mirror of
https://github.com/golang/go
synced 2024-11-19 20:54:39 -07:00
09f48db3e1
Using an int64 for a block size doesn't make sense on 32bit platforms but extracts a performance penalty dealing with double word quantities on Arm. linux/arm benchmark old ns/op new ns/op delta BenchmarkGobDecode 155401600 144589300 -6.96% BenchmarkGobEncode 72772220 62460940 -14.17% BenchmarkGzip 5822632 2604797 -55.26% BenchmarkGunzip 326321 151721 -53.51% benchmark old MB/s new MB/s speedup BenchmarkGobDecode 4.94 5.31 1.07x BenchmarkGobEncode 10.55 12.29 1.16x R=golang-dev, rsc, bradfitz CC=golang-dev https://golang.org/cl/6272047
1259 lines
32 KiB
C
1259 lines
32 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector.
|
|
|
|
#include "runtime.h"
|
|
#include "arch_GOARCH.h"
|
|
#include "malloc.h"
|
|
#include "stack.h"
|
|
|
|
enum {
|
|
Debug = 0,
|
|
PtrSize = sizeof(void*),
|
|
DebugMark = 0, // run second pass to check mark
|
|
DataBlock = 8*1024,
|
|
|
|
// Four bits per word (see #defines below).
|
|
wordsPerBitmapWord = sizeof(void*)*8/4,
|
|
bitShift = sizeof(void*)*8/4,
|
|
};
|
|
|
|
// Bits in per-word bitmap.
|
|
// #defines because enum might not be able to hold the values.
|
|
//
|
|
// Each word in the bitmap describes wordsPerBitmapWord words
|
|
// of heap memory. There are 4 bitmap bits dedicated to each heap word,
|
|
// so on a 64-bit system there is one bitmap word per 16 heap words.
|
|
// The bits in the word are packed together by type first, then by
|
|
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
|
|
// the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits,
|
|
// then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits.
|
|
// This layout makes it easier to iterate over the bits of a given type.
|
|
//
|
|
// The bitmap starts at mheap.arena_start and extends *backward* from
|
|
// there. On a 64-bit system the off'th word in the arena is tracked by
|
|
// the off/16+1'th word before mheap.arena_start. (On a 32-bit system,
|
|
// the only difference is that the divisor is 8.)
|
|
//
|
|
// To pull out the bits corresponding to a given pointer p, we use:
|
|
//
|
|
// off = p - (uintptr*)mheap.arena_start; // word offset
|
|
// b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
// shift = off % wordsPerBitmapWord
|
|
// bits = *b >> shift;
|
|
// /* then test bits & bitAllocated, bits & bitMarked, etc. */
|
|
//
|
|
#define bitAllocated ((uintptr)1<<(bitShift*0))
|
|
#define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */
|
|
#define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */
|
|
#define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */
|
|
#define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */
|
|
|
|
#define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial)
|
|
|
|
// Holding worldsema grants an M the right to try to stop the world.
|
|
// The procedure is:
|
|
//
|
|
// runtime·semacquire(&runtime·worldsema);
|
|
// m->gcing = 1;
|
|
// runtime·stoptheworld();
|
|
//
|
|
// ... do stuff ...
|
|
//
|
|
// m->gcing = 0;
|
|
// runtime·semrelease(&runtime·worldsema);
|
|
// runtime·starttheworld();
|
|
//
|
|
uint32 runtime·worldsema = 1;
|
|
|
|
static int32 gctrace;
|
|
|
|
typedef struct Workbuf Workbuf;
|
|
struct Workbuf
|
|
{
|
|
LFNode node; // must be first
|
|
uintptr nobj;
|
|
byte *obj[512-(sizeof(LFNode)+sizeof(uintptr))/sizeof(byte*)];
|
|
};
|
|
|
|
typedef struct Finalizer Finalizer;
|
|
struct Finalizer
|
|
{
|
|
void (*fn)(void*);
|
|
void *arg;
|
|
int32 nret;
|
|
};
|
|
|
|
typedef struct FinBlock FinBlock;
|
|
struct FinBlock
|
|
{
|
|
FinBlock *alllink;
|
|
FinBlock *next;
|
|
int32 cnt;
|
|
int32 cap;
|
|
Finalizer fin[1];
|
|
};
|
|
|
|
extern byte data[];
|
|
extern byte etext[];
|
|
extern byte ebss[];
|
|
|
|
static G *fing;
|
|
static FinBlock *finq; // list of finalizers that are to be executed
|
|
static FinBlock *finc; // cache of free blocks
|
|
static FinBlock *allfin; // list of all blocks
|
|
static Lock finlock;
|
|
static int32 fingwait;
|
|
|
|
static void runfinq(void);
|
|
static Workbuf* getempty(Workbuf*);
|
|
static Workbuf* getfull(Workbuf*);
|
|
static void putempty(Workbuf*);
|
|
static Workbuf* handoff(Workbuf*);
|
|
|
|
typedef struct GcRoot GcRoot;
|
|
struct GcRoot
|
|
{
|
|
byte *p;
|
|
uintptr n;
|
|
};
|
|
|
|
static struct {
|
|
uint64 full; // lock-free list of full blocks
|
|
uint64 empty; // lock-free list of empty blocks
|
|
byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait
|
|
uint32 nproc;
|
|
volatile uint32 nwait;
|
|
volatile uint32 ndone;
|
|
volatile uint32 debugmarkdone;
|
|
Note alldone;
|
|
ParFor *markfor;
|
|
ParFor *sweepfor;
|
|
|
|
Lock;
|
|
byte *chunk;
|
|
uintptr nchunk;
|
|
|
|
GcRoot *roots;
|
|
uint32 nroot;
|
|
uint32 rootcap;
|
|
} work;
|
|
|
|
// scanblock scans a block of n bytes starting at pointer b for references
|
|
// to other objects, scanning any it finds recursively until there are no
|
|
// unscanned objects left. Instead of using an explicit recursion, it keeps
|
|
// a work list in the Workbuf* structures and loops in the main function
|
|
// body. Keeping an explicit work list is easier on the stack allocator and
|
|
// more efficient.
|
|
static void
|
|
scanblock(byte *b, uintptr n)
|
|
{
|
|
byte *obj, *arena_start, *arena_used, *p;
|
|
void **vp;
|
|
uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc;
|
|
MSpan *s;
|
|
PageID k;
|
|
void **wp;
|
|
Workbuf *wbuf;
|
|
bool keepworking;
|
|
|
|
if((intptr)n < 0) {
|
|
runtime·printf("scanblock %p %D\n", b, (int64)n);
|
|
runtime·throw("scanblock");
|
|
}
|
|
|
|
// Memory arena parameters.
|
|
arena_start = runtime·mheap.arena_start;
|
|
arena_used = runtime·mheap.arena_used;
|
|
nproc = work.nproc;
|
|
|
|
wbuf = nil; // current work buffer
|
|
wp = nil; // storage for next queued pointer (write pointer)
|
|
nobj = 0; // number of queued objects
|
|
|
|
// Scanblock helpers pass b==nil.
|
|
// Procs needs to return to make more
|
|
// calls to scanblock. But if work.nproc==1 then
|
|
// might as well process blocks as soon as we
|
|
// have them.
|
|
keepworking = b == nil || work.nproc == 1;
|
|
|
|
// Align b to a word boundary.
|
|
off = (uintptr)b & (PtrSize-1);
|
|
if(off != 0) {
|
|
b += PtrSize - off;
|
|
n -= PtrSize - off;
|
|
}
|
|
|
|
for(;;) {
|
|
// Each iteration scans the block b of length n, queueing pointers in
|
|
// the work buffer.
|
|
if(Debug > 1)
|
|
runtime·printf("scanblock %p %D\n", b, (int64)n);
|
|
|
|
vp = (void**)b;
|
|
n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */
|
|
for(i=0; i<n; i++) {
|
|
obj = (byte*)vp[i];
|
|
|
|
// Words outside the arena cannot be pointers.
|
|
if((byte*)obj < arena_start || (byte*)obj >= arena_used)
|
|
continue;
|
|
|
|
// obj may be a pointer to a live object.
|
|
// Try to find the beginning of the object.
|
|
|
|
// Round down to word boundary.
|
|
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
|
|
|
|
// Find bits for this word.
|
|
off = (uintptr*)obj - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
// Pointing at the beginning of a block?
|
|
if((bits & (bitAllocated|bitBlockBoundary)) != 0)
|
|
goto found;
|
|
|
|
// Pointing just past the beginning?
|
|
// Scan backward a little to find a block boundary.
|
|
for(j=shift; j-->0; ) {
|
|
if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
|
|
obj = (byte*)obj - (shift-j)*PtrSize;
|
|
shift = j;
|
|
bits = xbits>>shift;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
// Otherwise consult span table to find beginning.
|
|
// (Manually inlined copy of MHeap_LookupMaybe.)
|
|
k = (uintptr)obj>>PageShift;
|
|
x = k;
|
|
if(sizeof(void*) == 8)
|
|
x -= (uintptr)arena_start>>PageShift;
|
|
s = runtime·mheap.map[x];
|
|
if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse)
|
|
continue;
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
if(s->sizeclass == 0) {
|
|
obj = p;
|
|
} else {
|
|
if((byte*)obj >= (byte*)s->limit)
|
|
continue;
|
|
size = runtime·class_to_size[s->sizeclass];
|
|
int32 i = ((byte*)obj - p)/size;
|
|
obj = p+i*size;
|
|
}
|
|
|
|
// Now that we know the object header, reload bits.
|
|
off = (uintptr*)obj - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
found:
|
|
// If another proc wants a pointer, give it some.
|
|
if(work.nwait > 0 && nobj > 4 && work.full == 0) {
|
|
wbuf->nobj = nobj;
|
|
wbuf = handoff(wbuf);
|
|
nobj = wbuf->nobj;
|
|
wp = wbuf->obj + nobj;
|
|
}
|
|
|
|
// Now we have bits, bitp, and shift correct for
|
|
// obj pointing at the base of the object.
|
|
// Only care about allocated and not marked.
|
|
if((bits & (bitAllocated|bitMarked)) != bitAllocated)
|
|
continue;
|
|
if(nproc == 1)
|
|
*bitp |= bitMarked<<shift;
|
|
else {
|
|
for(;;) {
|
|
x = *bitp;
|
|
if(x & (bitMarked<<shift))
|
|
goto continue_obj;
|
|
if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift))))
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If object has no pointers, don't need to scan further.
|
|
if((bits & bitNoPointers) != 0)
|
|
continue;
|
|
|
|
PREFETCH(obj);
|
|
|
|
// If buffer is full, get a new one.
|
|
if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
|
|
if(wbuf != nil)
|
|
wbuf->nobj = nobj;
|
|
wbuf = getempty(wbuf);
|
|
wp = wbuf->obj;
|
|
nobj = 0;
|
|
}
|
|
*wp++ = obj;
|
|
nobj++;
|
|
continue_obj:;
|
|
}
|
|
|
|
// Done scanning [b, b+n). Prepare for the next iteration of
|
|
// the loop by setting b and n to the parameters for the next block.
|
|
|
|
// Fetch b from the work buffer.
|
|
if(nobj == 0) {
|
|
if(!keepworking) {
|
|
if(wbuf)
|
|
putempty(wbuf);
|
|
return;
|
|
}
|
|
// Emptied our buffer: refill.
|
|
wbuf = getfull(wbuf);
|
|
if(wbuf == nil)
|
|
return;
|
|
nobj = wbuf->nobj;
|
|
wp = wbuf->obj + wbuf->nobj;
|
|
}
|
|
b = *--wp;
|
|
nobj--;
|
|
|
|
// Ask span about size class.
|
|
// (Manually inlined copy of MHeap_Lookup.)
|
|
x = (uintptr)b>>PageShift;
|
|
if(sizeof(void*) == 8)
|
|
x -= (uintptr)arena_start>>PageShift;
|
|
s = runtime·mheap.map[x];
|
|
if(s->sizeclass == 0)
|
|
n = s->npages<<PageShift;
|
|
else
|
|
n = runtime·class_to_size[s->sizeclass];
|
|
}
|
|
}
|
|
|
|
// debug_scanblock is the debug copy of scanblock.
|
|
// it is simpler, slower, single-threaded, recursive,
|
|
// and uses bitSpecial as the mark bit.
|
|
static void
|
|
debug_scanblock(byte *b, uintptr n)
|
|
{
|
|
byte *obj, *p;
|
|
void **vp;
|
|
uintptr size, *bitp, bits, shift, i, xbits, off;
|
|
MSpan *s;
|
|
|
|
if(!DebugMark)
|
|
runtime·throw("debug_scanblock without DebugMark");
|
|
|
|
if((intptr)n < 0) {
|
|
runtime·printf("debug_scanblock %p %D\n", b, (int64)n);
|
|
runtime·throw("debug_scanblock");
|
|
}
|
|
|
|
// Align b to a word boundary.
|
|
off = (uintptr)b & (PtrSize-1);
|
|
if(off != 0) {
|
|
b += PtrSize - off;
|
|
n -= PtrSize - off;
|
|
}
|
|
|
|
vp = (void**)b;
|
|
n /= PtrSize;
|
|
for(i=0; i<n; i++) {
|
|
obj = (byte*)vp[i];
|
|
|
|
// Words outside the arena cannot be pointers.
|
|
if((byte*)obj < runtime·mheap.arena_start || (byte*)obj >= runtime·mheap.arena_used)
|
|
continue;
|
|
|
|
// Round down to word boundary.
|
|
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
|
|
|
|
// Consult span table to find beginning.
|
|
s = runtime·MHeap_LookupMaybe(&runtime·mheap, obj);
|
|
if(s == nil)
|
|
continue;
|
|
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
if(s->sizeclass == 0) {
|
|
obj = p;
|
|
size = (uintptr)s->npages<<PageShift;
|
|
} else {
|
|
if((byte*)obj >= (byte*)s->limit)
|
|
continue;
|
|
size = runtime·class_to_size[s->sizeclass];
|
|
int32 i = ((byte*)obj - p)/size;
|
|
obj = p+i*size;
|
|
}
|
|
|
|
// Now that we know the object header, reload bits.
|
|
off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start;
|
|
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
// Now we have bits, bitp, and shift correct for
|
|
// obj pointing at the base of the object.
|
|
// If not allocated or already marked, done.
|
|
if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked
|
|
continue;
|
|
*bitp |= bitSpecial<<shift;
|
|
if(!(bits & bitMarked))
|
|
runtime·printf("found unmarked block %p in %p\n", obj, vp+i);
|
|
|
|
// If object has no pointers, don't need to scan further.
|
|
if((bits & bitNoPointers) != 0)
|
|
continue;
|
|
|
|
debug_scanblock(obj, size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
markroot(ParFor *desc, uint32 i)
|
|
{
|
|
USED(&desc);
|
|
scanblock(work.roots[i].p, work.roots[i].n);
|
|
}
|
|
|
|
// Get an empty work buffer off the work.empty list,
|
|
// allocating new buffers as needed.
|
|
static Workbuf*
|
|
getempty(Workbuf *b)
|
|
{
|
|
if(b != nil)
|
|
runtime·lfstackpush(&work.full, &b->node);
|
|
b = (Workbuf*)runtime·lfstackpop(&work.empty);
|
|
if(b == nil) {
|
|
// Need to allocate.
|
|
runtime·lock(&work);
|
|
if(work.nchunk < sizeof *b) {
|
|
work.nchunk = 1<<20;
|
|
work.chunk = runtime·SysAlloc(work.nchunk);
|
|
}
|
|
b = (Workbuf*)work.chunk;
|
|
work.chunk += sizeof *b;
|
|
work.nchunk -= sizeof *b;
|
|
runtime·unlock(&work);
|
|
}
|
|
b->nobj = 0;
|
|
return b;
|
|
}
|
|
|
|
static void
|
|
putempty(Workbuf *b)
|
|
{
|
|
runtime·lfstackpush(&work.empty, &b->node);
|
|
}
|
|
|
|
// Get a full work buffer off the work.full list, or return nil.
|
|
static Workbuf*
|
|
getfull(Workbuf *b)
|
|
{
|
|
int32 i;
|
|
|
|
if(b != nil)
|
|
runtime·lfstackpush(&work.empty, &b->node);
|
|
b = (Workbuf*)runtime·lfstackpop(&work.full);
|
|
if(b != nil || work.nproc == 1)
|
|
return b;
|
|
|
|
runtime·xadd(&work.nwait, +1);
|
|
for(i=0;; i++) {
|
|
if(work.full != 0) {
|
|
runtime·xadd(&work.nwait, -1);
|
|
b = (Workbuf*)runtime·lfstackpop(&work.full);
|
|
if(b != nil)
|
|
return b;
|
|
runtime·xadd(&work.nwait, +1);
|
|
}
|
|
if(work.nwait == work.nproc)
|
|
return nil;
|
|
if(i < 10) {
|
|
m->gcstats.nprocyield++;
|
|
runtime·procyield(20);
|
|
} else if(i < 20) {
|
|
m->gcstats.nosyield++;
|
|
runtime·osyield();
|
|
} else {
|
|
m->gcstats.nsleep++;
|
|
runtime·usleep(100);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Workbuf*
|
|
handoff(Workbuf *b)
|
|
{
|
|
int32 n;
|
|
Workbuf *b1;
|
|
|
|
// Make new buffer with half of b's pointers.
|
|
b1 = getempty(nil);
|
|
n = b->nobj/2;
|
|
b->nobj -= n;
|
|
b1->nobj = n;
|
|
runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]);
|
|
m->gcstats.nhandoff++;
|
|
m->gcstats.nhandoffcnt += n;
|
|
|
|
// Put b on full list - let first half of b get stolen.
|
|
runtime·lfstackpush(&work.full, &b->node);
|
|
return b1;
|
|
}
|
|
|
|
static void
|
|
addroot(byte *p, uintptr n)
|
|
{
|
|
uint32 cap;
|
|
GcRoot *new;
|
|
|
|
if(work.nroot >= work.rootcap) {
|
|
cap = PageSize/sizeof(GcRoot);
|
|
if(cap < 2*work.rootcap)
|
|
cap = 2*work.rootcap;
|
|
new = (GcRoot*)runtime·SysAlloc(cap*sizeof(GcRoot));
|
|
if(work.roots != nil) {
|
|
runtime·memmove(new, work.roots, work.rootcap*sizeof(GcRoot));
|
|
runtime·SysFree(work.roots, work.rootcap*sizeof(GcRoot));
|
|
}
|
|
work.roots = new;
|
|
work.rootcap = cap;
|
|
}
|
|
work.roots[work.nroot].p = p;
|
|
work.roots[work.nroot].n = n;
|
|
work.nroot++;
|
|
}
|
|
|
|
static void
|
|
addstackroots(G *gp)
|
|
{
|
|
M *mp;
|
|
int32 n;
|
|
Stktop *stk;
|
|
byte *sp, *guard;
|
|
|
|
stk = (Stktop*)gp->stackbase;
|
|
guard = (byte*)gp->stackguard;
|
|
|
|
if(gp == g) {
|
|
// Scanning our own stack: start at &gp.
|
|
sp = (byte*)&gp;
|
|
} else if((mp = gp->m) != nil && mp->helpgc) {
|
|
// gchelper's stack is in active use and has no interesting pointers.
|
|
return;
|
|
} else {
|
|
// Scanning another goroutine's stack.
|
|
// The goroutine is usually asleep (the world is stopped).
|
|
sp = (byte*)gp->sched.sp;
|
|
|
|
// The exception is that if the goroutine is about to enter or might
|
|
// have just exited a system call, it may be executing code such
|
|
// as schedlock and may have needed to start a new stack segment.
|
|
// Use the stack segment and stack pointer at the time of
|
|
// the system call instead, since that won't change underfoot.
|
|
if(gp->gcstack != (uintptr)nil) {
|
|
stk = (Stktop*)gp->gcstack;
|
|
sp = (byte*)gp->gcsp;
|
|
guard = (byte*)gp->gcguard;
|
|
}
|
|
}
|
|
|
|
n = 0;
|
|
while(stk) {
|
|
if(sp < guard-StackGuard || (byte*)stk < sp) {
|
|
runtime·printf("scanstack inconsistent: g%d#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk);
|
|
runtime·throw("scanstack");
|
|
}
|
|
addroot(sp, (byte*)stk - sp);
|
|
sp = (byte*)stk->gobuf.sp;
|
|
guard = stk->stackguard;
|
|
stk = (Stktop*)stk->stackbase;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
addfinroots(void *v)
|
|
{
|
|
uintptr size;
|
|
|
|
size = 0;
|
|
if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v))
|
|
runtime·throw("mark - finalizer inconsistency");
|
|
|
|
// do not mark the finalizer block itself. just mark the things it points at.
|
|
addroot(v, size);
|
|
}
|
|
|
|
static void
|
|
addroots(void)
|
|
{
|
|
G *gp;
|
|
FinBlock *fb;
|
|
byte *p;
|
|
|
|
work.nroot = 0;
|
|
|
|
// mark data+bss.
|
|
for(p=data; p<ebss; p+=DataBlock)
|
|
addroot(p, p+DataBlock < ebss ? DataBlock : ebss-p);
|
|
|
|
for(gp=runtime·allg; gp!=nil; gp=gp->alllink) {
|
|
switch(gp->status){
|
|
default:
|
|
runtime·printf("unexpected G.status %d\n", gp->status);
|
|
runtime·throw("mark - bad status");
|
|
case Gdead:
|
|
break;
|
|
case Grunning:
|
|
if(gp != g)
|
|
runtime·throw("mark - world not stopped");
|
|
addstackroots(gp);
|
|
break;
|
|
case Grunnable:
|
|
case Gsyscall:
|
|
case Gwaiting:
|
|
addstackroots(gp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
runtime·walkfintab(addfinroots);
|
|
|
|
for(fb=allfin; fb; fb=fb->alllink)
|
|
addroot((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]));
|
|
}
|
|
|
|
static bool
|
|
handlespecial(byte *p, uintptr size)
|
|
{
|
|
void (*fn)(void*);
|
|
int32 nret;
|
|
FinBlock *block;
|
|
Finalizer *f;
|
|
|
|
if(!runtime·getfinalizer(p, true, &fn, &nret)) {
|
|
runtime·setblockspecial(p, false);
|
|
runtime·MProf_Free(p, size);
|
|
return false;
|
|
}
|
|
|
|
runtime·lock(&finlock);
|
|
if(finq == nil || finq->cnt == finq->cap) {
|
|
if(finc == nil) {
|
|
finc = runtime·SysAlloc(PageSize);
|
|
finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
|
|
finc->alllink = allfin;
|
|
allfin = finc;
|
|
}
|
|
block = finc;
|
|
finc = block->next;
|
|
block->next = finq;
|
|
finq = block;
|
|
}
|
|
f = &finq->fin[finq->cnt];
|
|
finq->cnt++;
|
|
f->fn = fn;
|
|
f->nret = nret;
|
|
f->arg = p;
|
|
runtime·unlock(&finlock);
|
|
return true;
|
|
}
|
|
|
|
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
|
|
// It clears the mark bits in preparation for the next GC round.
|
|
static void
|
|
sweepspan(ParFor *desc, uint32 idx)
|
|
{
|
|
int32 cl, n, npages;
|
|
uintptr size;
|
|
byte *p;
|
|
MCache *c;
|
|
byte *arena_start;
|
|
MLink *start, *end;
|
|
int32 nfree;
|
|
MSpan *s;
|
|
|
|
USED(&desc);
|
|
s = runtime·mheap.allspans[idx];
|
|
// Stamp newly unused spans. The scavenger will use that
|
|
// info to potentially give back some pages to the OS.
|
|
if(s->state == MSpanFree && s->unusedsince == 0)
|
|
s->unusedsince = runtime·nanotime();
|
|
if(s->state != MSpanInUse)
|
|
return;
|
|
arena_start = runtime·mheap.arena_start;
|
|
p = (byte*)(s->start << PageShift);
|
|
cl = s->sizeclass;
|
|
if(cl == 0) {
|
|
size = s->npages<<PageShift;
|
|
n = 1;
|
|
} else {
|
|
// Chunk full of small blocks.
|
|
size = runtime·class_to_size[cl];
|
|
npages = runtime·class_to_allocnpages[cl];
|
|
n = (npages << PageShift) / size;
|
|
}
|
|
nfree = 0;
|
|
start = end = nil;
|
|
c = m->mcache;
|
|
|
|
// Sweep through n objects of given size starting at p.
|
|
// This thread owns the span now, so it can manipulate
|
|
// the block bitmap without atomic operations.
|
|
for(; n > 0; n--, p += size) {
|
|
uintptr off, *bitp, shift, bits;
|
|
|
|
off = (uintptr*)p - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
bits = *bitp>>shift;
|
|
|
|
if((bits & bitAllocated) == 0)
|
|
continue;
|
|
|
|
if((bits & bitMarked) != 0) {
|
|
if(DebugMark) {
|
|
if(!(bits & bitSpecial))
|
|
runtime·printf("found spurious mark on %p\n", p);
|
|
*bitp &= ~(bitSpecial<<shift);
|
|
}
|
|
*bitp &= ~(bitMarked<<shift);
|
|
continue;
|
|
}
|
|
|
|
// Special means it has a finalizer or is being profiled.
|
|
// In DebugMark mode, the bit has been coopted so
|
|
// we have to assume all blocks are special.
|
|
if(DebugMark || (bits & bitSpecial) != 0) {
|
|
if(handlespecial(p, size))
|
|
continue;
|
|
}
|
|
|
|
// Mark freed; restore block boundary bit.
|
|
*bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
|
|
if(s->sizeclass == 0) {
|
|
// Free large span.
|
|
runtime·unmarkspan(p, 1<<PageShift);
|
|
*(uintptr*)p = 1; // needs zeroing
|
|
runtime·MHeap_Free(&runtime·mheap, s, 1);
|
|
c->local_alloc -= size;
|
|
c->local_nfree++;
|
|
} else {
|
|
// Free small object.
|
|
if(size > sizeof(uintptr))
|
|
((uintptr*)p)[1] = 1; // mark as "needs to be zeroed"
|
|
if(nfree)
|
|
end->next = (MLink*)p;
|
|
else
|
|
start = (MLink*)p;
|
|
end = (MLink*)p;
|
|
nfree++;
|
|
}
|
|
}
|
|
|
|
if(nfree) {
|
|
c->local_by_size[s->sizeclass].nfree += nfree;
|
|
c->local_alloc -= size * nfree;
|
|
c->local_nfree += nfree;
|
|
c->local_cachealloc -= nfree * size;
|
|
c->local_objects -= nfree;
|
|
runtime·MCentral_FreeSpan(&runtime·mheap.central[cl], s, nfree, start, end);
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime·gchelper(void)
|
|
{
|
|
// parallel mark for over gc roots
|
|
runtime·parfordo(work.markfor);
|
|
// help other threads scan secondary blocks
|
|
scanblock(nil, 0);
|
|
|
|
if(DebugMark) {
|
|
// wait while the main thread executes mark(debug_scanblock)
|
|
while(runtime·atomicload(&work.debugmarkdone) == 0)
|
|
runtime·usleep(10);
|
|
}
|
|
|
|
runtime·parfordo(work.sweepfor);
|
|
if(runtime·xadd(&work.ndone, +1) == work.nproc-1)
|
|
runtime·notewakeup(&work.alldone);
|
|
}
|
|
|
|
// Initialized from $GOGC. GOGC=off means no gc.
|
|
//
|
|
// Next gc is after we've allocated an extra amount of
|
|
// memory proportional to the amount already in use.
|
|
// If gcpercent=100 and we're using 4M, we'll gc again
|
|
// when we get to 8M. This keeps the gc cost in linear
|
|
// proportion to the allocation cost. Adjusting gcpercent
|
|
// just changes the linear constant (and also the amount of
|
|
// extra memory used).
|
|
static int32 gcpercent = -2;
|
|
|
|
static void
|
|
stealcache(void)
|
|
{
|
|
M *m;
|
|
|
|
for(m=runtime·allm; m; m=m->alllink)
|
|
runtime·MCache_ReleaseAll(m->mcache);
|
|
}
|
|
|
|
static void
|
|
cachestats(GCStats *stats)
|
|
{
|
|
M *m;
|
|
MCache *c;
|
|
int32 i;
|
|
uint64 stacks_inuse;
|
|
uint64 stacks_sys;
|
|
uint64 *src, *dst;
|
|
|
|
if(stats)
|
|
runtime·memclr((byte*)stats, sizeof(*stats));
|
|
stacks_inuse = 0;
|
|
stacks_sys = 0;
|
|
for(m=runtime·allm; m; m=m->alllink) {
|
|
runtime·purgecachedstats(m);
|
|
stacks_inuse += m->stackalloc->inuse;
|
|
stacks_sys += m->stackalloc->sys;
|
|
if(stats) {
|
|
src = (uint64*)&m->gcstats;
|
|
dst = (uint64*)stats;
|
|
for(i=0; i<sizeof(*stats)/sizeof(uint64); i++)
|
|
dst[i] += src[i];
|
|
runtime·memclr((byte*)&m->gcstats, sizeof(m->gcstats));
|
|
}
|
|
c = m->mcache;
|
|
for(i=0; i<nelem(c->local_by_size); i++) {
|
|
mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc;
|
|
c->local_by_size[i].nmalloc = 0;
|
|
mstats.by_size[i].nfree += c->local_by_size[i].nfree;
|
|
c->local_by_size[i].nfree = 0;
|
|
}
|
|
}
|
|
mstats.stacks_inuse = stacks_inuse;
|
|
mstats.stacks_sys = stacks_sys;
|
|
}
|
|
|
|
void
|
|
runtime·gc(int32 force)
|
|
{
|
|
int64 t0, t1, t2, t3;
|
|
uint64 heap0, heap1, obj0, obj1;
|
|
byte *p;
|
|
GCStats stats;
|
|
uint32 i;
|
|
|
|
// The gc is turned off (via enablegc) until
|
|
// the bootstrap has completed.
|
|
// Also, malloc gets called in the guts
|
|
// of a number of libraries that might be
|
|
// holding locks. To avoid priority inversion
|
|
// problems, don't bother trying to run gc
|
|
// while holding a lock. The next mallocgc
|
|
// without a lock will do the gc instead.
|
|
if(!mstats.enablegc || m->locks > 0 || runtime·panicking)
|
|
return;
|
|
|
|
if(gcpercent == -2) { // first time through
|
|
p = runtime·getenv("GOGC");
|
|
if(p == nil || p[0] == '\0')
|
|
gcpercent = 100;
|
|
else if(runtime·strcmp(p, (byte*)"off") == 0)
|
|
gcpercent = -1;
|
|
else
|
|
gcpercent = runtime·atoi(p);
|
|
|
|
p = runtime·getenv("GOGCTRACE");
|
|
if(p != nil)
|
|
gctrace = runtime·atoi(p);
|
|
}
|
|
if(gcpercent < 0)
|
|
return;
|
|
|
|
runtime·semacquire(&runtime·worldsema);
|
|
if(!force && mstats.heap_alloc < mstats.next_gc) {
|
|
runtime·semrelease(&runtime·worldsema);
|
|
return;
|
|
}
|
|
|
|
t0 = runtime·nanotime();
|
|
|
|
m->gcing = 1;
|
|
runtime·stoptheworld();
|
|
|
|
heap0 = 0;
|
|
obj0 = 0;
|
|
if(gctrace) {
|
|
cachestats(nil);
|
|
heap0 = mstats.heap_alloc;
|
|
obj0 = mstats.nmalloc - mstats.nfree;
|
|
}
|
|
|
|
work.nwait = 0;
|
|
work.ndone = 0;
|
|
work.debugmarkdone = 0;
|
|
work.nproc = runtime·gcprocs();
|
|
addroots();
|
|
if(work.markfor == nil)
|
|
work.markfor = runtime·parforalloc(MaxGcproc);
|
|
runtime·parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot);
|
|
if(work.sweepfor == nil)
|
|
work.sweepfor = runtime·parforalloc(MaxGcproc);
|
|
runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap.nspan, nil, true, sweepspan);
|
|
if(work.nproc > 1) {
|
|
runtime·noteclear(&work.alldone);
|
|
runtime·helpgc(work.nproc);
|
|
}
|
|
|
|
runtime·parfordo(work.markfor);
|
|
scanblock(nil, 0);
|
|
|
|
if(DebugMark) {
|
|
for(i=0; i<work.nroot; i++)
|
|
debug_scanblock(work.roots[i].p, work.roots[i].n);
|
|
runtime·atomicstore(&work.debugmarkdone, 1);
|
|
}
|
|
t1 = runtime·nanotime();
|
|
|
|
runtime·parfordo(work.sweepfor);
|
|
t2 = runtime·nanotime();
|
|
|
|
stealcache();
|
|
cachestats(&stats);
|
|
|
|
if(work.nproc > 1)
|
|
runtime·notesleep(&work.alldone);
|
|
|
|
stats.nprocyield += work.sweepfor->nprocyield;
|
|
stats.nosyield += work.sweepfor->nosyield;
|
|
stats.nsleep += work.sweepfor->nsleep;
|
|
|
|
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
|
|
m->gcing = 0;
|
|
|
|
if(finq != nil) {
|
|
m->locks++; // disable gc during the mallocs in newproc
|
|
// kick off or wake up goroutine to run queued finalizers
|
|
if(fing == nil)
|
|
fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc);
|
|
else if(fingwait) {
|
|
fingwait = 0;
|
|
runtime·ready(fing);
|
|
}
|
|
m->locks--;
|
|
}
|
|
|
|
heap1 = mstats.heap_alloc;
|
|
obj1 = mstats.nmalloc - mstats.nfree;
|
|
|
|
t3 = runtime·nanotime();
|
|
mstats.last_gc = t3;
|
|
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0;
|
|
mstats.pause_total_ns += t3 - t0;
|
|
mstats.numgc++;
|
|
if(mstats.debuggc)
|
|
runtime·printf("pause %D\n", t3-t0);
|
|
|
|
if(gctrace) {
|
|
runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects,"
|
|
" %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
|
|
mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000,
|
|
heap0>>20, heap1>>20, obj0, obj1,
|
|
mstats.nmalloc, mstats.nfree,
|
|
stats.nhandoff, stats.nhandoffcnt,
|
|
work.sweepfor->nsteal, work.sweepfor->nstealcnt,
|
|
stats.nprocyield, stats.nosyield, stats.nsleep);
|
|
}
|
|
|
|
runtime·MProf_GC();
|
|
runtime·semrelease(&runtime·worldsema);
|
|
runtime·starttheworld();
|
|
|
|
// give the queued finalizers, if any, a chance to run
|
|
if(finq != nil)
|
|
runtime·gosched();
|
|
|
|
if(gctrace > 1 && !force)
|
|
runtime·gc(1);
|
|
}
|
|
|
|
void
|
|
runtime·ReadMemStats(MStats *stats)
|
|
{
|
|
// Have to acquire worldsema to stop the world,
|
|
// because stoptheworld can only be used by
|
|
// one goroutine at a time, and there might be
|
|
// a pending garbage collection already calling it.
|
|
runtime·semacquire(&runtime·worldsema);
|
|
m->gcing = 1;
|
|
runtime·stoptheworld();
|
|
cachestats(nil);
|
|
*stats = mstats;
|
|
m->gcing = 0;
|
|
runtime·semrelease(&runtime·worldsema);
|
|
runtime·starttheworld();
|
|
}
|
|
|
|
static void
|
|
runfinq(void)
|
|
{
|
|
Finalizer *f;
|
|
FinBlock *fb, *next;
|
|
byte *frame;
|
|
uint32 framesz, framecap, i;
|
|
|
|
frame = nil;
|
|
framecap = 0;
|
|
for(;;) {
|
|
// There's no need for a lock in this section
|
|
// because it only conflicts with the garbage
|
|
// collector, and the garbage collector only
|
|
// runs when everyone else is stopped, and
|
|
// runfinq only stops at the gosched() or
|
|
// during the calls in the for loop.
|
|
fb = finq;
|
|
finq = nil;
|
|
if(fb == nil) {
|
|
fingwait = 1;
|
|
g->status = Gwaiting;
|
|
g->waitreason = "finalizer wait";
|
|
runtime·gosched();
|
|
continue;
|
|
}
|
|
for(; fb; fb=next) {
|
|
next = fb->next;
|
|
for(i=0; i<fb->cnt; i++) {
|
|
f = &fb->fin[i];
|
|
framesz = sizeof(uintptr) + f->nret;
|
|
if(framecap < framesz) {
|
|
runtime·free(frame);
|
|
frame = runtime·mal(framesz);
|
|
framecap = framesz;
|
|
}
|
|
*(void**)frame = f->arg;
|
|
reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret);
|
|
f->fn = nil;
|
|
f->arg = nil;
|
|
}
|
|
fb->cnt = 0;
|
|
fb->next = finc;
|
|
finc = fb;
|
|
}
|
|
runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible
|
|
}
|
|
}
|
|
|
|
// mark the block at v of size n as allocated.
|
|
// If noptr is true, mark it as having no pointers.
|
|
void
|
|
runtime·markallocated(void *v, uintptr n, bool noptr)
|
|
{
|
|
uintptr *b, obits, bits, off, shift;
|
|
|
|
if(0)
|
|
runtime·printf("markallocated %p+%p\n", v, n);
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markallocated: bad pointer");
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift);
|
|
if(noptr)
|
|
bits |= bitNoPointers<<shift;
|
|
if(runtime·singleproc) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// more than one goroutine is potentially running: use atomic op
|
|
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// mark the block at v of size n as freed.
|
|
void
|
|
runtime·markfreed(void *v, uintptr n)
|
|
{
|
|
uintptr *b, obits, bits, off, shift;
|
|
|
|
if(0)
|
|
runtime·printf("markallocated %p+%p\n", v, n);
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markallocated: bad pointer");
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
if(runtime·singleproc) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// more than one goroutine is potentially running: use atomic op
|
|
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check that the block at v of size n is marked freed.
|
|
void
|
|
runtime·checkfreed(void *v, uintptr n)
|
|
{
|
|
uintptr *b, bits, off, shift;
|
|
|
|
if(!runtime·checking)
|
|
return;
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
return; // not allocated, so okay
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
bits = *b>>shift;
|
|
if((bits & bitAllocated) != 0) {
|
|
runtime·printf("checkfreed %p+%p: off=%p have=%p\n",
|
|
v, n, off, bits & bitMask);
|
|
runtime·throw("checkfreed: not freed");
|
|
}
|
|
}
|
|
|
|
// mark the span of memory at v as having n blocks of the given size.
|
|
// if leftover is true, there is left over space at the end of the span.
|
|
void
|
|
runtime·markspan(void *v, uintptr size, uintptr n, bool leftover)
|
|
{
|
|
uintptr *b, off, shift;
|
|
byte *p;
|
|
|
|
if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markspan: bad pointer");
|
|
|
|
p = v;
|
|
if(leftover) // mark a boundary just past end of last block too
|
|
n++;
|
|
for(; n-- > 0; p += size) {
|
|
// Okay to use non-atomic ops here, because we control
|
|
// the entire span, and each bitmap word has bits for only
|
|
// one span, so no other goroutines are changing these
|
|
// bitmap words.
|
|
off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
*b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
}
|
|
}
|
|
|
|
// unmark the span of memory at v of length n bytes.
|
|
void
|
|
runtime·unmarkspan(void *v, uintptr n)
|
|
{
|
|
uintptr *p, *b, off;
|
|
|
|
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
|
|
runtime·throw("markspan: bad pointer");
|
|
|
|
p = v;
|
|
off = p - (uintptr*)runtime·mheap.arena_start; // word offset
|
|
if(off % wordsPerBitmapWord != 0)
|
|
runtime·throw("markspan: unaligned pointer");
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
n /= PtrSize;
|
|
if(n%wordsPerBitmapWord != 0)
|
|
runtime·throw("unmarkspan: unaligned length");
|
|
// Okay to use non-atomic ops here, because we control
|
|
// the entire span, and each bitmap word has bits for only
|
|
// one span, so no other goroutines are changing these
|
|
// bitmap words.
|
|
n /= wordsPerBitmapWord;
|
|
while(n-- > 0)
|
|
*b-- = 0;
|
|
}
|
|
|
|
bool
|
|
runtime·blockspecial(void *v)
|
|
{
|
|
uintptr *b, off, shift;
|
|
|
|
if(DebugMark)
|
|
return true;
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
return (*b & (bitSpecial<<shift)) != 0;
|
|
}
|
|
|
|
void
|
|
runtime·setblockspecial(void *v, bool s)
|
|
{
|
|
uintptr *b, off, shift, bits, obits;
|
|
|
|
if(DebugMark)
|
|
return;
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;
|
|
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
if(s)
|
|
bits = obits | (bitSpecial<<shift);
|
|
else
|
|
bits = obits & ~(bitSpecial<<shift);
|
|
if(runtime·singleproc) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// more than one goroutine is potentially running: use atomic op
|
|
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime·MHeap_MapBits(MHeap *h)
|
|
{
|
|
// Caller has added extra mappings to the arena.
|
|
// Add extra mappings of bitmap words as needed.
|
|
// We allocate extra bitmap pieces in chunks of bitmapChunk.
|
|
enum {
|
|
bitmapChunk = 8192
|
|
};
|
|
uintptr n;
|
|
|
|
n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
|
|
n = (n+bitmapChunk-1) & ~(bitmapChunk-1);
|
|
if(h->bitmap_mapped >= n)
|
|
return;
|
|
|
|
runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped);
|
|
h->bitmap_mapped = n;
|
|
}
|