1
0
mirror of https://github.com/golang/go synced 2024-11-20 03:04:40 -07:00
go/src/runtime/mheap.go
Austin Clements d57056ba26 runtime: don't free stack spans during GC
Memory for stacks is manually managed by the runtime and, currently
(with one exception) we free stack spans immediately when the last
stack on a span is freed. However, the garbage collector assumes that
spans can never transition from non-free to free during scan or mark.
This disagreement makes it possible for the garbage collector to mark
uninitialized objects and is blocking us from re-enabling the bad
pointer test in the garbage collector (issue #9880).

For example, the following sequence will result in marking an
uninitialized object:

1. scanobject loads a pointer slot out of the object it's scanning.
   This happens to be one of the special pointers from the heap into a
   stack. Call the pointer p and suppose it points into X's stack.

2. X, running on another thread, grows its stack and frees its old
   stack.

3. The old stack happens to be large or was the last stack in its
   span, so X frees this span, setting it to state _MSpanFree.

4. The span gets reused as a heap span.

5. scanobject calls heapBitsForObject, which loads the span containing
   p, which is now in state _MSpanInUse, but doesn't necessarily have
   an object at p. The not-object at p gets marked, and at this point
   all sorts of things can go wrong.

We already have a partial solution to this. When shrinking a stack, we
put the old stack on a queue to be freed at the end of garbage
collection. This was done to address exactly this problem, but wasn't
a complete solution.

This commit generalizes this solution to both shrinking and growing
stacks. For stacks that fit in the stack pool, we simply don't free
the span, even if its reference count reaches zero. It's fine to reuse
the span for other stacks, and this enables that. At the end of GC, we
sweep for cached stack spans with a zero reference count and free
them. For larger stacks, we simply queue the stack span to be freed at
the end of GC. Ideally, we would reuse these large stack spans the way
we can small stack spans, but that's a more invasive change that will
have to wait until after the freeze.

Fixes #11267.

Change-Id: Ib7f2c5da4845cc0268e8dc098b08465116972a71
Reviewed-on: https://go-review.googlesource.com/11502
Reviewed-by: Russ Cox <rsc@golang.org>
2015-06-29 15:33:40 +00:00

1087 lines
31 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Page heap.
//
// See malloc.go for overview.
package runtime
import "unsafe"
// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
type mheap struct {
lock mutex
free [_MaxMHeapList]mspan // free lists of given length
freelarge mspan // free lists length >= _MaxMHeapList
busy [_MaxMHeapList]mspan // busy lists of large objects of given length
busylarge mspan // busy lists of large objects length >= _MaxMHeapList
allspans **mspan // all spans out there
gcspans **mspan // copy of allspans referenced by gc marker or sweeper
nspan uint32
sweepgen uint32 // sweep generation, see comment in mspan
sweepdone uint32 // all spans are swept
// span lookup
spans **mspan
spans_mapped uintptr
// Proportional sweep
pagesSwept uint64 // pages swept this cycle; updated atomically
sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
// Malloc stats.
largefree uint64 // bytes freed for large objects (>maxsmallsize)
nlargefree uint64 // number of frees for large objects (>maxsmallsize)
nsmallfree [_NumSizeClasses]uint64 // number of frees for small objects (<=maxsmallsize)
// range of addresses we might see in the heap
bitmap uintptr
bitmap_mapped uintptr
arena_start uintptr
arena_used uintptr // always mHeap_Map{Bits,Spans} before updating
arena_end uintptr
arena_reserved bool
// central free lists for small size classes.
// the padding makes sure that the MCentrals are
// spaced CacheLineSize bytes apart, so that each MCentral.lock
// gets its own cache line.
central [_NumSizeClasses]struct {
mcentral mcentral
pad [_CacheLineSize]byte
}
spanalloc fixalloc // allocator for span*
cachealloc fixalloc // allocator for mcache*
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
specialprofilealloc fixalloc // allocator for specialprofile*
speciallock mutex // lock for special record allocators.
}
var mheap_ mheap
// An MSpan is a run of pages.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse or MSpanStack
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists. We use empty MSpan structures as list heads.
// An MSpan representing actual memory has state _MSpanInUse,
// _MSpanStack, or _MSpanFree. Transitions between these states are
// constrained as follows:
//
// * A span may transition from free to in-use or stack during any GC
// phase.
//
// * During sweeping (gcphase == _GCoff), a span may transition from
// in-use to free (as a result of sweeping) or stack to free (as a
// result of stacks being freed).
//
// * During GC (gcphase != _GCoff), a span *must not* transition from
// stack or in-use to free. Because concurrent GC may read a pointer
// and then look up its span, the span state must be monotonic.
const (
_MSpanInUse = iota // allocated for garbage collected heap
_MSpanStack // allocated for use by stack allocator
_MSpanFree
_MSpanListHead
_MSpanDead
)
type mspan struct {
next *mspan // in a span linked list
prev *mspan // in a span linked list
start pageID // starting page number
npages uintptr // number of pages in span
freelist gclinkptr // list of free objects
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// h->sweepgen is incremented by 2 after every GC
sweepgen uint32
divMul uint32 // for divide by elemsize - divMagic.mul
ref uint16 // capacity - number of objects in freelist
sizeclass uint8 // size class
incache bool // being used by an mcache
state uint8 // mspaninuse etc
needzero uint8 // needs to be zeroed before allocation
divShift uint8 // for divide by elemsize - divMagic.shift
divShift2 uint8 // for divide by elemsize - divMagic.shift2
elemsize uintptr // computed from sizeclass or from npages
unusedsince int64 // first time spotted by gc in mspanfree state
npreleased uintptr // number of pages released to the os
limit uintptr // end of data in span
speciallock mutex // guards specials list
specials *special // linked list of special records sorted by offset.
baseMask uintptr // if non-0, elemsize is a power of 2, & this will get object allocation base
}
func (s *mspan) base() uintptr {
return uintptr(s.start << _PageShift)
}
func (s *mspan) layout() (size, n, total uintptr) {
total = s.npages << _PageShift
size = s.elemsize
if size > 0 {
n = total / size
}
return
}
var h_allspans []*mspan // TODO: make this h.allspans once mheap can be defined in Go
// h_spans is a lookup table to map virtual address page IDs to *mspan.
// For allocated spans, their pages map to the span itself.
// For free spans, only the lowest and highest pages map to the span itself. Internal
// pages map to an arbitrary span.
// For pages that have never been allocated, h_spans entries are nil.
var h_spans []*mspan // TODO: make this h.spans once mheap can be defined in Go
func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
h := (*mheap)(vh)
s := (*mspan)(p)
if len(h_allspans) >= cap(h_allspans) {
n := 64 * 1024 / ptrSize
if n < cap(h_allspans)*3/2 {
n = cap(h_allspans) * 3 / 2
}
var new []*mspan
sp := (*slice)(unsafe.Pointer(&new))
sp.array = sysAlloc(uintptr(n)*ptrSize, &memstats.other_sys)
if sp.array == nil {
throw("runtime: cannot allocate memory")
}
sp.len = len(h_allspans)
sp.cap = n
if len(h_allspans) > 0 {
copy(new, h_allspans)
// Don't free the old array if it's referenced by sweep.
// See the comment in mgc.go.
if h.allspans != mheap_.gcspans {
sysFree(unsafe.Pointer(h.allspans), uintptr(cap(h_allspans))*ptrSize, &memstats.other_sys)
}
}
h_allspans = new
h.allspans = (**mspan)(unsafe.Pointer(sp.array))
}
h_allspans = append(h_allspans, s)
h.nspan = uint32(len(h_allspans))
}
// inheap reports whether b is a pointer into a (potentially dead) heap object.
// It returns false for pointers into stack spans.
// Non-preemptible because it is used by write barriers.
//go:nowritebarrier
//go:nosplit
func inheap(b uintptr) bool {
if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
return false
}
// Not a beginning of a block, consult span table to find the block beginning.
k := b >> _PageShift
x := k
x -= mheap_.arena_start >> _PageShift
s := h_spans[x]
if s == nil || pageID(k) < s.start || b >= s.limit || s.state != mSpanInUse {
return false
}
return true
}
// TODO: spanOf and spanOfUnchecked are open-coded in a lot of places.
// Use the functions instead.
// spanOf returns the span of p. If p does not point into the heap or
// no span contains p, spanOf returns nil.
func spanOf(p uintptr) *mspan {
if p == 0 || p < mheap_.arena_start || p >= mheap_.arena_used {
return nil
}
return spanOfUnchecked(p)
}
// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
// that p points into the heap (that is, mheap_.arena_start <= p <
// mheap_.arena_used).
func spanOfUnchecked(p uintptr) *mspan {
return h_spans[(p-mheap_.arena_start)>>_PageShift]
}
func mlookup(v uintptr, base *uintptr, size *uintptr, sp **mspan) int32 {
_g_ := getg()
_g_.m.mcache.local_nlookup++
if ptrSize == 4 && _g_.m.mcache.local_nlookup >= 1<<30 {
// purge cache stats to prevent overflow
lock(&mheap_.lock)
purgecachedstats(_g_.m.mcache)
unlock(&mheap_.lock)
}
s := mHeap_LookupMaybe(&mheap_, unsafe.Pointer(v))
if sp != nil {
*sp = s
}
if s == nil {
if base != nil {
*base = 0
}
if size != nil {
*size = 0
}
return 0
}
p := uintptr(s.start) << _PageShift
if s.sizeclass == 0 {
// Large object.
if base != nil {
*base = p
}
if size != nil {
*size = s.npages << _PageShift
}
return 1
}
n := s.elemsize
if base != nil {
i := (uintptr(v) - uintptr(p)) / n
*base = p + i*n
}
if size != nil {
*size = n
}
return 1
}
// Initialize the heap.
func mHeap_Init(h *mheap, spans_size uintptr) {
fixAlloc_Init(&h.spanalloc, unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
fixAlloc_Init(&h.cachealloc, unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
fixAlloc_Init(&h.specialfinalizeralloc, unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
fixAlloc_Init(&h.specialprofilealloc, unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
// h->mapcache needs no init
for i := range h.free {
mSpanList_Init(&h.free[i])
mSpanList_Init(&h.busy[i])
}
mSpanList_Init(&h.freelarge)
mSpanList_Init(&h.busylarge)
for i := range h.central {
mCentral_Init(&h.central[i].mcentral, int32(i))
}
sp := (*slice)(unsafe.Pointer(&h_spans))
sp.array = unsafe.Pointer(h.spans)
sp.len = int(spans_size / ptrSize)
sp.cap = int(spans_size / ptrSize)
}
// mHeap_MapSpans makes sure that the spans are mapped
// up to the new value of arena_used.
//
// It must be called with the expected new value of arena_used,
// *before* h.arena_used has been updated.
// Waiting to update arena_used until after the memory has been mapped
// avoids faults when other threads try access the bitmap immediately
// after observing the change to arena_used.
func mHeap_MapSpans(h *mheap, arena_used uintptr) {
// Map spans array, PageSize at a time.
n := arena_used
n -= h.arena_start
n = n / _PageSize * ptrSize
n = round(n, _PhysPageSize)
if h.spans_mapped >= n {
return
}
sysMap(add(unsafe.Pointer(h.spans), h.spans_mapped), n-h.spans_mapped, h.arena_reserved, &memstats.other_sys)
h.spans_mapped = n
}
// Sweeps spans in list until reclaims at least npages into heap.
// Returns the actual number of pages reclaimed.
func mHeap_ReclaimList(h *mheap, list *mspan, npages uintptr) uintptr {
n := uintptr(0)
sg := mheap_.sweepgen
retry:
for s := list.next; s != list; s = s.next {
if s.sweepgen == sg-2 && cas(&s.sweepgen, sg-2, sg-1) {
mSpanList_Remove(s)
// swept spans are at the end of the list
mSpanList_InsertBack(list, s)
unlock(&h.lock)
snpages := s.npages
if mSpan_Sweep(s, false) {
n += snpages
}
lock(&h.lock)
if n >= npages {
return n
}
// the span could have been moved elsewhere
goto retry
}
if s.sweepgen == sg-1 {
// the span is being sweept by background sweeper, skip
continue
}
// already swept empty span,
// all subsequent ones must also be either swept or in process of sweeping
break
}
return n
}
// Sweeps and reclaims at least npage pages into heap.
// Called before allocating npage pages.
func mHeap_Reclaim(h *mheap, npage uintptr) {
// First try to sweep busy spans with large objects of size >= npage,
// this has good chances of reclaiming the necessary space.
for i := int(npage); i < len(h.busy); i++ {
if mHeap_ReclaimList(h, &h.busy[i], npage) != 0 {
return // Bingo!
}
}
// Then -- even larger objects.
if mHeap_ReclaimList(h, &h.busylarge, npage) != 0 {
return // Bingo!
}
// Now try smaller objects.
// One such object is not enough, so we need to reclaim several of them.
reclaimed := uintptr(0)
for i := 0; i < int(npage) && i < len(h.busy); i++ {
reclaimed += mHeap_ReclaimList(h, &h.busy[i], npage-reclaimed)
if reclaimed >= npage {
return
}
}
// Now sweep everything that is not yet swept.
unlock(&h.lock)
for {
n := sweepone()
if n == ^uintptr(0) { // all spans are swept
break
}
reclaimed += n
if reclaimed >= npage {
break
}
}
lock(&h.lock)
}
// Allocate a new span of npage pages from the heap for GC'd memory
// and record its size class in the HeapMap and HeapMapCache.
func mHeap_Alloc_m(h *mheap, npage uintptr, sizeclass int32, large bool) *mspan {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("_mheap_alloc not on g0 stack")
}
lock(&h.lock)
// To prevent excessive heap growth, before allocating n pages
// we need to sweep and reclaim at least n pages.
if h.sweepdone == 0 {
// TODO(austin): This tends to sweep a large number of
// spans in order to find a few completely free spans
// (for example, in the garbage benchmark, this sweeps
// ~30x the number of pages its trying to allocate).
// If GC kept a bit for whether there were any marks
// in a span, we could release these free spans
// at the end of GC and eliminate this entirely.
mHeap_Reclaim(h, npage)
}
// transfer stats from cache to global
memstats.heap_live += uint64(_g_.m.mcache.local_cachealloc)
_g_.m.mcache.local_cachealloc = 0
memstats.heap_scan += uint64(_g_.m.mcache.local_scan)
_g_.m.mcache.local_scan = 0
memstats.tinyallocs += uint64(_g_.m.mcache.local_tinyallocs)
_g_.m.mcache.local_tinyallocs = 0
s := mHeap_AllocSpanLocked(h, npage)
if s != nil {
// Record span info, because gc needs to be
// able to map interior pointer to containing span.
atomicstore(&s.sweepgen, h.sweepgen)
s.state = _MSpanInUse
s.freelist = 0
s.ref = 0
s.sizeclass = uint8(sizeclass)
if sizeclass == 0 {
s.elemsize = s.npages << _PageShift
s.divShift = 0
s.divMul = 0
s.divShift2 = 0
s.baseMask = 0
} else {
s.elemsize = uintptr(class_to_size[sizeclass])
m := &class_to_divmagic[sizeclass]
s.divShift = m.shift
s.divMul = m.mul
s.divShift2 = m.shift2
s.baseMask = m.baseMask
}
// update stats, sweep lists
if large {
memstats.heap_objects++
memstats.heap_live += uint64(npage << _PageShift)
// Swept spans are at the end of lists.
if s.npages < uintptr(len(h.free)) {
mSpanList_InsertBack(&h.busy[s.npages], s)
} else {
mSpanList_InsertBack(&h.busylarge, s)
}
}
}
if trace.enabled {
traceHeapAlloc()
}
// h_spans is accessed concurrently without synchronization
// from other threads. Hence, there must be a store/store
// barrier here to ensure the writes to h_spans above happen
// before the caller can publish a pointer p to an object
// allocated from s. As soon as this happens, the garbage
// collector running on another processor could read p and
// look up s in h_spans. The unlock acts as the barrier to
// order these writes. On the read side, the data dependency
// between p and the index in h_spans orders the reads.
unlock(&h.lock)
return s
}
func mHeap_Alloc(h *mheap, npage uintptr, sizeclass int32, large bool, needzero bool) *mspan {
// Don't do any operations that lock the heap on the G stack.
// It might trigger stack growth, and the stack growth code needs
// to be able to allocate heap.
var s *mspan
systemstack(func() {
s = mHeap_Alloc_m(h, npage, sizeclass, large)
})
if s != nil {
if needzero && s.needzero != 0 {
memclr(unsafe.Pointer(s.start<<_PageShift), s.npages<<_PageShift)
}
s.needzero = 0
}
return s
}
func mHeap_AllocStack(h *mheap, npage uintptr) *mspan {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("mheap_allocstack not on g0 stack")
}
lock(&h.lock)
s := mHeap_AllocSpanLocked(h, npage)
if s != nil {
s.state = _MSpanStack
s.freelist = 0
s.ref = 0
memstats.stacks_inuse += uint64(s.npages << _PageShift)
}
// This unlock acts as a release barrier. See mHeap_Alloc_m.
unlock(&h.lock)
return s
}
// Allocates a span of the given size. h must be locked.
// The returned span has been removed from the
// free list, but its state is still MSpanFree.
func mHeap_AllocSpanLocked(h *mheap, npage uintptr) *mspan {
var s *mspan
// Try in fixed-size lists up to max.
for i := int(npage); i < len(h.free); i++ {
if !mSpanList_IsEmpty(&h.free[i]) {
s = h.free[i].next
goto HaveSpan
}
}
// Best fit in list of large spans.
s = mHeap_AllocLarge(h, npage)
if s == nil {
if !mHeap_Grow(h, npage) {
return nil
}
s = mHeap_AllocLarge(h, npage)
if s == nil {
return nil
}
}
HaveSpan:
// Mark span in use.
if s.state != _MSpanFree {
throw("MHeap_AllocLocked - MSpan not free")
}
if s.npages < npage {
throw("MHeap_AllocLocked - bad npages")
}
mSpanList_Remove(s)
if s.next != nil || s.prev != nil {
throw("still in list")
}
if s.npreleased > 0 {
sysUsed((unsafe.Pointer)(s.start<<_PageShift), s.npages<<_PageShift)
memstats.heap_released -= uint64(s.npreleased << _PageShift)
s.npreleased = 0
}
if s.npages > npage {
// Trim extra and put it back in the heap.
t := (*mspan)(fixAlloc_Alloc(&h.spanalloc))
mSpan_Init(t, s.start+pageID(npage), s.npages-npage)
s.npages = npage
p := uintptr(t.start)
p -= (uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift)
if p > 0 {
h_spans[p-1] = s
}
h_spans[p] = t
h_spans[p+t.npages-1] = t
t.needzero = s.needzero
s.state = _MSpanStack // prevent coalescing with s
t.state = _MSpanStack
mHeap_FreeSpanLocked(h, t, false, false, s.unusedsince)
s.state = _MSpanFree
}
s.unusedsince = 0
p := uintptr(s.start)
p -= (uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift)
for n := uintptr(0); n < npage; n++ {
h_spans[p+n] = s
}
memstats.heap_inuse += uint64(npage << _PageShift)
memstats.heap_idle -= uint64(npage << _PageShift)
//println("spanalloc", hex(s.start<<_PageShift))
if s.next != nil || s.prev != nil {
throw("still in list")
}
return s
}
// Allocate a span of exactly npage pages from the list of large spans.
func mHeap_AllocLarge(h *mheap, npage uintptr) *mspan {
return bestFit(&h.freelarge, npage, nil)
}
// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
func bestFit(list *mspan, npage uintptr, best *mspan) *mspan {
for s := list.next; s != list; s = s.next {
if s.npages < npage {
continue
}
if best == nil || s.npages < best.npages || (s.npages == best.npages && s.start < best.start) {
best = s
}
}
return best
}
// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
func mHeap_Grow(h *mheap, npage uintptr) bool {
// Ask for a big chunk, to reduce the number of mappings
// the operating system needs to track; also amortizes
// the overhead of an operating system mapping.
// Allocate a multiple of 64kB.
npage = round(npage, (64<<10)/_PageSize)
ask := npage << _PageShift
if ask < _HeapAllocChunk {
ask = _HeapAllocChunk
}
v := mHeap_SysAlloc(h, ask)
if v == nil {
if ask > npage<<_PageShift {
ask = npage << _PageShift
v = mHeap_SysAlloc(h, ask)
}
if v == nil {
print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
return false
}
}
// Create a fake "in use" span and free it, so that the
// right coalescing happens.
s := (*mspan)(fixAlloc_Alloc(&h.spanalloc))
mSpan_Init(s, pageID(uintptr(v)>>_PageShift), ask>>_PageShift)
p := uintptr(s.start)
p -= (uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift)
for i := p; i < p+s.npages; i++ {
h_spans[i] = s
}
atomicstore(&s.sweepgen, h.sweepgen)
s.state = _MSpanInUse
mHeap_FreeSpanLocked(h, s, false, true, 0)
return true
}
// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
func mHeap_Lookup(h *mheap, v unsafe.Pointer) *mspan {
p := uintptr(v)
p -= uintptr(unsafe.Pointer(h.arena_start))
return h_spans[p>>_PageShift]
}
// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans. Free spans may have
// other garbage in their middles, so we have to
// check for that.
func mHeap_LookupMaybe(h *mheap, v unsafe.Pointer) *mspan {
if uintptr(v) < uintptr(unsafe.Pointer(h.arena_start)) || uintptr(v) >= uintptr(unsafe.Pointer(h.arena_used)) {
return nil
}
p := uintptr(v) >> _PageShift
q := p
q -= uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift
s := h_spans[q]
if s == nil || p < uintptr(s.start) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != _MSpanInUse {
return nil
}
return s
}
// Free the span back into the heap.
func mHeap_Free(h *mheap, s *mspan, acct int32) {
systemstack(func() {
mp := getg().m
lock(&h.lock)
memstats.heap_live += uint64(mp.mcache.local_cachealloc)
mp.mcache.local_cachealloc = 0
memstats.heap_scan += uint64(mp.mcache.local_scan)
mp.mcache.local_scan = 0
memstats.tinyallocs += uint64(mp.mcache.local_tinyallocs)
mp.mcache.local_tinyallocs = 0
if acct != 0 {
memstats.heap_objects--
}
mHeap_FreeSpanLocked(h, s, true, true, 0)
if trace.enabled {
traceHeapAlloc()
}
unlock(&h.lock)
})
}
func mHeap_FreeStack(h *mheap, s *mspan) {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("mheap_freestack not on g0 stack")
}
s.needzero = 1
lock(&h.lock)
memstats.stacks_inuse -= uint64(s.npages << _PageShift)
mHeap_FreeSpanLocked(h, s, true, true, 0)
unlock(&h.lock)
}
func mHeap_FreeSpanLocked(h *mheap, s *mspan, acctinuse, acctidle bool, unusedsince int64) {
switch s.state {
case _MSpanStack:
if s.ref != 0 {
throw("MHeap_FreeSpanLocked - invalid stack free")
}
case _MSpanInUse:
if s.ref != 0 || s.sweepgen != h.sweepgen {
print("MHeap_FreeSpanLocked - span ", s, " ptr ", hex(s.start<<_PageShift), " ref ", s.ref, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
throw("MHeap_FreeSpanLocked - invalid free")
}
default:
throw("MHeap_FreeSpanLocked - invalid span state")
}
if acctinuse {
memstats.heap_inuse -= uint64(s.npages << _PageShift)
}
if acctidle {
memstats.heap_idle += uint64(s.npages << _PageShift)
}
s.state = _MSpanFree
mSpanList_Remove(s)
// Stamp newly unused spans. The scavenger will use that
// info to potentially give back some pages to the OS.
s.unusedsince = unusedsince
if unusedsince == 0 {
s.unusedsince = nanotime()
}
s.npreleased = 0
// Coalesce with earlier, later spans.
p := uintptr(s.start)
p -= uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift
if p > 0 {
t := h_spans[p-1]
if t != nil && t.state != _MSpanInUse && t.state != _MSpanStack {
s.start = t.start
s.npages += t.npages
s.npreleased = t.npreleased // absorb released pages
s.needzero |= t.needzero
p -= t.npages
h_spans[p] = s
mSpanList_Remove(t)
t.state = _MSpanDead
fixAlloc_Free(&h.spanalloc, (unsafe.Pointer)(t))
}
}
if (p+s.npages)*ptrSize < h.spans_mapped {
t := h_spans[p+s.npages]
if t != nil && t.state != _MSpanInUse && t.state != _MSpanStack {
s.npages += t.npages
s.npreleased += t.npreleased
s.needzero |= t.needzero
h_spans[p+s.npages-1] = s
mSpanList_Remove(t)
t.state = _MSpanDead
fixAlloc_Free(&h.spanalloc, (unsafe.Pointer)(t))
}
}
// Insert s into appropriate list.
if s.npages < uintptr(len(h.free)) {
mSpanList_Insert(&h.free[s.npages], s)
} else {
mSpanList_Insert(&h.freelarge, s)
}
}
func scavengelist(list *mspan, now, limit uint64) uintptr {
if _PhysPageSize > _PageSize {
// golang.org/issue/9993
// If the physical page size of the machine is larger than
// our logical heap page size the kernel may round up the
// amount to be freed to its page size and corrupt the heap
// pages surrounding the unused block.
return 0
}
if mSpanList_IsEmpty(list) {
return 0
}
var sumreleased uintptr
for s := list.next; s != list; s = s.next {
if (now-uint64(s.unusedsince)) > limit && s.npreleased != s.npages {
released := (s.npages - s.npreleased) << _PageShift
memstats.heap_released += uint64(released)
sumreleased += released
s.npreleased = s.npages
sysUnused((unsafe.Pointer)(s.start<<_PageShift), s.npages<<_PageShift)
}
}
return sumreleased
}
func mHeap_Scavenge(k int32, now, limit uint64) {
h := &mheap_
lock(&h.lock)
var sumreleased uintptr
for i := 0; i < len(h.free); i++ {
sumreleased += scavengelist(&h.free[i], now, limit)
}
sumreleased += scavengelist(&h.freelarge, now, limit)
unlock(&h.lock)
if debug.gctrace > 0 {
if sumreleased > 0 {
print("scvg", k, ": ", sumreleased>>20, " MB released\n")
}
// TODO(dvyukov): these stats are incorrect as we don't subtract stack usage from heap.
// But we can't call ReadMemStats on g0 holding locks.
print("scvg", k, ": inuse: ", memstats.heap_inuse>>20, ", idle: ", memstats.heap_idle>>20, ", sys: ", memstats.heap_sys>>20, ", released: ", memstats.heap_released>>20, ", consumed: ", (memstats.heap_sys-memstats.heap_released)>>20, " (MB)\n")
}
}
//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
func runtime_debug_freeOSMemory() {
startGC(gcForceBlockMode)
systemstack(func() { mHeap_Scavenge(-1, ^uint64(0), 0) })
}
// Initialize a new span with the given start and npages.
func mSpan_Init(span *mspan, start pageID, npages uintptr) {
span.next = nil
span.prev = nil
span.start = start
span.npages = npages
span.freelist = 0
span.ref = 0
span.sizeclass = 0
span.incache = false
span.elemsize = 0
span.state = _MSpanDead
span.unusedsince = 0
span.npreleased = 0
span.speciallock.key = 0
span.specials = nil
span.needzero = 0
}
// Initialize an empty doubly-linked list.
func mSpanList_Init(list *mspan) {
list.state = _MSpanListHead
list.next = list
list.prev = list
}
func mSpanList_Remove(span *mspan) {
if span.prev == nil && span.next == nil {
return
}
span.prev.next = span.next
span.next.prev = span.prev
span.prev = nil
span.next = nil
}
func mSpanList_IsEmpty(list *mspan) bool {
return list.next == list
}
func mSpanList_Insert(list *mspan, span *mspan) {
if span.next != nil || span.prev != nil {
println("failed MSpanList_Insert", span, span.next, span.prev)
throw("MSpanList_Insert")
}
span.next = list.next
span.prev = list
span.next.prev = span
span.prev.next = span
}
func mSpanList_InsertBack(list *mspan, span *mspan) {
if span.next != nil || span.prev != nil {
println("failed MSpanList_InsertBack", span, span.next, span.prev)
throw("MSpanList_InsertBack")
}
span.next = list
span.prev = list.prev
span.next.prev = span
span.prev.next = span
}
const (
_KindSpecialFinalizer = 1
_KindSpecialProfile = 2
// Note: The finalizer special must be first because if we're freeing
// an object, a finalizer special will cause the freeing operation
// to abort, and we want to keep the other special records around
// if that happens.
)
type special struct {
next *special // linked list in span
offset uint16 // span offset of object
kind byte // kind of special
}
// Adds the special record s to the list of special records for
// the object p. All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
// already exists.)
func addspecial(p unsafe.Pointer, s *special) bool {
span := mHeap_LookupMaybe(&mheap_, p)
if span == nil {
throw("addspecial on invalid pointer")
}
// Ensure that the span is swept.
// GC accesses specials list w/o locks. And it's just much safer.
mp := acquirem()
mSpan_EnsureSwept(span)
offset := uintptr(p) - uintptr(span.start<<_PageShift)
kind := s.kind
lock(&span.speciallock)
// Find splice point, check for existing record.
t := &span.specials
for {
x := *t
if x == nil {
break
}
if offset == uintptr(x.offset) && kind == x.kind {
unlock(&span.speciallock)
releasem(mp)
return false // already exists
}
if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) {
break
}
t = &x.next
}
// Splice in record, fill in offset.
s.offset = uint16(offset)
s.next = *t
*t = s
unlock(&span.speciallock)
releasem(mp)
return true
}
// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
func removespecial(p unsafe.Pointer, kind uint8) *special {
span := mHeap_LookupMaybe(&mheap_, p)
if span == nil {
throw("removespecial on invalid pointer")
}
// Ensure that the span is swept.
// GC accesses specials list w/o locks. And it's just much safer.
mp := acquirem()
mSpan_EnsureSwept(span)
offset := uintptr(p) - uintptr(span.start<<_PageShift)
lock(&span.speciallock)
t := &span.specials
for {
s := *t
if s == nil {
break
}
// This function is used for finalizers only, so we don't check for
// "interior" specials (p must be exactly equal to s->offset).
if offset == uintptr(s.offset) && kind == s.kind {
*t = s.next
unlock(&span.speciallock)
releasem(mp)
return s
}
t = &s.next
}
unlock(&span.speciallock)
releasem(mp)
return nil
}
// The described object has a finalizer set for it.
type specialfinalizer struct {
special special
fn *funcval
nret uintptr
fint *_type
ot *ptrtype
}
// Adds a finalizer to the object p. Returns true if it succeeded.
func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool {
lock(&mheap_.speciallock)
s := (*specialfinalizer)(fixAlloc_Alloc(&mheap_.specialfinalizeralloc))
unlock(&mheap_.speciallock)
s.special.kind = _KindSpecialFinalizer
s.fn = f
s.nret = nret
s.fint = fint
s.ot = ot
if addspecial(p, &s.special) {
return true
}
// There was an old finalizer
lock(&mheap_.speciallock)
fixAlloc_Free(&mheap_.specialfinalizeralloc, (unsafe.Pointer)(s))
unlock(&mheap_.speciallock)
return false
}
// Removes the finalizer (if any) from the object p.
func removefinalizer(p unsafe.Pointer) {
s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
if s == nil {
return // there wasn't a finalizer to remove
}
lock(&mheap_.speciallock)
fixAlloc_Free(&mheap_.specialfinalizeralloc, (unsafe.Pointer)(s))
unlock(&mheap_.speciallock)
}
// The described object is being heap profiled.
type specialprofile struct {
special special
b *bucket
}
// Set the heap profile bucket associated with addr to b.
func setprofilebucket(p unsafe.Pointer, b *bucket) {
lock(&mheap_.speciallock)
s := (*specialprofile)(fixAlloc_Alloc(&mheap_.specialprofilealloc))
unlock(&mheap_.speciallock)
s.special.kind = _KindSpecialProfile
s.b = b
if !addspecial(p, &s.special) {
throw("setprofilebucket: profile already set")
}
}
// Do whatever cleanup needs to be done to deallocate s. It has
// already been unlinked from the MSpan specials list.
// Returns true if we should keep working on deallocating p.
func freespecial(s *special, p unsafe.Pointer, size uintptr, freed bool) bool {
switch s.kind {
case _KindSpecialFinalizer:
sf := (*specialfinalizer)(unsafe.Pointer(s))
queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot)
lock(&mheap_.speciallock)
fixAlloc_Free(&mheap_.specialfinalizeralloc, (unsafe.Pointer)(sf))
unlock(&mheap_.speciallock)
return false // don't free p until finalizer is done
case _KindSpecialProfile:
sp := (*specialprofile)(unsafe.Pointer(s))
mProf_Free(sp.b, size, freed)
lock(&mheap_.speciallock)
fixAlloc_Free(&mheap_.specialprofilealloc, (unsafe.Pointer)(sp))
unlock(&mheap_.speciallock)
return true
default:
throw("bad special kind")
panic("not reached")
}
}