1
0
mirror of https://github.com/golang/go synced 2024-11-19 03:44:40 -07:00
go/internal/lsp/diff/diff.go
Ian Cottrell 744a51dd88 internal/lsp: normalise and make public diff<->edit conversions
This allows us to use the diff.ApplyEdits in tests, saving us from a different
implementation.
It also prepares for command lines that need to use diff features based on the
results of a protocol message.

Splitting content into lines is too easy to get wrong, and needs to be done
correctly or the diff results make no sense. This adds the SplitLines function
to the diff pacakge to do it right and then uses it everwhere we we already
doing it wrong.

It also makes all the diff tests external black box tests.

Change-Id: I698227d5769a2bfbfd22a64ea42906b1df9268d9
Reviewed-on: https://go-review.googlesource.com/c/tools/+/171027
Run-TryBot: Ian Cottrell <iancottrell@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2019-04-15 20:31:36 +00:00

221 lines
4.5 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package diff implements the Myers diff algorithm.
package diff
import "strings"
// Sources:
// https://blog.jcoglan.com/2017/02/17/the-myers-diff-algorithm-part-3/
// https://www.codeproject.com/Articles/42279/%2FArticles%2F42279%2FInvestigating-Myers-diff-algorithm-Part-1-of-2
type Op struct {
Kind OpKind
Content []string // content from b
I1, I2 int // indices of the line in a
J1 int // indices of the line in b, J2 implied by len(Content)
}
type OpKind int
const (
Delete OpKind = iota
Insert
Equal
)
func (k OpKind) String() string {
switch k {
case Delete:
return "delete"
case Insert:
return "insert"
case Equal:
return "equal"
default:
panic("unknown operation kind")
}
}
func ApplyEdits(a []string, operations []*Op) []string {
var b []string
var prevI2 int
for _, op := range operations {
// catch up to latest indices
if op.I1-prevI2 > 0 {
for _, c := range a[prevI2:op.I1] {
b = append(b, c)
}
}
switch op.Kind {
case Equal, Insert:
b = append(b, op.Content...)
}
prevI2 = op.I2
}
// final catch up
if len(a)-prevI2 > 0 {
for _, c := range a[prevI2:len(a)] {
b = append(b, c)
}
}
return b
}
// Operations returns the list of operations to convert a into b, consolidating
// operations for multiple lines and not including equal lines.
func Operations(a, b []string) []*Op {
trace, offset := shortestEditSequence(a, b)
snakes := backtrack(trace, len(a), len(b), offset)
M, N := len(a), len(b)
var i int
solution := make([]*Op, len(a)+len(b))
add := func(op *Op, i2, j2 int) {
if op == nil {
return
}
op.I2 = i2
if op.Kind == Insert {
op.Content = b[op.J1:j2]
}
solution[i] = op
i++
}
x, y := 0, 0
for _, snake := range snakes {
if len(snake) < 2 {
continue
}
var op *Op
// delete (horizontal)
for snake[0]-snake[1] > x-y {
if op == nil {
op = &Op{
Kind: Delete,
I1: x,
J1: y,
}
}
x++
if x == M {
break
}
}
add(op, x, y)
op = nil
// insert (vertical)
for snake[0]-snake[1] < x-y {
if op == nil {
op = &Op{
Kind: Insert,
I1: x,
J1: y,
}
}
y++
}
add(op, x, y)
op = nil
// equal (diagonal)
for x < snake[0] {
x++
y++
}
if x >= M && y >= N {
break
}
}
return solution[:i]
}
// backtrack uses the trace for the edit sequence computation and returns the
// "snakes" that make up the solution. A "snake" is a single deletion or
// insertion followed by zero or diagnonals.
func backtrack(trace [][]int, x, y, offset int) [][]int {
snakes := make([][]int, len(trace))
d := len(trace) - 1
for ; x > 0 && y > 0 && d > 0; d-- {
V := trace[d]
if len(V) == 0 {
continue
}
snakes[d] = []int{x, y}
k := x - y
var kPrev int
if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
kPrev = k + 1
} else {
kPrev = k - 1
}
x = V[kPrev+offset]
y = x - kPrev
}
if x < 0 || y < 0 {
return snakes
}
snakes[d] = []int{x, y}
return snakes
}
// shortestEditSequence returns the shortest edit sequence that converts a into b.
func shortestEditSequence(a, b []string) ([][]int, int) {
M, N := len(a), len(b)
V := make([]int, 2*(N+M)+1)
offset := N + M
trace := make([][]int, N+M+1)
// Iterate through the maximum possible length of the SES (N+M).
for d := 0; d <= N+M; d++ {
// k lines are represented by the equation y = x - k. We move in
// increments of 2 because end points for even d are on even k lines.
for k := -d; k <= d; k += 2 {
// At each point, we either go down or to the right. We go down if
// k == -d, and we go to the right if k == d. We also prioritize
// the maximum x value, because we prefer deletions to insertions.
var x int
if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
x = V[k+1+offset] // down
} else {
x = V[k-1+offset] + 1 // right
}
y := x - k
// Diagonal moves while we have equal contents.
for x < M && y < N && a[x] == b[y] {
x++
y++
}
V[k+offset] = x
// Save the state of the array.
copyV := make([]int, len(V))
copy(copyV, V)
trace[d] = copyV
// Return if we've exceeded the maximum values.
if x == M && y == N {
return trace, offset
}
}
}
return nil, 0
}
func SplitLines(text string) []string {
lines := strings.SplitAfter(text, "\n")
if lines[len(lines)-1] == "" {
lines = lines[:len(lines)-1]
}
return lines
}