1
0
mirror of https://github.com/golang/go synced 2024-11-19 16:04:48 -07:00
go/src/runtime/asm_mipsx.s
Martin Möhrmann 3216e0cefa cmd/compile: replace eqstring with memequal
eqstring is only called for strings with equal lengths.
Instead of pushing a pointer and length for each argument string
on the stack we can omit pushing one of the lengths on the stack.

Changing eqstrings signature to eqstring(*uint8, *uint8, int) bool
to implement the above optimization would make it very similar to the
existing memequal(*any, *any, uintptr) bool function.

Since string lengths are positive we can avoid code redundancy and
use memequal instead of using eqstring with an optimized signature.

go command binary size reduced by 4128 bytes on amd64.

name                          old time/op    new time/op    delta
CompareStringEqual              6.03ns ± 1%    5.71ns ± 1%   -5.23%  (p=0.000 n=19+18)
CompareStringIdentical          2.88ns ± 1%    3.22ns ± 7%  +11.86%  (p=0.000 n=20+20)
CompareStringSameLength         4.31ns ± 1%    4.01ns ± 1%   -7.17%  (p=0.000 n=19+19)
CompareStringDifferentLength    0.29ns ± 2%    0.29ns ± 2%     ~     (p=1.000 n=20+20)
CompareStringBigUnaligned       64.3µs ± 2%    64.1µs ± 3%     ~     (p=0.164 n=20+19)
CompareStringBig                61.9µs ± 1%    61.6µs ± 2%   -0.46%  (p=0.033 n=20+19)

Change-Id: Ice15f3b937c981f0d3bc8479a9ea0d10658ac8df
Reviewed-on: https://go-review.googlesource.com/53650
Run-TryBot: Martin Möhrmann <moehrmann@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-08-22 17:59:02 +00:00

868 lines
21 KiB
ArmAsm

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build mips mipsle
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
#define REGCTXT R22
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// R29 = stack; R4 = argc; R5 = argv
ADDU $-12, R29
MOVW R4, 4(R29) // argc
MOVW R5, 8(R29) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVW $runtime·g0(SB), g
MOVW $(-64*1024), R23
ADD R23, R29, R1
MOVW R1, g_stackguard0(g)
MOVW R1, g_stackguard1(g)
MOVW R1, (g_stack+stack_lo)(g)
MOVW R29, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVW _cgo_init(SB), R25
BEQ R25, nocgo
ADDU $-16, R29
MOVW R0, R7 // arg 3: not used
MOVW R0, R6 // arg 2: not used
MOVW $setg_gcc<>(SB), R5 // arg 1: setg
MOVW g, R4 // arg 0: G
JAL (R25)
ADDU $16, R29
nocgo:
// update stackguard after _cgo_init
MOVW (g_stack+stack_lo)(g), R1
ADD $const__StackGuard, R1
MOVW R1, g_stackguard0(g)
MOVW R1, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVW $runtime·m0(SB), R1
// save m->g0 = g0
MOVW g, m_g0(R1)
// save m0 to g0->m
MOVW R1, g_m(g)
JAL runtime·check(SB)
// args are already prepared
JAL runtime·args(SB)
JAL runtime·osinit(SB)
JAL runtime·schedinit(SB)
// create a new goroutine to start program
MOVW $runtime·mainPC(SB), R1 // entry
ADDU $-12, R29
MOVW R1, 8(R29)
MOVW R0, 4(R29)
MOVW R0, 0(R29)
JAL runtime·newproc(SB)
ADDU $12, R29
// start this M
JAL runtime·mstart(SB)
UNDEF
RET
DATA runtime·mainPC+0(SB)/4,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$4
TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
BREAK
RET
TEXT runtime·asminit(SB),NOSPLIT,$0-0
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB),NOSPLIT,$-4-4
MOVW buf+0(FP), R1
MOVW R29, gobuf_sp(R1)
MOVW R31, gobuf_pc(R1)
MOVW g, gobuf_g(R1)
MOVW R0, gobuf_lr(R1)
MOVW R0, gobuf_ret(R1)
// Assert ctxt is zero. See func save.
MOVW gobuf_ctxt(R1), R1
BEQ R1, 2(PC)
JAL runtime·badctxt(SB)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB),NOSPLIT,$8-4
MOVW buf+0(FP), R3
// If ctxt is not nil, invoke deletion barrier before overwriting.
MOVW gobuf_ctxt(R3), R1
BEQ R1, nilctxt
MOVW $gobuf_ctxt(R3), R1
MOVW R1, 4(R29)
MOVW R0, 8(R29)
JAL runtime·writebarrierptr_prewrite(SB)
MOVW buf+0(FP), R3
nilctxt:
MOVW gobuf_g(R3), g // make sure g is not nil
JAL runtime·save_g(SB)
MOVW 0(g), R2
MOVW gobuf_sp(R3), R29
MOVW gobuf_lr(R3), R31
MOVW gobuf_ret(R3), R1
MOVW gobuf_ctxt(R3), REGCTXT
MOVW R0, gobuf_sp(R3)
MOVW R0, gobuf_ret(R3)
MOVW R0, gobuf_lr(R3)
MOVW R0, gobuf_ctxt(R3)
MOVW gobuf_pc(R3), R4
JMP (R4)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB),NOSPLIT,$-4-4
// Save caller state in g->sched
MOVW R29, (g_sched+gobuf_sp)(g)
MOVW R31, (g_sched+gobuf_pc)(g)
MOVW R0, (g_sched+gobuf_lr)(g)
MOVW g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVW g, R1
MOVW g_m(g), R3
MOVW m_g0(R3), g
JAL runtime·save_g(SB)
BNE g, R1, 2(PC)
JMP runtime·badmcall(SB)
MOVW fn+0(FP), REGCTXT // context
MOVW 0(REGCTXT), R4 // code pointer
MOVW (g_sched+gobuf_sp)(g), R29 // sp = m->g0->sched.sp
ADDU $-8, R29 // make room for 1 arg and fake LR
MOVW R1, 4(R29)
MOVW R0, 0(R29)
JAL (R4)
JMP runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0
UNDEF
JAL (R31) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB),NOSPLIT,$0-4
MOVW fn+0(FP), R1 // R1 = fn
MOVW R1, REGCTXT // context
MOVW g_m(g), R2 // R2 = m
MOVW m_gsignal(R2), R3 // R3 = gsignal
BEQ g, R3, noswitch
MOVW m_g0(R2), R3 // R3 = g0
BEQ g, R3, noswitch
MOVW m_curg(R2), R4
BEQ g, R4, switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVW $runtime·badsystemstack(SB), R4
JAL (R4)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVW $runtime·systemstack_switch(SB), R4
ADDU $8, R4 // get past prologue
MOVW R4, (g_sched+gobuf_pc)(g)
MOVW R29, (g_sched+gobuf_sp)(g)
MOVW R0, (g_sched+gobuf_lr)(g)
MOVW g, (g_sched+gobuf_g)(g)
// switch to g0
MOVW R3, g
JAL runtime·save_g(SB)
MOVW (g_sched+gobuf_sp)(g), R1
// make it look like mstart called systemstack on g0, to stop traceback
ADDU $-4, R1
MOVW $runtime·mstart(SB), R2
MOVW R2, 0(R1)
MOVW R1, R29
// call target function
MOVW 0(REGCTXT), R4 // code pointer
JAL (R4)
// switch back to g
MOVW g_m(g), R1
MOVW m_curg(R1), g
JAL runtime·save_g(SB)
MOVW (g_sched+gobuf_sp)(g), R29
MOVW R0, (g_sched+gobuf_sp)(g)
RET
noswitch:
// already on m stack, just call directly
MOVW 0(REGCTXT), R4 // code pointer
JAL (R4)
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R1: framesize, R2: argsize, R3: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$-4-0
// Cannot grow scheduler stack (m->g0).
MOVW g_m(g), R7
MOVW m_g0(R7), R8
BNE g, R8, 3(PC)
JAL runtime·badmorestackg0(SB)
JAL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVW m_gsignal(R7), R8
BNE g, R8, 3(PC)
JAL runtime·badmorestackgsignal(SB)
JAL runtime·abort(SB)
// Called from f.
// Set g->sched to context in f.
MOVW R29, (g_sched+gobuf_sp)(g)
MOVW R31, (g_sched+gobuf_pc)(g)
MOVW R3, (g_sched+gobuf_lr)(g)
// newstack will fill gobuf.ctxt.
// Called from f.
// Set m->morebuf to f's caller.
MOVW R3, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVW R29, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVW g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVW m_g0(R7), g
JAL runtime·save_g(SB)
MOVW (g_sched+gobuf_sp)(g), R29
// Create a stack frame on g0 to call newstack.
MOVW R0, -8(R29) // Zero saved LR in frame
ADDU $-8, R29
MOVW REGCTXT, 4(R29) // ctxt argument
JAL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0
MOVW R0, REGCTXT
JMP runtime·morestack(SB)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
#define DISPATCH(NAME,MAXSIZE) \
MOVW $MAXSIZE, R23; \
SGTU R1, R23, R23; \
BNE R23, 3(PC); \
MOVW $NAME(SB), R4; \
JMP (R4)
TEXT reflect·call(SB),NOSPLIT,$0-20
JMP ·reflectcall(SB)
TEXT ·reflectcall(SB),NOSPLIT,$-4-20
MOVW argsize+12(FP), R1
DISPATCH(runtime·call16, 16)
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVW $runtime·badreflectcall(SB), R4
JMP (R4)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB),WRAPPER,$MAXSIZE-20; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVW arg+8(FP), R1; \
MOVW argsize+12(FP), R2; \
MOVW R29, R3; \
ADDU $4, R3; \
ADDU R3, R2; \
BEQ R3, R2, 6(PC); \
MOVBU (R1), R4; \
ADDU $1, R1; \
MOVBU R4, (R3); \
ADDU $1, R3; \
JMP -5(PC); \
/* call function */ \
MOVW f+4(FP), REGCTXT; \
MOVW (REGCTXT), R4; \
PCDATA $PCDATA_StackMapIndex, $0; \
JAL (R4); \
/* copy return values back */ \
MOVW argtype+0(FP), R5; \
MOVW arg+8(FP), R1; \
MOVW n+12(FP), R2; \
MOVW retoffset+16(FP), R4; \
ADDU $4, R29, R3; \
ADDU R4, R3; \
ADDU R4, R1; \
SUBU R4, R2; \
JAL callRet<>(SB); \
RET
// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $16-0
MOVW R5, 4(R29)
MOVW R1, 8(R29)
MOVW R3, 12(R29)
MOVW R2, 16(R29)
JAL runtime·reflectcallmove(SB)
RET
CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
TEXT runtime·procyield(SB),NOSPLIT,$0-4
RET
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 8 bytes to get back to JAL deferreturn
// 3. JMP to fn
TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8
MOVW 0(R29), R31
ADDU $-8, R31
MOVW fv+0(FP), REGCTXT
MOVW argp+4(FP), R29
ADDU $-4, R29
NOR R0, R0 // prevent scheduling
MOVW 0(REGCTXT), R4
JMP (R4)
// Save state of caller into g->sched. Smashes R1.
TEXT gosave<>(SB),NOSPLIT,$-4
MOVW R31, (g_sched+gobuf_pc)(g)
MOVW R29, (g_sched+gobuf_sp)(g)
MOVW R0, (g_sched+gobuf_lr)(g)
MOVW R0, (g_sched+gobuf_ret)(g)
// Assert ctxt is zero. See func save.
MOVW (g_sched+gobuf_ctxt)(g), R1
BEQ R1, 2(PC)
JAL runtime·badctxt(SB)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-12
MOVW fn+0(FP), R25
MOVW arg+4(FP), R4
MOVW R29, R3 // save original stack pointer
MOVW g, R2
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVW g_m(g), R5
MOVW m_g0(R5), R6
BEQ R6, g, g0
JAL gosave<>(SB)
MOVW R6, g
JAL runtime·save_g(SB)
MOVW (g_sched+gobuf_sp)(g), R29
// Now on a scheduling stack (a pthread-created stack).
g0:
// Save room for two of our pointers and O32 frame.
ADDU $-24, R29
AND $~7, R29 // O32 ABI expects 8-byte aligned stack on function entry
MOVW R2, 16(R29) // save old g on stack
MOVW (g_stack+stack_hi)(R2), R2
SUBU R3, R2
MOVW R2, 20(R29) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
JAL (R25)
// Restore g, stack pointer. R2 is return value.
MOVW 16(R29), g
JAL runtime·save_g(SB)
MOVW (g_stack+stack_hi)(g), R5
MOVW 20(R29), R6
SUBU R6, R5
MOVW R5, R29
MOVW R2, ret+8(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$16-16
MOVW $fn+0(FP), R1
MOVW R1, 4(R29)
MOVW frame+4(FP), R1
MOVW R1, 8(R29)
MOVW framesize+8(FP), R1
MOVW R1, 12(R29)
MOVW ctxt+12(FP), R1
MOVW R1, 16(R29)
MOVW $runtime·cgocallback_gofunc(SB), R1
JAL (R1)
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-16
NO_LOCAL_POINTERS
// Load m and g from thread-local storage.
MOVB runtime·iscgo(SB), R1
BEQ R1, nocgo
JAL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
BEQ g, needm
MOVW g_m(g), R3
MOVW R3, savedm-4(SP)
JMP havem
needm:
MOVW g, savedm-4(SP) // g is zero, so is m.
MOVW $runtime·needm(SB), R4
JAL (R4)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVW g_m(g), R3
MOVW m_g0(R3), R1
MOVW R29, (g_sched+gobuf_sp)(R1)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 4(R29) aka savedsp-8(SP).
MOVW m_g0(R3), R1
MOVW (g_sched+gobuf_sp)(R1), R2
MOVW R2, savedsp-8(SP)
MOVW R29, (g_sched+gobuf_sp)(R1)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -4(SP) is unused (where SP refers to
// m->curg's SP while we're setting it up, before we've adjusted it).
MOVW m_curg(R3), g
JAL runtime·save_g(SB)
MOVW (g_sched+gobuf_sp)(g), R2 // prepare stack as R2
MOVW (g_sched+gobuf_pc)(g), R4
MOVW R4, -12(R2)
MOVW ctxt+12(FP), R1
MOVW R1, -8(R2)
MOVW $-12(R2), R29
JAL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVW 0(R29), R4
MOVW R4, (g_sched+gobuf_pc)(g)
MOVW $12(R29), R2
MOVW R2, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVW g_m(g), R3
MOVW m_g0(R3), g
JAL runtime·save_g(SB)
MOVW (g_sched+gobuf_sp)(g), R29
MOVW savedsp-8(SP), R2
MOVW R2, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVW savedm-4(SP), R3
BNE R3, droppedm
MOVW $runtime·dropm(SB), R4
JAL (R4)
droppedm:
// Done!
RET
// void setg(G*); set g. for use by needm.
// This only happens if iscgo, so jump straight to save_g
TEXT runtime·setg(SB),NOSPLIT,$0-4
MOVW gg+0(FP), g
JAL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT,$0
MOVW R4, g
JAL runtime·save_g(SB)
RET
TEXT runtime·getcallerpc(SB),NOSPLIT,$4-8
MOVW 8(R29), R1 // LR saved by caller
MOVW R1, ret+4(FP)
RET
TEXT runtime·abort(SB),NOSPLIT,$0-0
UNDEF
// Not implemented.
TEXT runtime·aeshash(SB),NOSPLIT,$0
UNDEF
// Not implemented.
TEXT runtime·aeshash32(SB),NOSPLIT,$0
UNDEF
// Not implemented.
TEXT runtime·aeshash64(SB),NOSPLIT,$0
UNDEF
// Not implemented.
TEXT runtime·aeshashstr(SB),NOSPLIT,$0
UNDEF
// memequal(a, b unsafe.Pointer, size uintptr) bool
TEXT runtime·memequal(SB),NOSPLIT,$0-13
MOVW a+0(FP), R1
MOVW b+4(FP), R2
BEQ R1, R2, eq
MOVW size+8(FP), R3
ADDU R1, R3, R4
loop:
BNE R1, R4, test
MOVW $1, R1
MOVB R1, ret+12(FP)
RET
test:
MOVBU (R1), R6
ADDU $1, R1
MOVBU (R2), R7
ADDU $1, R2
BEQ R6, R7, loop
MOVB R0, ret+12(FP)
RET
eq:
MOVW $1, R1
MOVB R1, ret+12(FP)
RET
// memequal_varlen(a, b unsafe.Pointer) bool
TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-9
MOVW a+0(FP), R1
MOVW b+4(FP), R2
BEQ R1, R2, eq
MOVW 4(REGCTXT), R3 // compiler stores size at offset 4 in the closure
ADDU R1, R3, R4
loop:
BNE R1, R4, test
MOVW $1, R1
MOVB R1, ret+8(FP)
RET
test:
MOVBU (R1), R6
ADDU $1, R1
MOVBU (R2), R7
ADDU $1, R2
BEQ R6, R7, loop
MOVB R0, ret+8(FP)
RET
eq:
MOVW $1, R1
MOVB R1, ret+8(FP)
RET
TEXT bytes·Equal(SB),NOSPLIT,$0-25
MOVW a_len+4(FP), R3
MOVW b_len+16(FP), R4
BNE R3, R4, noteq // unequal lengths are not equal
MOVW a+0(FP), R1
MOVW b+12(FP), R2
ADDU R1, R3 // end
loop:
BEQ R1, R3, equal // reached the end
MOVBU (R1), R6
ADDU $1, R1
MOVBU (R2), R7
ADDU $1, R2
BEQ R6, R7, loop
noteq:
MOVB R0, ret+24(FP)
RET
equal:
MOVW $1, R1
MOVB R1, ret+24(FP)
RET
TEXT bytes·IndexByte(SB),NOSPLIT,$0-20
MOVW s+0(FP), R1
MOVW s_len+4(FP), R2
MOVBU c+12(FP), R3 // byte to find
ADDU $1, R1, R4 // store base+1 for later
ADDU R1, R2 // end
loop:
BEQ R1, R2, notfound
MOVBU (R1), R5
ADDU $1, R1
BNE R3, R5, loop
SUBU R4, R1 // R1 will be one beyond the position we want so remove (base+1)
MOVW R1, ret+16(FP)
RET
notfound:
MOVW $-1, R1
MOVW R1, ret+16(FP)
RET
TEXT strings·IndexByte(SB),NOSPLIT,$0-16
MOVW s_base+0(FP), R1
MOVW s_len+4(FP), R2
MOVBU c+8(FP), R3 // byte to find
ADDU $1, R1, R4 // store base+1 for later
ADDU R1, R2 // end
loop:
BEQ R1, R2, notfound
MOVBU (R1), R5
ADDU $1, R1
BNE R3, R5, loop
SUBU R4, R1 // remove (base+1)
MOVW R1, ret+12(FP)
RET
notfound:
MOVW $-1, R1
MOVW R1, ret+12(FP)
RET
TEXT runtime·cmpstring(SB),NOSPLIT,$0-20
MOVW s1_base+0(FP), R3
MOVW s1_len+4(FP), R1
MOVW s2_base+8(FP), R4
MOVW s2_len+12(FP), R2
BEQ R3, R4, samebytes
SGTU R1, R2, R7
MOVW R1, R8
CMOVN R7, R2, R8 // R8 is min(R1, R2)
ADDU R3, R8 // R3 is current byte in s1, R8 is last byte in s1 to compare
loop:
BEQ R3, R8, samebytes // all compared bytes were the same; compare lengths
MOVBU (R3), R6
ADDU $1, R3
MOVBU (R4), R7
ADDU $1, R4
BEQ R6, R7 , loop
// bytes differed
SGTU R6, R7, R8
MOVW $-1, R6
CMOVZ R8, R6, R8
JMP cmp_ret
samebytes:
SGTU R1, R2, R6
SGTU R2, R1, R7
SUBU R7, R6, R8
cmp_ret:
MOVW R8, ret+16(FP)
RET
TEXT bytes·Compare(SB),NOSPLIT,$0-28
MOVW s1_base+0(FP), R3
MOVW s2_base+12(FP), R4
MOVW s1_len+4(FP), R1
MOVW s2_len+16(FP), R2
BEQ R3, R4, samebytes
SGTU R1, R2, R7
MOVW R1, R8
CMOVN R7, R2, R8 // R8 is min(R1, R2)
ADDU R3, R8 // R3 is current byte in s1, R8 is last byte in s1 to compare
loop:
BEQ R3, R8, samebytes
MOVBU (R3), R6
ADDU $1, R3
MOVBU (R4), R7
ADDU $1, R4
BEQ R6, R7 , loop
SGTU R6, R7, R8
MOVW $-1, R6
CMOVZ R8, R6, R8
JMP cmp_ret
samebytes:
SGTU R1, R2, R6
SGTU R2, R1, R7
SUBU R7, R6, R8
cmp_ret:
MOVW R8, ret+24(FP)
RET
TEXT runtime·return0(SB),NOSPLIT,$0
MOVW $0, R1
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$-4
// g (R30), R3 and REGTMP (R23) might be clobbered by load_g. R30 and R23
// are callee-save in the gcc calling convention, so save them.
MOVW R23, R8
MOVW g, R9
MOVW R31, R10 // this call frame does not save LR
JAL runtime·load_g(SB)
MOVW g_m(g), R1
MOVW m_curg(R1), R1
MOVW (g_stack+stack_hi)(R1), R2 // return value in R2
MOVW R8, R23
MOVW R9, g
MOVW R10, R31
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT,$-4-0
NOR R0, R0 // NOP
JAL runtime·goexit1(SB) // does not return
// traceback from goexit1 must hit code range of goexit
NOR R0, R0 // NOP
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVW $1, R1
MOVB R1, ret+0(FP)
RET