runqhead.set(gp)
|
|
if sched.runqtail == 0 {
|
|
sched.runqtail.set(gp)
|
|
}
|
|
sched.runqsize++
|
|
}
|
|
|
|
// Put a batch of runnable goroutines on the global runnable queue.
|
|
// Sched must be locked.
|
|
func globrunqputbatch(ghead *g, gtail *g, n int32) {
|
|
gtail.schedlink = 0
|
|
if sched.runqtail != 0 {
|
|
sched.runqtail.ptr().schedlink.set(ghead)
|
|
} else {
|
|
sched.runqhead.set(ghead)
|
|
}
|
|
sched.runqtail.set(gtail)
|
|
sched.runqsize += n
|
|
}
|
|
|
|
// Try get a batch of G's from the global runnable queue.
|
|
// Sched must be locked.
|
|
func globrunqget(_p_ *p, max int32) *g {
|
|
if sched.runqsize == 0 {
|
|
return nil
|
|
}
|
|
|
|
n := sched.runqsize/gomaxprocs + 1
|
|
if n > sched.runqsize {
|
|
n = sched.runqsize
|
|
}
|
|
if max > 0 && n > max {
|
|
n = max
|
|
}
|
|
if n > int32(len(_p_.runq))/2 {
|
|
n = int32(len(_p_.runq)) / 2
|
|
}
|
|
|
|
sched.runqsize -= n
|
|
if sched.runqsize == 0 {
|
|
sched.runqtail = 0
|
|
}
|
|
|
|
gp := sched.runqhead.ptr()
|
|
sched.runqhead = gp.schedlink
|
|
n--
|
|
for ; n > 0; n-- {
|
|
gp1 := sched.runqhead.ptr()
|
|
sched.runqhead = gp1.schedlink
|
|
runqput(_p_, gp1, false)
|
|
}
|
|
return gp
|
|
}
|
|
|
|
// Put p to on _Pidle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func pidleput(_p_ *p) {
|
|
if !runqempty(_p_) {
|
|
throw("pidleput: P has non-empty run queue")
|
|
}
|
|
_p_.link = sched.pidle
|
|
sched.pidle.set(_p_)
|
|
atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
|
|
}
|
|
|
|
// Try get a p from _Pidle list.
|
|
// Sched must be locked.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func pidleget() *p {
|
|
_p_ := sched.pidle.ptr()
|
|
if _p_ != nil {
|
|
sched.pidle = _p_.link
|
|
atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
|
|
}
|
|
return _p_
|
|
}
|
|
|
|
// runqempty returns true if _p_ has no Gs on its local run queue.
|
|
// It never returns true spuriously.
|
|
func runqempty(_p_ *p) bool {
|
|
// Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
|
|
// 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
|
|
// Simply observing that runqhead == runqtail and then observing that runqnext == nil
|
|
// does not mean the queue is empty.
|
|
for {
|
|
head := atomic.Load(&_p_.runqhead)
|
|
tail := atomic.Load(&_p_.runqtail)
|
|
runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
|
|
if tail == atomic.Load(&_p_.runqtail) {
|
|
return head == tail && runnext == 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// To shake out latent assumptions about scheduling order,
|
|
// we introduce some randomness into scheduling decisions
|
|
// when running with the race detector.
|
|
// The need for this was made obvious by changing the
|
|
// (deterministic) scheduling order in Go 1.5 and breaking
|
|
// many poorly-written tests.
|
|
// With the randomness here, as long as the tests pass
|
|
// consistently with -race, they shouldn't have latent scheduling
|
|
// assumptions.
|
|
const randomizeScheduler = raceenabled
|
|
|
|
// runqput tries to put g on the local runnable queue.
|
|
// If next is false, runqput adds g to the tail of the runnable queue.
|
|
// If next is true, runqput puts g in the _p_.runnext slot.
|
|
// If the run queue is full, runnext puts g on the global queue.
|
|
// Executed only by the owner P.
|
|
func runqput(_p_ *p, gp *g, next bool) {
|
|
if randomizeScheduler && next && fastrand()%2 == 0 {
|
|
next = false
|
|
}
|
|
|
|
if next {
|
|
retryNext:
|
|
oldnext := _p_.runnext
|
|
if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
|
|
goto retryNext
|
|
}
|
|
if oldnext == 0 {
|
|
return
|
|
}
|
|
// Kick the old runnext out to the regular run queue.
|
|
gp = oldnext.ptr()
|
|
}
|
|
|
|
retry:
|
|
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
|
|
t := _p_.runqtail
|
|
if t-h < uint32(len(_p_.runq)) {
|
|
_p_.runq[t%uint32(len(_p_.runq))].set(gp)
|
|
atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
|
|
return
|
|
}
|
|
if runqputslow(_p_, gp, h, t) {
|
|
return
|
|
}
|
|
// the queue is not full, now the put above must succeed
|
|
goto retry
|
|
}
|
|
|
|
// Put g and a batch of work from local runnable queue on global queue.
|
|
// Executed only by the owner P.
|
|
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
|
|
var batch [len(_p_.runq)/2 + 1]*g
|
|
|
|
// First, grab a batch from local queue.
|
|
n := t - h
|
|
n = n / 2
|
|
if n != uint32(len(_p_.runq)/2) {
|
|
throw("runqputslow: queue is not full")
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
|
|
}
|
|
if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
|
|
return false
|
|
}
|
|
batch[n] = gp
|
|
|
|
if randomizeScheduler {
|
|
for i := uint32(1); i <= n; i++ {
|
|
j := fastrandn(i + 1)
|
|
batch[i], batch[j] = batch[j], batch[i]
|
|
}
|
|
}
|
|
|
|
// Link the goroutines.
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i].schedlink.set(batch[i+1])
|
|
}
|
|
|
|
// Now put the batch on global queue.
|
|
lock(&sched.lock)
|
|
globrunqputbatch(batch[0], batch[n], int32(n+1))
|
|
unlock(&sched.lock)
|
|
return true
|
|
}
|
|
|
|
// Get g from local runnable queue.
|
|
// If inheritTime is true, gp should inherit the remaining time in the
|
|
// current time slice. Otherwise, it should start a new time slice.
|
|
// Executed only by the owner P.
|
|
func runqget(_p_ *p) (gp *g, inheritTime bool) {
|
|
// If there's a runnext, it's the next G to run.
|
|
for {
|
|
next := _p_.runnext
|
|
if next == 0 {
|
|
break
|
|
}
|
|
if _p_.runnext.cas(next, 0) {
|
|
return next.ptr(), true
|
|
}
|
|
}
|
|
|
|
for {
|
|
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := _p_.runqtail
|
|
if t == h {
|
|
return nil, false
|
|
}
|
|
gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
|
|
if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
|
|
return gp, false
|
|
}
|
|
}
|
|
}
|
|
|
|
// Grabs a batch of goroutines from _p_'s runnable queue into batch.
|
|
// Batch is a ring buffer starting at batchHead.
|
|
// Returns number of grabbed goroutines.
|
|
// Can be executed by any P.
|
|
func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
|
|
for {
|
|
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer
|
|
n := t - h
|
|
n = n - n/2
|
|
if n == 0 {
|
|
if stealRunNextG {
|
|
// Try to steal from _p_.runnext.
|
|
if next := _p_.runnext; next != 0 {
|
|
if _p_.status == _Prunning {
|
|
// Sleep to ensure that _p_ isn't about to run the g
|
|
// we are about to steal.
|
|
// The important use case here is when the g running
|
|
// on _p_ ready()s another g and then almost
|
|
// immediately blocks. Instead of stealing runnext
|
|
// in this window, back off to give _p_ a chance to
|
|
// schedule runnext. This will avoid thrashing gs
|
|
// between different Ps.
|
|
// A sync chan send/recv takes ~50ns as of time of
|
|
// writing, so 3us gives ~50x overshoot.
|
|
if GOOS != "windows" {
|
|
usleep(3)
|
|
} else {
|
|
// On windows system timer granularity is
|
|
// 1-15ms, which is way too much for this
|
|
// optimization. So just yield.
|
|
osyield()
|
|
}
|
|
}
|
|
if !_p_.runnext.cas(next, 0) {
|
|
continue
|
|
}
|
|
batch[batchHead%uint32(len(batch))] = next
|
|
return 1
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
|
|
continue
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
|
|
batch[(batchHead+i)%uint32(len(batch))] = g
|
|
}
|
|
if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
|
|
return n
|
|
}
|
|
}
|
|
}
|
|
|
|
// Steal half of elements from local runnable queue of p2
|
|
// and put onto local runnable queue of p.
|
|
// Returns one of the stolen elements (or nil if failed).
|
|
func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
|
|
t := _p_.runqtail
|
|
n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
n--
|
|
gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
|
|
if n == 0 {
|
|
return gp
|
|
}
|
|
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
|
|
if t-h+n >= uint32(len(_p_.runq)) {
|
|
throw("runqsteal: runq overflow")
|
|
}
|
|
atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
|
|
return gp
|
|
}
|
|
|
|
//go:linkname setMaxThreads runtime/debug.setMaxThreads
|
|
func setMaxThreads(in int) (out int) {
|
|
lock(&sched.lock)
|
|
out = int(sched.maxmcount)
|
|
if in > 0x7fffffff { // MaxInt32
|
|
sched.maxmcount = 0x7fffffff
|
|
} else {
|
|
sched.maxmcount = int32(in)
|
|
}
|
|
checkmcount()
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
|
|
func haveexperiment(name string) bool {
|
|
if name == "framepointer" {
|
|
return framepointer_enabled // set by linker
|
|
}
|
|
x := sys.Goexperiment
|
|
for x != "" {
|
|
xname := ""
|
|
i := index(x, ",")
|
|
if i < 0 {
|
|
xname, x = x, ""
|
|
} else {
|
|
xname, x = x[:i], x[i+1:]
|
|
}
|
|
if xname == name {
|
|
return true
|
|
}
|
|
if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name {
|
|
return false
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
//go:nosplit
|
|
func procPin() int {
|
|
_g_ := getg()
|
|
mp := _g_.m
|
|
|
|
mp.locks++
|
|
return int(mp.p.ptr().id)
|
|
}
|
|
|
|
//go:nosplit
|
|
func procUnpin() {
|
|
_g_ := getg()
|
|
_g_.m.locks--
|
|
}
|
|
|
|
//go:linkname sync_runtime_procPin sync.runtime_procPin
|
|
//go:nosplit
|
|
func sync_runtime_procPin() int {
|
|
return procPin()
|
|
}
|
|
|
|
//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
|
|
//go:nosplit
|
|
func sync_runtime_procUnpin() {
|
|
procUnpin()
|
|
}
|
|
|
|
//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
|
|
//go:nosplit
|
|
func sync_atomic_runtime_procPin() int {
|
|
return procPin()
|
|
}
|
|
|
|
//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
|
|
//go:nosplit
|
|
func sync_atomic_runtime_procUnpin() {
|
|
procUnpin()
|
|
}
|
|
|
|
// Active spinning for sync.Mutex.
|
|
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
|
|
//go:nosplit
|
|
func sync_runtime_canSpin(i int) bool {
|
|
// sync.Mutex is cooperative, so we are conservative with spinning.
|
|
// Spin only few times and only if running on a multicore machine and
|
|
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
|
|
// As opposed to runtime mutex we don't do passive spinning here,
|
|
// because there can be work on global runq or on other Ps.
|
|
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
|
|
return false
|
|
}
|
|
if p := getg().m.p.ptr(); !runqempty(p) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
|
|
//go:nosplit
|
|
func sync_runtime_doSpin() {
|
|
procyield(active_spin_cnt)
|
|
}
|
|
|
|
var stealOrder randomOrder
|
|
|
|
// randomOrder/randomEnum are helper types for randomized work stealing.
|
|
// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
|
|
// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
|
|
// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
|
|
type randomOrder struct {
|
|
count uint32
|
|
coprimes []uint32
|
|
}
|
|
|
|
type randomEnum struct {
|
|
i uint32
|
|
count uint32
|
|
pos uint32
|
|
inc uint32
|
|
}
|
|
|
|
func (ord *randomOrder) reset(count uint32) {
|
|
ord.count = count
|
|
ord.coprimes = ord.coprimes[:0]
|
|
for i := uint32(1); i <= count; i++ {
|
|
if gcd(i, count) == 1 {
|
|
ord.coprimes = append(ord.coprimes, i)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (ord *randomOrder) start(i uint32) randomEnum {
|
|
return randomEnum{
|
|
count: ord.count,
|
|
pos: i % ord.count,
|
|
inc: ord.coprimes[i%uint32(len(ord.coprimes))],
|
|
}
|
|
}
|
|
|
|
func (enum *randomEnum) done() bool {
|
|
return enum.i == enum.count
|
|
}
|
|
|
|
func (enum *randomEnum) next() {
|
|
enum.i++
|
|
enum.pos = (enum.pos + enum.inc) % enum.count
|
|
}
|
|
|
|
func (enum *randomEnum) position() uint32 {
|
|
return enum.pos
|
|
}
|
|
|
|
func gcd(a, b uint32) uint32 {
|
|
for b != 0 {
|
|
a, b = b, a%b
|
|
}
|
|
return a
|
|
}
|