1
0
mirror of https://github.com/golang/go synced 2024-11-19 14:14:40 -07:00
go/src/runtime/mprof.go
Austin Clements 9ffbdabdb0 runtime: make runtime.GC() trigger a concurrent GC
Currently runtime.GC() triggers a STW GC. For common uses in tests and
benchmarks, it doesn't matter whether it's STW or concurrent, but for
uses in servers for things like collecting heap profiles and
controlling memory footprint, this pause can be a bit problem for
latency.

This changes runtime.GC() to trigger a concurrent GC. In order to
remain as close as possible to its current meaning, we define it to
always perform a full mark/sweep GC cycle before returning (even if
that means it has to finish up a cycle we're in the middle of first)
and to publish the heap profile as of the triggered mark termination.
While it must perform a full cycle, simultaneous runtime.GC() calls
can be consolidated into a single full cycle.

Fixes #18216.

Change-Id: I9088cc5deef4ab6bcf0245ed1982a852a01c44b5
Reviewed-on: https://go-review.googlesource.com/37520
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2017-03-31 01:15:21 +00:00

871 lines
24 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc profiling.
// Patterned after tcmalloc's algorithms; shorter code.
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
// NOTE(rsc): Everything here could use cas if contention became an issue.
var proflock mutex
// All memory allocations are local and do not escape outside of the profiler.
// The profiler is forbidden from referring to garbage-collected memory.
const (
// profile types
memProfile bucketType = 1 + iota
blockProfile
mutexProfile
// size of bucket hash table
buckHashSize = 179999
// max depth of stack to record in bucket
maxStack = 32
)
type bucketType int
// A bucket holds per-call-stack profiling information.
// The representation is a bit sleazy, inherited from C.
// This struct defines the bucket header. It is followed in
// memory by the stack words and then the actual record
// data, either a memRecord or a blockRecord.
//
// Per-call-stack profiling information.
// Lookup by hashing call stack into a linked-list hash table.
//
// No heap pointers.
//
//go:notinheap
type bucket struct {
next *bucket
allnext *bucket
typ bucketType // memBucket or blockBucket (includes mutexProfile)
hash uintptr
size uintptr
nstk uintptr
}
// A memRecord is the bucket data for a bucket of type memProfile,
// part of the memory profile.
type memRecord struct {
// The following complex 3-stage scheme of stats accumulation
// is required to obtain a consistent picture of mallocs and frees
// for some point in time.
// The problem is that mallocs come in real time, while frees
// come only after a GC during concurrent sweeping. So if we would
// naively count them, we would get a skew toward mallocs.
//
// Hence, we delay information to get consistent snapshots as
// of mark termination. Allocations count toward the next mark
// termination's snapshot, while sweep frees count toward the
// previous mark termination's snapshot:
//
// MT MT MT MT
// .·| .·| .·| .·|
// .·˙ | .·˙ | .·˙ | .·˙ |
// .·˙ | .·˙ | .·˙ | .·˙ |
// .·˙ |.·˙ |.·˙ |.·˙ |
//
// alloc → ▲ ← free
// ┠┅┅┅┅┅┅┅┅┅┅┅P
// C+2 → C+1 → C
//
// alloc → ▲ ← free
// ┠┅┅┅┅┅┅┅┅┅┅┅P
// C+2 → C+1 → C
//
// Since we can't publish a consistent snapshot until all of
// the sweep frees are accounted for, we wait until the next
// mark termination ("MT" above) to publish the previous mark
// termination's snapshot ("P" above). To do this, allocation
// and free events are accounted to *future* heap profile
// cycles ("C+n" above) and we only publish a cycle once all
// of the events from that cycle must be done. Specifically:
//
// Mallocs are accounted to cycle C+2.
// Explicit frees are accounted to cycle C+2.
// GC frees (done during sweeping) are accounted to cycle C+1.
//
// After mark termination, we increment the global heap
// profile cycle counter and accumulate the stats from cycle C
// into the active profile.
// active is the currently published profile. A profiling
// cycle can be accumulated into active once its complete.
active memRecordCycle
// future records the profile events we're counting for cycles
// that have not yet been published. This is ring buffer
// indexed by the global heap profile cycle C and stores
// cycles C, C+1, and C+2. Unlike active, these counts are
// only for a single cycle; they are not cumulative across
// cycles.
//
// We store cycle C here because there's a window between when
// C becomes the active cycle and when we've flushed it to
// active.
future [3]memRecordCycle
}
// memRecordCycle
type memRecordCycle struct {
allocs, frees uintptr
alloc_bytes, free_bytes uintptr
}
// add accumulates b into a. It does not zero b.
func (a *memRecordCycle) add(b *memRecordCycle) {
a.allocs += b.allocs
a.frees += b.frees
a.alloc_bytes += b.alloc_bytes
a.free_bytes += b.free_bytes
}
// A blockRecord is the bucket data for a bucket of type blockProfile,
// which is used in blocking and mutex profiles.
type blockRecord struct {
count int64
cycles int64
}
var (
mbuckets *bucket // memory profile buckets
bbuckets *bucket // blocking profile buckets
xbuckets *bucket // mutex profile buckets
buckhash *[179999]*bucket
bucketmem uintptr
mProf struct {
// All fields in mProf are protected by proflock.
// cycle is the global heap profile cycle. This wraps
// at mProfCycleWrap.
cycle uint32
// flushed indicates that future[cycle] in all buckets
// has been flushed to the active profile.
flushed bool
}
)
const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
// newBucket allocates a bucket with the given type and number of stack entries.
func newBucket(typ bucketType, nstk int) *bucket {
size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0))
switch typ {
default:
throw("invalid profile bucket type")
case memProfile:
size += unsafe.Sizeof(memRecord{})
case blockProfile, mutexProfile:
size += unsafe.Sizeof(blockRecord{})
}
b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
bucketmem += size
b.typ = typ
b.nstk = uintptr(nstk)
return b
}
// stk returns the slice in b holding the stack.
func (b *bucket) stk() []uintptr {
stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
return stk[:b.nstk:b.nstk]
}
// mp returns the memRecord associated with the memProfile bucket b.
func (b *bucket) mp() *memRecord {
if b.typ != memProfile {
throw("bad use of bucket.mp")
}
data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
return (*memRecord)(data)
}
// bp returns the blockRecord associated with the blockProfile bucket b.
func (b *bucket) bp() *blockRecord {
if b.typ != blockProfile && b.typ != mutexProfile {
throw("bad use of bucket.bp")
}
data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
return (*blockRecord)(data)
}
// Return the bucket for stk[0:nstk], allocating new bucket if needed.
func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket {
if buckhash == nil {
buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys))
if buckhash == nil {
throw("runtime: cannot allocate memory")
}
}
// Hash stack.
var h uintptr
for _, pc := range stk {
h += pc
h += h << 10
h ^= h >> 6
}
// hash in size
h += size
h += h << 10
h ^= h >> 6
// finalize
h += h << 3
h ^= h >> 11
i := int(h % buckHashSize)
for b := buckhash[i]; b != nil; b = b.next {
if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
return b
}
}
if !alloc {
return nil
}
// Create new bucket.
b := newBucket(typ, len(stk))
copy(b.stk(), stk)
b.hash = h
b.size = size
b.next = buckhash[i]
buckhash[i] = b
if typ == memProfile {
b.allnext = mbuckets
mbuckets = b
} else if typ == mutexProfile {
b.allnext = xbuckets
xbuckets = b
} else {
b.allnext = bbuckets
bbuckets = b
}
return b
}
func eqslice(x, y []uintptr) bool {
if len(x) != len(y) {
return false
}
for i, xi := range x {
if xi != y[i] {
return false
}
}
return true
}
// mProf_NextCycle publishes the next heap profile cycle and creates a
// fresh heap profile cycle. This operation is fast and can be done
// during STW. The caller must call mProf_Flush before calling
// mProf_NextCycle again.
//
// This is called by mark termination during STW so allocations and
// frees after the world is started again count towards a new heap
// profiling cycle.
func mProf_NextCycle() {
lock(&proflock)
// We explicitly wrap mProf.cycle rather than depending on
// uint wraparound because the memRecord.future ring does not
// itself wrap at a power of two.
mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap
mProf.flushed = false
unlock(&proflock)
}
// mProf_Flush flushes the events from the current heap profiling
// cycle into the active profile. After this it is safe to start a new
// heap profiling cycle with mProf_NextCycle.
//
// This is called by GC after mark termination starts the world. In
// contrast with mProf_NextCycle, this is somewhat expensive, but safe
// to do concurrently.
func mProf_Flush() {
lock(&proflock)
if !mProf.flushed {
mProf_FlushLocked()
mProf.flushed = true
}
unlock(&proflock)
}
func mProf_FlushLocked() {
c := mProf.cycle
for b := mbuckets; b != nil; b = b.allnext {
mp := b.mp()
// Flush cycle C into the published profile and clear
// it for reuse.
mpc := &mp.future[c%uint32(len(mp.future))]
mp.active.add(mpc)
*mpc = memRecordCycle{}
}
}
// mProf_PostSweep records that all sweep frees for this GC cycle have
// completed. This has the effect of publishing the heap profile
// snapshot as of the last mark termination without advancing the heap
// profile cycle.
func mProf_PostSweep() {
lock(&proflock)
// Flush cycle C+1 to the active profile so everything as of
// the last mark termination becomes visible. *Don't* advance
// the cycle, since we're still accumulating allocs in cycle
// C+2, which have to become C+1 in the next mark termination
// and so on.
c := mProf.cycle
for b := mbuckets; b != nil; b = b.allnext {
mp := b.mp()
mpc := &mp.future[(c+1)%uint32(len(mp.future))]
mp.active.add(mpc)
*mpc = memRecordCycle{}
}
unlock(&proflock)
}
// Called by malloc to record a profiled block.
func mProf_Malloc(p unsafe.Pointer, size uintptr) {
var stk [maxStack]uintptr
nstk := callers(4, stk[:])
lock(&proflock)
b := stkbucket(memProfile, size, stk[:nstk], true)
c := mProf.cycle
mp := b.mp()
mpc := &mp.future[(c+2)%uint32(len(mp.future))]
mpc.allocs++
mpc.alloc_bytes += size
unlock(&proflock)
// Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock.
// This reduces potential contention and chances of deadlocks.
// Since the object must be alive during call to mProf_Malloc,
// it's fine to do this non-atomically.
systemstack(func() {
setprofilebucket(p, b)
})
}
// Called when freeing a profiled block.
func mProf_Free(b *bucket, size uintptr) {
lock(&proflock)
c := mProf.cycle
mp := b.mp()
mpc := &mp.future[(c+1)%uint32(len(mp.future))]
mpc.frees++
mpc.free_bytes += size
unlock(&proflock)
}
var blockprofilerate uint64 // in CPU ticks
// SetBlockProfileRate controls the fraction of goroutine blocking events
// that are reported in the blocking profile. The profiler aims to sample
// an average of one blocking event per rate nanoseconds spent blocked.
//
// To include every blocking event in the profile, pass rate = 1.
// To turn off profiling entirely, pass rate <= 0.
func SetBlockProfileRate(rate int) {
var r int64
if rate <= 0 {
r = 0 // disable profiling
} else if rate == 1 {
r = 1 // profile everything
} else {
// convert ns to cycles, use float64 to prevent overflow during multiplication
r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000))
if r == 0 {
r = 1
}
}
atomic.Store64(&blockprofilerate, uint64(r))
}
func blockevent(cycles int64, skip int) {
if cycles <= 0 {
cycles = 1
}
if blocksampled(cycles) {
saveblockevent(cycles, skip+1, blockProfile)
}
}
func blocksampled(cycles int64) bool {
rate := int64(atomic.Load64(&blockprofilerate))
if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) {
return false
}
return true
}
func saveblockevent(cycles int64, skip int, which bucketType) {
gp := getg()
var nstk int
var stk [maxStack]uintptr
if gp.m.curg == nil || gp.m.curg == gp {
nstk = callers(skip, stk[:])
} else {
nstk = gcallers(gp.m.curg, skip, stk[:])
}
lock(&proflock)
b := stkbucket(which, 0, stk[:nstk], true)
b.bp().count++
b.bp().cycles += cycles
unlock(&proflock)
}
var mutexprofilerate uint64 // fraction sampled
// SetMutexProfileFraction controls the fraction of mutex contention events
// that are reported in the mutex profile. On average 1/rate events are
// reported. The previous rate is returned.
//
// To turn off profiling entirely, pass rate 0.
// To just read the current rate, pass rate -1.
// (For n>1 the details of sampling may change.)
func SetMutexProfileFraction(rate int) int {
if rate < 0 {
return int(mutexprofilerate)
}
old := mutexprofilerate
atomic.Store64(&mutexprofilerate, uint64(rate))
return int(old)
}
//go:linkname mutexevent sync.event
func mutexevent(cycles int64, skip int) {
if cycles < 0 {
cycles = 0
}
rate := int64(atomic.Load64(&mutexprofilerate))
// TODO(pjw): measure impact of always calling fastrand vs using something
// like malloc.go:nextSample()
if rate > 0 && int64(fastrand())%rate == 0 {
saveblockevent(cycles, skip+1, mutexProfile)
}
}
// Go interface to profile data.
// A StackRecord describes a single execution stack.
type StackRecord struct {
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}
// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func (r *StackRecord) Stack() []uintptr {
for i, v := range r.Stack0 {
if v == 0 {
return r.Stack0[0:i]
}
}
return r.Stack0[0:]
}
// MemProfileRate controls the fraction of memory allocations
// that are recorded and reported in the memory profile.
// The profiler aims to sample an average of
// one allocation per MemProfileRate bytes allocated.
//
// To include every allocated block in the profile, set MemProfileRate to 1.
// To turn off profiling entirely, set MemProfileRate to 0.
//
// The tools that process the memory profiles assume that the
// profile rate is constant across the lifetime of the program
// and equal to the current value. Programs that change the
// memory profiling rate should do so just once, as early as
// possible in the execution of the program (for example,
// at the beginning of main).
var MemProfileRate int = 512 * 1024
// A MemProfileRecord describes the live objects allocated
// by a particular call sequence (stack trace).
type MemProfileRecord struct {
AllocBytes, FreeBytes int64 // number of bytes allocated, freed
AllocObjects, FreeObjects int64 // number of objects allocated, freed
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}
// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
func (r *MemProfileRecord) InUseObjects() int64 {
return r.AllocObjects - r.FreeObjects
}
// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func (r *MemProfileRecord) Stack() []uintptr {
for i, v := range r.Stack0 {
if v == 0 {
return r.Stack0[0:i]
}
}
return r.Stack0[0:]
}
// MemProfile returns a profile of memory allocated and freed per allocation
// site.
//
// MemProfile returns n, the number of records in the current memory profile.
// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
// If len(p) < n, MemProfile does not change p and returns n, false.
//
// If inuseZero is true, the profile includes allocation records
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
// These are sites where memory was allocated, but it has all
// been released back to the runtime.
//
// The returned profile may be up to two garbage collection cycles old.
// This is to avoid skewing the profile toward allocations; because
// allocations happen in real time but frees are delayed until the garbage
// collector performs sweeping, the profile only accounts for allocations
// that have had a chance to be freed by the garbage collector.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.memprofile flag instead
// of calling MemProfile directly.
func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {
lock(&proflock)
// If we're between mProf_NextCycle and mProf_Flush, take care
// of flushing to the active profile so we only have to look
// at the active profile below.
mProf_FlushLocked()
clear := true
for b := mbuckets; b != nil; b = b.allnext {
mp := b.mp()
if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
n++
}
if mp.active.allocs != 0 || mp.active.frees != 0 {
clear = false
}
}
if clear {
// Absolutely no data, suggesting that a garbage collection
// has not yet happened. In order to allow profiling when
// garbage collection is disabled from the beginning of execution,
// accumulate all of the cycles, and recount buckets.
n = 0
for b := mbuckets; b != nil; b = b.allnext {
mp := b.mp()
for c := range mp.future {
mp.active.add(&mp.future[c])
mp.future[c] = memRecordCycle{}
}
if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
n++
}
}
}
if n <= len(p) {
ok = true
idx := 0
for b := mbuckets; b != nil; b = b.allnext {
mp := b.mp()
if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
record(&p[idx], b)
idx++
}
}
}
unlock(&proflock)
return
}
// Write b's data to r.
func record(r *MemProfileRecord, b *bucket) {
mp := b.mp()
r.AllocBytes = int64(mp.active.alloc_bytes)
r.FreeBytes = int64(mp.active.free_bytes)
r.AllocObjects = int64(mp.active.allocs)
r.FreeObjects = int64(mp.active.frees)
if raceenabled {
racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(unsafe.Pointer(&r)), funcPC(MemProfile))
}
if msanenabled {
msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
}
copy(r.Stack0[:], b.stk())
for i := int(b.nstk); i < len(r.Stack0); i++ {
r.Stack0[i] = 0
}
}
func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
lock(&proflock)
for b := mbuckets; b != nil; b = b.allnext {
mp := b.mp()
fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees)
}
unlock(&proflock)
}
// BlockProfileRecord describes blocking events originated
// at a particular call sequence (stack trace).
type BlockProfileRecord struct {
Count int64
Cycles int64
StackRecord
}
// BlockProfile returns n, the number of records in the current blocking profile.
// If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
// If len(p) < n, BlockProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.blockprofile flag instead
// of calling BlockProfile directly.
func BlockProfile(p []BlockProfileRecord) (n int, ok bool) {
lock(&proflock)
for b := bbuckets; b != nil; b = b.allnext {
n++
}
if n <= len(p) {
ok = true
for b := bbuckets; b != nil; b = b.allnext {
bp := b.bp()
r := &p[0]
r.Count = bp.count
r.Cycles = bp.cycles
if raceenabled {
racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(unsafe.Pointer(&p)), funcPC(BlockProfile))
}
if msanenabled {
msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
}
i := copy(r.Stack0[:], b.stk())
for ; i < len(r.Stack0); i++ {
r.Stack0[i] = 0
}
p = p[1:]
}
}
unlock(&proflock)
return
}
// MutexProfile returns n, the number of records in the current mutex profile.
// If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
// Otherwise, MutexProfile does not change p, and returns n, false.
//
// Most clients should use the runtime/pprof package
// instead of calling MutexProfile directly.
func MutexProfile(p []BlockProfileRecord) (n int, ok bool) {
lock(&proflock)
for b := xbuckets; b != nil; b = b.allnext {
n++
}
if n <= len(p) {
ok = true
for b := xbuckets; b != nil; b = b.allnext {
bp := b.bp()
r := &p[0]
r.Count = int64(bp.count)
r.Cycles = bp.cycles
i := copy(r.Stack0[:], b.stk())
for ; i < len(r.Stack0); i++ {
r.Stack0[i] = 0
}
p = p[1:]
}
}
unlock(&proflock)
return
}
// ThreadCreateProfile returns n, the number of records in the thread creation profile.
// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
// If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package instead
// of calling ThreadCreateProfile directly.
func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
for mp := first; mp != nil; mp = mp.alllink {
n++
}
if n <= len(p) {
ok = true
i := 0
for mp := first; mp != nil; mp = mp.alllink {
p[i].Stack0 = mp.createstack
i++
}
}
return
}
// GoroutineProfile returns n, the number of records in the active goroutine stack profile.
// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
// If len(p) < n, GoroutineProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package instead
// of calling GoroutineProfile directly.
func GoroutineProfile(p []StackRecord) (n int, ok bool) {
gp := getg()
isOK := func(gp1 *g) bool {
// Checking isSystemGoroutine here makes GoroutineProfile
// consistent with both NumGoroutine and Stack.
return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1)
}
stopTheWorld("profile")
n = 1
for _, gp1 := range allgs {
if isOK(gp1) {
n++
}
}
if n <= len(p) {
ok = true
r := p
// Save current goroutine.
sp := getcallersp(unsafe.Pointer(&p))
pc := getcallerpc(unsafe.Pointer(&p))
systemstack(func() {
saveg(pc, sp, gp, &r[0])
})
r = r[1:]
// Save other goroutines.
for _, gp1 := range allgs {
if isOK(gp1) {
if len(r) == 0 {
// Should be impossible, but better to return a
// truncated profile than to crash the entire process.
break
}
saveg(^uintptr(0), ^uintptr(0), gp1, &r[0])
r = r[1:]
}
}
}
startTheWorld()
return n, ok
}
func saveg(pc, sp uintptr, gp *g, r *StackRecord) {
n := gentraceback(pc, sp, 0, gp, 0, &r.Stack0[0], len(r.Stack0), nil, nil, 0)
if n < len(r.Stack0) {
r.Stack0[n] = 0
}
}
// Stack formats a stack trace of the calling goroutine into buf
// and returns the number of bytes written to buf.
// If all is true, Stack formats stack traces of all other goroutines
// into buf after the trace for the current goroutine.
func Stack(buf []byte, all bool) int {
if all {
stopTheWorld("stack trace")
}
n := 0
if len(buf) > 0 {
gp := getg()
sp := getcallersp(unsafe.Pointer(&buf))
pc := getcallerpc(unsafe.Pointer(&buf))
systemstack(func() {
g0 := getg()
// Force traceback=1 to override GOTRACEBACK setting,
// so that Stack's results are consistent.
// GOTRACEBACK is only about crash dumps.
g0.m.traceback = 1
g0.writebuf = buf[0:0:len(buf)]
goroutineheader(gp)
traceback(pc, sp, 0, gp)
if all {
tracebackothers(gp)
}
g0.m.traceback = 0
n = len(g0.writebuf)
g0.writebuf = nil
})
}
if all {
startTheWorld()
}
return n
}
// Tracing of alloc/free/gc.
var tracelock mutex
func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) {
lock(&tracelock)
gp := getg()
gp.m.traceback = 2
if typ == nil {
print("tracealloc(", p, ", ", hex(size), ")\n")
} else {
print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n")
}
if gp.m.curg == nil || gp == gp.m.curg {
goroutineheader(gp)
pc := getcallerpc(unsafe.Pointer(&p))
sp := getcallersp(unsafe.Pointer(&p))
systemstack(func() {
traceback(pc, sp, 0, gp)
})
} else {
goroutineheader(gp.m.curg)
traceback(^uintptr(0), ^uintptr(0), 0, gp.m.curg)
}
print("\n")
gp.m.traceback = 0
unlock(&tracelock)
}
func tracefree(p unsafe.Pointer, size uintptr) {
lock(&tracelock)
gp := getg()
gp.m.traceback = 2
print("tracefree(", p, ", ", hex(size), ")\n")
goroutineheader(gp)
pc := getcallerpc(unsafe.Pointer(&p))
sp := getcallersp(unsafe.Pointer(&p))
systemstack(func() {
traceback(pc, sp, 0, gp)
})
print("\n")
gp.m.traceback = 0
unlock(&tracelock)
}
func tracegc() {
lock(&tracelock)
gp := getg()
gp.m.traceback = 2
print("tracegc()\n")
// running on m->g0 stack; show all non-g0 goroutines
tracebackothers(gp)
print("end tracegc\n")
print("\n")
gp.m.traceback = 0
unlock(&tracelock)
}