1
0
mirror of https://github.com/golang/go synced 2024-11-19 16:34:49 -07:00
go/src/runtime/os_netbsd.go
Ian Lance Taylor eb268cb321 runtime: minor simplifications to signal code
Change setsig, setsigstack, getsig, raise, raiseproc to take uint32 for
signal number parameter, as that is the type mostly used for signal
numbers.  Same for dieFromSignal, sigInstallGoHandler, raisebadsignal.

Remove setsig restart parameter, as it is always either true or
irrelevant.

Don't check the handler in setsigstack, as the only caller does that
anyhow.

Don't bother to convert the handler from sigtramp to sighandler in
getsig, as it will never be called when the handler is sigtramp or
sighandler.

Don't check the return value from rt_sigaction in the GNU/Linux version
of setsigstack; no other setsigstack checks it, and it never fails.

Change-Id: I6bbd677e048a77eddf974dd3d017bc3c560fbd48
Reviewed-on: https://go-review.googlesource.com/29953
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-09-28 13:12:47 +00:00

308 lines
6.8 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
const (
_SS_DISABLE = 4
_SIG_BLOCK = 1
_SIG_UNBLOCK = 2
_SIG_SETMASK = 3
_NSIG = 33
_SI_USER = 0
// From NetBSD's <sys/ucontext.h>
_UC_SIGMASK = 0x01
_UC_CPU = 0x04
_EAGAIN = 35
)
type mOS struct {
waitsemacount uint32
}
//go:noescape
func setitimer(mode int32, new, old *itimerval)
//go:noescape
func sigaction(sig uint32, new, old *sigactiont)
//go:noescape
func sigaltstack(new, old *stackt)
//go:noescape
func sigprocmask(how int32, new, old *sigset)
//go:noescape
func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32
func lwp_tramp()
func raise(sig uint32)
func raiseproc(sig uint32)
//go:noescape
func getcontext(ctxt unsafe.Pointer)
//go:noescape
func lwp_create(ctxt unsafe.Pointer, flags uintptr, lwpid unsafe.Pointer) int32
//go:noescape
func lwp_park(abstime *timespec, unpark int32, hint, unparkhint unsafe.Pointer) int32
//go:noescape
func lwp_unpark(lwp int32, hint unsafe.Pointer) int32
func lwp_self() int32
func osyield()
const (
_ESRCH = 3
_ETIMEDOUT = 60
// From NetBSD's <sys/time.h>
_CLOCK_REALTIME = 0
_CLOCK_VIRTUAL = 1
_CLOCK_PROF = 2
_CLOCK_MONOTONIC = 3
)
var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}}
// From NetBSD's <sys/sysctl.h>
const (
_CTL_HW = 6
_HW_NCPU = 3
_HW_PAGESIZE = 7
)
func getncpu() int32 {
mib := [2]uint32{_CTL_HW, _HW_NCPU}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
return int32(out)
}
return 1
}
func getPageSize() uintptr {
mib := [2]uint32{_CTL_HW, _HW_PAGESIZE}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
return uintptr(out)
}
return 0
}
//go:nosplit
func semacreate(mp *m) {
}
//go:nosplit
func semasleep(ns int64) int32 {
_g_ := getg()
// Compute sleep deadline.
var tsp *timespec
if ns >= 0 {
var ts timespec
var nsec int32
ns += nanotime()
ts.set_sec(timediv(ns, 1000000000, &nsec))
ts.set_nsec(nsec)
tsp = &ts
}
for {
v := atomic.Load(&_g_.m.waitsemacount)
if v > 0 {
if atomic.Cas(&_g_.m.waitsemacount, v, v-1) {
return 0 // semaphore acquired
}
continue
}
// Sleep until unparked by semawakeup or timeout.
ret := lwp_park(tsp, 0, unsafe.Pointer(&_g_.m.waitsemacount), nil)
if ret == _ETIMEDOUT {
return -1
}
}
}
//go:nosplit
func semawakeup(mp *m) {
atomic.Xadd(&mp.waitsemacount, 1)
// From NetBSD's _lwp_unpark(2) manual:
// "If the target LWP is not currently waiting, it will return
// immediately upon the next call to _lwp_park()."
ret := lwp_unpark(int32(mp.procid), unsafe.Pointer(&mp.waitsemacount))
if ret != 0 && ret != _ESRCH {
// semawakeup can be called on signal stack.
systemstack(func() {
print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n")
})
}
}
// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrier
func newosproc(mp *m, stk unsafe.Pointer) {
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, " ostk=", &mp, "\n")
}
var uc ucontextt
getcontext(unsafe.Pointer(&uc))
uc.uc_flags = _UC_SIGMASK | _UC_CPU
uc.uc_link = nil
uc.uc_sigmask = sigset_all
lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp.g0, funcPC(netbsdMstart))
ret := lwp_create(unsafe.Pointer(&uc), 0, unsafe.Pointer(&mp.procid))
if ret < 0 {
print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", -ret, ")\n")
if ret == -_EAGAIN {
println("runtime: may need to increase max user processes (ulimit -p)")
}
throw("runtime.newosproc")
}
}
// netbsdMStart is the function call that starts executing a newly
// created thread. On NetBSD, a new thread inherits the signal stack
// of the creating thread. That confuses minit, so we remove that
// signal stack here before calling the regular mstart. It's a bit
// baroque to remove a signal stack here only to add one in minit, but
// it's a simple change that keeps NetBSD working like other OS's.
// At this point all signals are blocked, so there is no race.
//go:nosplit
func netbsdMstart() {
st := stackt{ss_flags: _SS_DISABLE}
sigaltstack(&st, nil)
mstart()
}
func osinit() {
ncpu = getncpu()
physPageSize = getPageSize()
}
var urandom_dev = []byte("/dev/urandom\x00")
//go:nosplit
func getRandomData(r []byte) {
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
closefd(fd)
extendRandom(r, int(n))
}
func goenvs() {
goenvs_unix()
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024)
mp.gsignal.m = mp
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, cannot allocate memory.
func minit() {
_g_ := getg()
_g_.m.procid = uint64(lwp_self())
// On NetBSD a thread created by pthread_create inherits the
// signal stack of the creating thread. We always create a
// new signal stack here, to avoid having two Go threads using
// the same signal stack. This breaks the case of a thread
// created in C that calls sigaltstack and then calls a Go
// function, because we will lose track of the C code's
// sigaltstack, but it's the best we can do.
signalstack(&_g_.m.gsignal.stack)
_g_.m.newSigstack = true
minitSignalMask()
}
// Called from dropm to undo the effect of an minit.
//go:nosplit
func unminit() {
unminitSignals()
}
func memlimit() uintptr {
return 0
}
func sigtramp()
type sigactiont struct {
sa_sigaction uintptr
sa_mask sigset
sa_flags int32
}
//go:nosplit
//go:nowritebarrierrec
func setsig(i uint32, fn uintptr) {
var sa sigactiont
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTART
sa.sa_mask = sigset_all
if fn == funcPC(sighandler) {
fn = funcPC(sigtramp)
}
sa.sa_sigaction = fn
sigaction(i, &sa, nil)
}
//go:nosplit
//go:nowritebarrierrec
func setsigstack(i uint32) {
throw("setsigstack")
}
//go:nosplit
//go:nowritebarrierrec
func getsig(i uint32) uintptr {
var sa sigactiont
sigaction(i, nil, &sa)
return sa.sa_sigaction
}
// setSignaltstackSP sets the ss_sp field of a stackt.
//go:nosplit
func setSignalstackSP(s *stackt, sp uintptr) {
s.ss_sp = sp
}
//go:nosplit
//go:nowritebarrierrec
func sigaddset(mask *sigset, i int) {
mask.__bits[(i-1)/32] |= 1 << ((uint32(i) - 1) & 31)
}
func sigdelset(mask *sigset, i int) {
mask.__bits[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31)
}
func (c *sigctxt) fixsigcode(sig uint32) {
}