1
0
mirror of https://github.com/golang/go synced 2024-11-20 03:04:40 -07:00
go/src/runtime/asm_ppc64x.s
Alex Brainman 9d968cb47b runtime: rename cgocall_errno and asmcgocall_errno into cgocall and asmcgocall
Change-Id: I5917bea8bb35b0e725dcc56a68f3a70137cfc180
Reviewed-on: https://go-review.googlesource.com/9387
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-06-19 01:47:11 +00:00

1173 lines
27 KiB
ArmAsm

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ppc64 ppc64le
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer
// initialize essential registers
BL runtime·reginit(SB)
SUB $24, R1
MOVW R3, 8(R1) // argc
MOVD R4, 16(R1) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD $(-64*1024), R31
ADD R31, R1, R3
MOVD R3, g_stackguard0(g)
MOVD R3, g_stackguard1(g)
MOVD R3, (g_stack+stack_lo)(g)
MOVD R1, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CMP R0, R12
BEQ nocgo
MOVD R12, CTR // r12 = "global function entry point"
MOVD R13, R5 // arg 2: TLS base pointer
MOVD $setg_gcc<>(SB), R4 // arg 1: setg
MOVD g, R3 // arg 0: G
// C functions expect 32 bytes of space on caller stack frame
// and a 16-byte aligned R1
MOVD R1, R14 // save current stack
SUB $32, R1 // reserve 32 bytes
RLDCR $0, R1, $~15, R1 // 16-byte align
BL (CTR) // may clobber R0, R3-R12
MOVD R14, R1 // restore stack
XOR R0, R0 // fix R0
nocgo:
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R3
ADD $const__StackGuard, R3
MOVD R3, g_stackguard0(g)
MOVD R3, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R3
// save m->g0 = g0
MOVD g, m_g0(R3)
// save m0 to g0->m
MOVD R3, g_m(g)
BL runtime·check(SB)
// args are already prepared
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R3 // entry
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
BL runtime·newproc(SB)
ADD $24, R1
// start this M
BL runtime·mstart(SB)
MOVD R0, 1(R0)
RET
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT,$-8-0
MOVD R0, 2(R0) // TODO: TD
RET
TEXT runtime·asminit(SB),NOSPLIT,$-8-0
RET
TEXT _cgo_reginit(SB),NOSPLIT,$-8-0
// crosscall_ppc64 and crosscall2 need to reginit, but can't
// get at the 'runtime.reginit' symbol.
BR runtime·reginit(SB)
TEXT runtime·reginit(SB),NOSPLIT,$-8-0
// set R0 to zero, it's expected by the toolchain
XOR R0, R0
// initialize essential FP registers
FMOVD $4503601774854144.0, F27
FMOVD $0.5, F29
FSUB F29, F29, F28
FADD F29, F29, F30
FADD F30, F30, F31
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $-8-8
MOVD buf+0(FP), R3
MOVD R1, gobuf_sp(R3)
MOVD LR, R31
MOVD R31, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD R0, gobuf_lr(R3)
MOVD R0, gobuf_ret(R3)
MOVD R0, gobuf_ctxt(R3)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $-8-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), g // make sure g is not nil
BL runtime·save_g(SB)
MOVD 0(g), R4
MOVD gobuf_sp(R5), R1
MOVD gobuf_lr(R5), R31
MOVD R31, LR
MOVD gobuf_ret(R5), R3
MOVD gobuf_ctxt(R5), R11
MOVD R0, gobuf_sp(R5)
MOVD R0, gobuf_ret(R5)
MOVD R0, gobuf_lr(R5)
MOVD R0, gobuf_ctxt(R5)
CMP R0, R0 // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R31
MOVD R31, CTR
BR (CTR)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $-8-8
// Save caller state in g->sched
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
BR runtime·badmcall(SB)
MOVD fn+0(FP), R11 // context
MOVD 0(R11), R4 // code pointer
MOVD R4, CTR
MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
BL (CTR)
BR runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R11 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMP g, R5
BEQ noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ noswitch
MOVD m_curg(R4), R6
CMP g, R6
BEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R3
MOVD R3, CTR
BL (CTR)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVD $runtime·systemstack_switch(SB), R6
ADD $8, R6 // get past prologue
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $8, R3
MOVD $runtime·mstart(SB), R4
MOVD R4, 0(R3)
MOVD R3, R1
// call target function
MOVD 0(R11), R3 // code pointer
MOVD R3, CTR
BL (CTR)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVD R0, (g_sched+gobuf_sp)(g)
RET
noswitch:
// already on m stack, just call directly
MOVD 0(R11), R3 // code pointer
MOVD R3, CTR
BL (CTR)
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$-8-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R7
MOVD m_g0(R7), R8
CMP g, R8
BNE 2(PC)
BL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R7), R8
CMP g, R8
BNE 2(PC)
BL runtime·abort(SB)
// Called from f.
// Set g->sched to context in f.
MOVD R11, (g_sched+gobuf_ctxt)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R8
MOVD R8, (g_sched+gobuf_pc)(g)
MOVD R5, (g_sched+gobuf_lr)(g)
// Called from f.
// Set m->morebuf to f's caller.
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVD g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVD m_g0(R7), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-8-0
MOVD R0, R11
BR runtime·morestack(SB)
TEXT runtime·stackBarrier(SB),NOSPLIT,$0
// We came here via a RET to an overwritten LR.
// R3 may be live. Other registers are available.
// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
MOVD (g_stkbar+slice_array)(g), R4
MOVD g_stkbarPos(g), R5
MOVD $stkbar__size, R6
MULLD R5, R6
ADD R4, R6
MOVD stkbar_savedLRVal(R6), R6
// Record that this stack barrier was hit.
ADD $1, R5
MOVD R5, g_stkbarPos(g)
// Jump to the original return PC.
MOVD R6, CTR
BR (CTR)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R31; \
CMP R3, R31; \
BGT 4(PC); \
MOVD $NAME(SB), R31; \
MOVD R31, CTR; \
BR (CTR)
// Note: can't just "BR NAME(SB)" - bad inlining results.
TEXT reflect·call(SB), NOSPLIT, $0-0
BR ·reflectcall(SB)
TEXT ·reflectcall(SB), NOSPLIT, $-8-32
MOVWZ argsize+24(FP), R3
// NOTE(rsc): No call16, because CALLFN needs four words
// of argument space to invoke callwritebarrier.
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R31
MOVD R31, CTR
BR (CTR)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD arg+16(FP), R3; \
MOVWZ argsize+24(FP), R4; \
MOVD R1, R5; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
CMP R5, R4; \
BEQ 4(PC); \
MOVBZU 1(R3), R6; \
MOVBZU R6, 1(R5); \
BR -4(PC); \
/* call function */ \
MOVD f+8(FP), R11; \
MOVD (R11), R31; \
MOVD R31, CTR; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (CTR); \
/* copy return values back */ \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R1, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
loop: \
CMP R5, R4; \
BEQ end; \
MOVBZU 1(R5), R6; \
MOVBZU R6, 1(R3); \
BR loop; \
end: \
/* execute write barrier updates */ \
MOVD argtype+0(FP), R7; \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R7, 8(R1); \
MOVD R3, 16(R1); \
MOVD R4, 24(R1); \
MOVD R6, 32(R1); \
BL runtime·callwritebarrier(SB); \
RET
CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
// bool cas(uint32 *ptr, uint32 old, uint32 new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
// } else
// return 0;
TEXT runtime·cas(SB), NOSPLIT, $0-17
MOVD ptr+0(FP), R3
MOVWZ old+8(FP), R4
MOVWZ new+12(FP), R5
cas_again:
SYNC
LWAR (R3), R6
CMPW R6, R4
BNE cas_fail
STWCCC R5, (R3)
BNE cas_again
MOVD $1, R3
SYNC
ISYNC
MOVB R3, ret+16(FP)
RET
cas_fail:
MOVD $0, R3
BR -5(PC)
// bool runtime·cas64(uint64 *ptr, uint64 old, uint64 new)
// Atomically:
// if(*val == *old){
// *val = new;
// return 1;
// } else {
// return 0;
// }
TEXT runtime·cas64(SB), NOSPLIT, $0-25
MOVD ptr+0(FP), R3
MOVD old+8(FP), R4
MOVD new+16(FP), R5
cas64_again:
SYNC
LDAR (R3), R6
CMP R6, R4
BNE cas64_fail
STDCCC R5, (R3)
BNE cas64_again
MOVD $1, R3
SYNC
ISYNC
MOVB R3, ret+24(FP)
RET
cas64_fail:
MOVD $0, R3
BR -5(PC)
TEXT runtime·casuintptr(SB), NOSPLIT, $0-25
BR runtime·cas64(SB)
TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $-8-16
BR runtime·atomicload64(SB)
TEXT runtime·atomicloaduint(SB), NOSPLIT, $-8-16
BR runtime·atomicload64(SB)
TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-16
BR runtime·atomicstore64(SB)
// bool casp(void **val, void *old, void *new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
// } else
// return 0;
TEXT runtime·casp1(SB), NOSPLIT, $0-25
BR runtime·cas64(SB)
// uint32 xadd(uint32 volatile *ptr, int32 delta)
// Atomically:
// *val += delta;
// return *val;
TEXT runtime·xadd(SB), NOSPLIT, $0-20
MOVD ptr+0(FP), R4
MOVW delta+8(FP), R5
SYNC
LWAR (R4), R3
ADD R5, R3
STWCCC R3, (R4)
BNE -4(PC)
SYNC
ISYNC
MOVW R3, ret+16(FP)
RET
TEXT runtime·xadd64(SB), NOSPLIT, $0-24
MOVD ptr+0(FP), R4
MOVD delta+8(FP), R5
SYNC
LDAR (R4), R3
ADD R5, R3
STDCCC R3, (R4)
BNE -4(PC)
SYNC
ISYNC
MOVD R3, ret+16(FP)
RET
TEXT runtime·xchg(SB), NOSPLIT, $0-20
MOVD ptr+0(FP), R4
MOVW new+8(FP), R5
SYNC
LWAR (R4), R3
STWCCC R5, (R4)
BNE -3(PC)
SYNC
ISYNC
MOVW R3, ret+16(FP)
RET
TEXT runtime·xchg64(SB), NOSPLIT, $0-24
MOVD ptr+0(FP), R4
MOVD new+8(FP), R5
SYNC
LDAR (R4), R3
STDCCC R5, (R4)
BNE -3(PC)
SYNC
ISYNC
MOVD R3, ret+16(FP)
RET
TEXT runtime·xchgp1(SB), NOSPLIT, $0-24
BR runtime·xchg64(SB)
TEXT runtime·xchguintptr(SB), NOSPLIT, $0-24
BR runtime·xchg64(SB)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
RET
TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-16
BR runtime·atomicstore64(SB)
TEXT runtime·atomicstore(SB), NOSPLIT, $0-12
MOVD ptr+0(FP), R3
MOVW val+8(FP), R4
SYNC
MOVW R4, 0(R3)
RET
TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16
MOVD ptr+0(FP), R3
MOVD val+8(FP), R4
SYNC
MOVD R4, 0(R3)
RET
// void runtime·atomicor8(byte volatile*, byte);
TEXT runtime·atomicor8(SB), NOSPLIT, $0-9
MOVD ptr+0(FP), R3
MOVBZ val+8(FP), R4
// Align ptr down to 4 bytes so we can use 32-bit load/store.
// R5 = (R3 << 0) & ~3
RLDCR $0, R3, $~3, R5
// Compute val shift.
#ifdef GOARCH_ppc64
// Big endian. ptr = ptr ^ 3
XOR $3, R3
#endif
// R6 = ((ptr & 3) * 8) = (ptr << 3) & (3*8)
RLDC $3, R3, $(3*8), R6
// Shift val for aligned ptr. R4 = val << R6
SLD R6, R4, R4
again:
SYNC
LWAR (R5), R6
OR R4, R6
STWCCC R6, (R5)
BNE again
SYNC
ISYNC
RET
// void runtime·atomicand8(byte volatile*, byte);
TEXT runtime·atomicand8(SB), NOSPLIT, $0-9
MOVD ptr+0(FP), R3
MOVBZ val+8(FP), R4
// Align ptr down to 4 bytes so we can use 32-bit load/store.
// R5 = (R3 << 0) & ~3
RLDCR $0, R3, $~3, R5
// Compute val shift.
#ifdef GOARCH_ppc64
// Big endian. ptr = ptr ^ 3
XOR $3, R3
#endif
// R6 = ((ptr & 3) * 8) = (ptr << 3) & (3*8)
RLDC $3, R3, $(3*8), R6
// Shift val for aligned ptr. R4 = val << R6 | ^(0xFF << R6)
MOVD $0xFF, R7
SLD R6, R4
SLD R6, R7
XOR $-1, R7
OR R7, R4
again:
SYNC
LWAR (R5), R6
AND R4, R6
STWCCC R6, (R5)
BNE again
SYNC
ISYNC
RET
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 4 bytes to get back to BL deferreturn
// 3. BR to fn
TEXT runtime·jmpdefer(SB), NOSPLIT, $-8-16
MOVD 0(R1), R31
SUB $4, R31
MOVD R31, LR
MOVD fv+0(FP), R11
MOVD argp+8(FP), R1
SUB $8, R1
MOVD 0(R11), R3
MOVD R3, CTR
BR (CTR)
// Save state of caller into g->sched. Smashes R31.
TEXT gosave<>(SB),NOSPLIT,$-8
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD R0, (g_sched+gobuf_ret)(g)
MOVD R0, (g_sched+gobuf_ctxt)(g)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVD fn+0(FP), R3
MOVD arg+8(FP), R4
MOVD R1, R2 // save original stack pointer
MOVD g, R5
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVD g_m(g), R6
MOVD m_g0(R6), R6
CMP R6, g
BEQ g0
BL gosave<>(SB)
MOVD R6, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
// Now on a scheduling stack (a pthread-created stack).
g0:
// Save room for two of our pointers, plus 32 bytes of callee
// save area that lives on the caller stack.
SUB $48, R1
RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI
MOVD R5, 40(R1) // save old g on stack
MOVD (g_stack+stack_hi)(R5), R5
SUB R2, R5
MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?)
// This is a "global call", so put the global entry point in r12
MOVD R3, R12
MOVD R12, CTR
MOVD R4, R3 // arg in r3
BL (CTR)
// C code can clobber R0, so set it back to 0. F27-F31 are
// callee save, so we don't need to recover those.
XOR R0, R0
// Restore g, stack pointer. R3 is errno, so don't touch it
MOVD 40(R1), g
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 32(R1), R6
SUB R6, R5
MOVD R5, R1
MOVW R3, ret+16(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$24-24
MOVD $fn+0(FP), R3
MOVD R3, 8(R1)
MOVD frame+8(FP), R3
MOVD R3, 16(R1)
MOVD framesize+16(FP), R3
MOVD R3, 24(R1)
MOVD $runtime·cgocallback_gofunc(SB), R3
MOVD R3, CTR
BL (CTR)
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-24
NO_LOCAL_POINTERS
// Load m and g from thread-local storage.
MOVB runtime·iscgo(SB), R3
CMP R3, $0
BEQ nocgo
BL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMP g, $0
BNE havem
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R3
MOVD R3, CTR
BL (CTR)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R3
MOVD m_g0(R3), R3
MOVD R1, (g_sched+gobuf_sp)(R3)
havem:
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD R1, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -16(SP) and -8(SP) are unused.
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -24(R4)
MOVD $-24(R4), R1
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(R1), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD $24(R1), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CMP R6, $0
BNE droppedm
MOVD $runtime·dropm(SB), R3
MOVD R3, CTR
BL (CTR)
droppedm:
// Done!
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT,$-8-0
// The standard prologue clobbers R31, which is callee-save in
// the C ABI, so we have to use $-8-0 and save LR ourselves.
MOVD LR, R4
// Also save g and R31, since they're callee-save in C ABI
MOVD R31, R5
MOVD g, R6
MOVD R3, g
BL runtime·save_g(SB)
MOVD R6, g
MOVD R5, R31
MOVD R4, LR
RET
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
MOVD 16(R1), R3 // LR saved by caller
MOVD runtime·stackBarrierPC(SB), R4
CMP R3, R4
BNE nobar
// Get original return PC.
BL runtime·nextBarrierPC(SB)
MOVD 8(R1), R3
nobar:
MOVD R3, ret+8(FP)
RET
TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
MOVD pc+8(FP), R3
MOVD 16(R1), R4
MOVD runtime·stackBarrierPC(SB), R5
CMP R4, R5
BEQ setbar
MOVD R3, 16(R1) // set LR in caller
RET
setbar:
// Set the stack barrier return PC.
MOVD R3, 8(R1)
BL runtime·setNextBarrierPC(SB)
RET
TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
MOVD argp+0(FP), R3
SUB $8, R3
MOVD R3, ret+8(FP)
RET
TEXT runtime·abort(SB),NOSPLIT,$-8-0
MOVW (R0), R0
UNDEF
#define TBRL 268
#define TBRU 269 /* Time base Upper/Lower */
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
MOVW SPR(TBRU), R4
MOVW SPR(TBRL), R3
MOVW SPR(TBRU), R5
CMPW R4, R5
BNE -4(PC)
SLD $32, R5
OR R5, R3
MOVD R3, ret+0(FP)
RET
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
// redirects to memhash(p, h, size) using the size
// stored in the closure.
TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24
GO_ARGS
NO_LOCAL_POINTERS
MOVD p+0(FP), R3
MOVD h+8(FP), R4
MOVD 8(R11), R5
MOVD R3, 8(R1)
MOVD R4, 16(R1)
MOVD R5, 24(R1)
BL runtime·memhash(SB)
MOVD 32(R1), R3
MOVD R3, ret+16(FP)
RET
// AES hashing not implemented for ppc64
TEXT runtime·aeshash(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·aeshash32(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·aeshash64(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·aeshashstr(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·memeq(SB),NOSPLIT,$-8-25
MOVD a+0(FP), R3
MOVD b+8(FP), R4
MOVD size+16(FP), R5
SUB $1, R3
SUB $1, R4
ADD R3, R5, R8
loop:
CMP R3, R8
BNE test
MOVD $1, R3
MOVB R3, ret+24(FP)
RET
test:
MOVBZU 1(R3), R6
MOVBZU 1(R4), R7
CMP R6, R7
BEQ loop
MOVB R0, ret+24(FP)
RET
// memequal_varlen(a, b unsafe.Pointer) bool
TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17
MOVD a+0(FP), R3
MOVD b+8(FP), R4
CMP R3, R4
BEQ eq
MOVD 8(R11), R5 // compiler stores size at offset 8 in the closure
MOVD R3, 8(R1)
MOVD R4, 16(R1)
MOVD R5, 24(R1)
BL runtime·memeq(SB)
MOVBZ 32(R1), R3
MOVB R3, ret+16(FP)
RET
eq:
MOVD $1, R3
MOVB R3, ret+16(FP)
RET
// eqstring tests whether two strings are equal.
// The compiler guarantees that strings passed
// to eqstring have equal length.
// See runtime_test.go:eqstring_generic for
// equivalent Go code.
TEXT runtime·eqstring(SB),NOSPLIT,$0-33
MOVD s1str+0(FP), R3
MOVD s2str+16(FP), R4
MOVD $1, R5
MOVB R5, ret+32(FP)
CMP R3, R4
BNE 2(PC)
RET
MOVD s1len+8(FP), R5
SUB $1, R3
SUB $1, R4
ADD R3, R5, R8
loop:
CMP R3, R8
BNE 2(PC)
RET
MOVBZU 1(R3), R6
MOVBZU 1(R4), R7
CMP R6, R7
BEQ loop
MOVB R0, ret+32(FP)
RET
// TODO: share code with memeq?
TEXT bytes·Equal(SB),NOSPLIT,$0-49
MOVD a_len+8(FP), R3
MOVD b_len+32(FP), R4
CMP R3, R4 // unequal lengths are not equal
BNE noteq
MOVD a+0(FP), R5
MOVD b+24(FP), R6
SUB $1, R5
SUB $1, R6
ADD R5, R3 // end-1
loop:
CMP R5, R3
BEQ equal // reached the end
MOVBZU 1(R5), R4
MOVBZU 1(R6), R7
CMP R4, R7
BEQ loop
noteq:
MOVBZ R0, ret+48(FP)
RET
equal:
MOVD $1, R3
MOVBZ R3, ret+48(FP)
RET
TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
MOVD s+0(FP), R3
MOVD s_len+8(FP), R4
MOVBZ c+24(FP), R5 // byte to find
MOVD R3, R6 // store base for later
SUB $1, R3
ADD R3, R4 // end-1
loop:
CMP R3, R4
BEQ notfound
MOVBZU 1(R3), R7
CMP R7, R5
BNE loop
SUB R6, R3 // remove base
MOVD R3, ret+32(FP)
RET
notfound:
MOVD $-1, R3
MOVD R3, ret+32(FP)
RET
TEXT strings·IndexByte(SB),NOSPLIT,$0-32
MOVD p+0(FP), R3
MOVD b_len+8(FP), R4
MOVBZ c+16(FP), R5 // byte to find
MOVD R3, R6 // store base for later
SUB $1, R3
ADD R3, R4 // end-1
loop:
CMP R3, R4
BEQ notfound
MOVBZU 1(R3), R7
CMP R7, R5
BNE loop
SUB R6, R3 // remove base
MOVD R3, ret+24(FP)
RET
notfound:
MOVD $-1, R3
MOVD R3, ret+24(FP)
RET
TEXT runtime·fastrand1(SB), NOSPLIT, $0-4
MOVD g_m(g), R4
MOVWZ m_fastrand(R4), R3
ADD R3, R3
CMPW R3, $0
BGE 2(PC)
XOR $0x88888eef, R3
MOVW R3, m_fastrand(R4)
MOVW R3, ret+0(FP)
RET
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R3
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$-8
// g (R30) and R31 are callee-save in the C ABI, so save them
MOVD g, R4
MOVD R31, R5
MOVD LR, R6
BL runtime·load_g(SB) // clobbers g (R30), R31
MOVD g_m(g), R3
MOVD m_curg(R3), R3
MOVD (g_stack+stack_hi)(R3), R3
MOVD R4, g
MOVD R5, R31
MOVD R6, LR
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT,$-8-0
MOVD R0, R0 // NOP
BL runtime·goexit1(SB) // does not return
// traceback from goexit1 must hit code range of goexit
MOVD R0, R0 // NOP
TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
RET