1
0
mirror of https://github.com/golang/go synced 2024-11-18 13:44:48 -07:00
go/cmd/splitdwarf/splitdwarf.go
David Chase d30e00c240 splitdwarf: initial working commit
splitdwarf osxMachoFile [ osxDsymFile ]

splitdwarf takes an executable produced by go build as input,
and uncompresses and copies the DWARF segment into a separate
file in the way that is expected by OSX-hosted tools
(lldb and ports of gdb).
If osxDsymFile is not named explicitly, the default of
"<osxMachoFile>.dSYM/Contents/Resources/DWARF/<osxMachoFile>"
is used instead, with directories created as needed.

If the input file contains no UUID, then one is created by
hashing non-DWARF segment contents, and added to the
executable. This is necessary because gdb and lldb both
expect matching UUIDs to be present in the executable
and its debugging symbols.

Includes a modified version of debug/macho, with additional
definitions and the ability to write segments, sections, and
some MachO load commands added.

Change-Id: Ia5b0e289260f72bbca392cdf2c7c0a75e3ca40e5
Reviewed-on: https://go-review.googlesource.com/c/143357
Reviewed-by: Austin Clements <austin@google.com>
2019-01-09 16:56:30 +00:00

395 lines
13 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !js,!nacl,!plan9,!solaris,!windows
package main
import (
"crypto/sha256"
"fmt"
"io"
"os"
"path/filepath"
"strings"
"syscall"
"golang.org/x/tools/cmd/splitdwarf/internal/macho"
)
const (
pageAlign = 12 // 4096 = 1 << 12
)
func note(format string, why ...interface{}) {
fmt.Fprintf(os.Stderr, format+"\n", why...)
}
func fail(format string, why ...interface{}) {
note(format, why...)
os.Exit(1)
}
// splitdwarf inputexe [ outputdwarf ]
func main() {
if len(os.Args) < 2 || len(os.Args) > 3 {
fmt.Printf(`
Usage: %s input_exe [ output_dsym ]
Reads the executable input_exe, uncompresses and copies debugging
information into output_dsym. If output_dsym is not specified,
the path
input_exe.dSYM/Contents/Resources/DWARF/input_exe
is used instead. That is the path that gdb and lldb expect
on OSX. Input_exe needs a UUID segment; if that is missing,
then one is created and added. In that case, the permissions
for input_exe need to allow writing.
`, os.Args[0])
return
}
// Read input, find DWARF, be sure it looks right
inputExe := os.Args[1]
exeFile, err := os.Open(inputExe)
if err != nil {
fail("%v", err)
}
exeMacho, err := macho.NewFile(exeFile)
if err != nil {
fail("(internal) Couldn't create macho, %v", err)
}
// Postpone dealing with output till input is known-good
// describe(&exeMacho.FileTOC)
// Offsets into __LINKEDIT:
//
// Command LC_SYMTAB =
// (1) number of symbols at file offset (within link edit section) of 16-byte symbol table entries
// struct {
// StringTableIndex uint32
// Type, SectionIndex uint8
// Description uint16
// Value uint64
// }
//
// (2) string table offset and size. Strings are zero-byte terminated. First must be " ".
//
// Command LC_DYSYMTAB = indices within symtab (above), except for IndSym
// IndSym Offset = file offset (within link edit section) of 4-byte indices within symtab.
//
// Section __TEXT.__symbol_stub1.
// Offset and size (Reserved2) locate and describe a table for thios section.
// Symbols beginning at IndirectSymIndex (Reserved1) (see LC_DYSYMTAB.IndSymOffset) refer to this table.
// (These table entries are apparently PLTs [Procedure Linkage Table/Trampoline])
//
// Section __DATA.__nl_symbol_ptr.
// Reserved1 seems to be an index within the Indirect symbols (see LC_DYSYMTAB.IndSymOffset)
// Some of these symbols appear to be duplicates of other indirect symbols appearing early
//
// Section __DATA.__la_symbol_ptr.
// Reserved1 seems to be an index within the Indirect symbols (see LC_DYSYMTAB.IndSymOffset)
// Some of these symbols appear to be duplicates of other indirect symbols appearing early
//
// Create a File for the output dwarf.
// Copy header, file type is MH_DSYM
// Copy the relevant load commands
// LoadCmdUuid
// Symtab -- very abbreviated (Use DYSYMTAB Iextdefsym, Nextdefsym to identify these).
// Segment __PAGEZERO
// Segment __TEXT (zero the size, zero the offset of each section)
// Segment __DATA (zero the size, zero the offset of each section)
// Segment __LINKEDIT (contains the symbols and strings from Symtab)
// Segment __DWARF (uncompressed)
var uuid *macho.Uuid
for _, l := range exeMacho.Loads {
switch l.Command() {
case macho.LcUuid:
uuid = l.(*macho.Uuid)
}
}
// Ensure a given load is not nil
nonnilC := func(l macho.Load, s string) {
if l == nil {
fail("input file %s lacks load command %s", inputExe, s)
}
}
// Find a segment by name and ensure it is not nil
nonnilS := func(s string) *macho.Segment {
l := exeMacho.Segment(s)
if l == nil {
fail("input file %s lacks segment %s", inputExe, s)
}
return l
}
newtoc := exeMacho.FileTOC.DerivedCopy(macho.MhDsym, 0)
symtab := exeMacho.Symtab
dysymtab := exeMacho.Dysymtab // Not appearing in output, but necessary to construct output
nonnilC(symtab, "symtab")
nonnilC(dysymtab, "dysymtab")
text := nonnilS("__TEXT")
data := nonnilS("__DATA")
linkedit := nonnilS("__LINKEDIT")
pagezero := nonnilS("__PAGEZERO")
newtext := text.CopyZeroed()
newdata := data.CopyZeroed()
newsymtab := symtab.Copy()
// Linkedit segment contain symbols and strings;
// Symtab refers to offsets into linkedit.
// This next bit initializes newsymtab and sets up data structures for the linkedit segment
linkeditsyms := []macho.Nlist64{}
linkeditstrings := []string{}
// Linkedit will begin at the second page, i.e., offset is one page from beginning
// Symbols come first
linkeditsymbase := uint32(1) << pageAlign
// Strings come second, offset by the number of symbols times their size.
// Only those symbols from dysymtab.defsym are written into the debugging information.
linkeditstringbase := linkeditsymbase + exeMacho.FileTOC.SymbolSize()*dysymtab.Nextdefsym
// The first two bytes of the strings are reserved for space, null (' ', \000)
linkeditstringcur := uint32(2)
newsymtab.Syms = newsymtab.Syms[:0]
newsymtab.Symoff = linkeditsymbase
newsymtab.Stroff = linkeditstringbase
newsymtab.Nsyms = dysymtab.Nextdefsym
for i := uint32(0); i < dysymtab.Nextdefsym; i++ {
ii := i + dysymtab.Iextdefsym
oldsym := symtab.Syms[ii]
newsymtab.Syms = append(newsymtab.Syms, oldsym)
linkeditsyms = append(linkeditsyms, macho.Nlist64{Name: uint32(linkeditstringcur),
Type: oldsym.Type, Sect: oldsym.Sect, Desc: oldsym.Desc, Value: oldsym.Value})
linkeditstringcur += uint32(len(oldsym.Name)) + 1
linkeditstrings = append(linkeditstrings, oldsym.Name)
}
newsymtab.Strsize = linkeditstringcur
exeNeedsUuid := uuid == nil
if exeNeedsUuid {
uuid = &macho.Uuid{macho.UuidCmd{LoadCmd: macho.LcUuid}}
uuid.Len = uuid.LoadSize(newtoc)
copy(uuid.Id[0:], contentuuid(&exeMacho.FileTOC)[0:16])
uuid.Id[6] = uuid.Id[6]&^0xf0 | 0x40 // version 4 (pseudo-random); see section 4.1.3
uuid.Id[8] = uuid.Id[8]&^0xc0 | 0x80 // variant bits; see section 4.1.1
}
newtoc.AddLoad(uuid)
// For the specified segment (assumed to be in exeMacho) make a copy of its
// sections with appropriate fields zeroed out, and append them to the
// currently-last segment in newtoc.
copyZOdSections := func(g *macho.Segment) {
for i := g.Firstsect; i < g.Firstsect+g.Nsect; i++ {
s := exeMacho.Sections[i].Copy()
s.Offset = 0
s.Reloff = 0
s.Nreloc = 0
newtoc.AddSection(s)
}
}
newtoc.AddLoad(newsymtab)
newtoc.AddSegment(pagezero)
newtoc.AddSegment(newtext)
copyZOdSections(text)
newtoc.AddSegment(newdata)
copyZOdSections(data)
newlinkedit := linkedit.Copy()
newlinkedit.Offset = uint64(linkeditsymbase)
newlinkedit.Filesz = uint64(linkeditstringcur)
newlinkedit.Addr = macho.RoundUp(newdata.Addr+newdata.Memsz, 1<<pageAlign) // Follows data sections in file
newlinkedit.Memsz = macho.RoundUp(newlinkedit.Filesz, 1<<pageAlign)
// The rest should copy over fine.
newtoc.AddSegment(newlinkedit)
dwarf := nonnilS("__DWARF")
newdwarf := dwarf.CopyZeroed()
newdwarf.Offset = macho.RoundUp(newlinkedit.Offset+newlinkedit.Filesz, 1<<pageAlign)
newdwarf.Filesz = dwarf.UncompressedSize(&exeMacho.FileTOC, 1)
newdwarf.Addr = newlinkedit.Addr + newlinkedit.Memsz // Follows linkedit sections in file.
newdwarf.Memsz = macho.RoundUp(newdwarf.Filesz, 1<<pageAlign)
newtoc.AddSegment(newdwarf)
// Map out Dwarf sections (that is, this is section descriptors, not their contents).
offset := uint32(newdwarf.Offset)
for i := dwarf.Firstsect; i < dwarf.Firstsect+dwarf.Nsect; i++ {
o := exeMacho.Sections[i]
s := o.Copy()
s.Offset = offset
us := o.UncompressedSize()
if s.Size < us {
s.Size = uint64(us)
s.Align = 0 // This is apparently true for debugging sections; not sure if it generalizes.
}
offset += uint32(us)
if strings.HasPrefix(s.Name, "__z") {
s.Name = "__" + s.Name[3:] // remove "z"
}
s.Reloff = 0
s.Nreloc = 0
newtoc.AddSection(s)
}
// Write segments/sections.
// Only dwarf and linkedit contain anything interesting.
// Memory map the output file to get the buffer directly.
outDwarf := inputExe + ".dSYM/Contents/Resources/DWARF"
if len(os.Args) > 2 {
outDwarf = os.Args[2]
} else {
err := os.MkdirAll(outDwarf, 0755)
if err != nil {
fail("%v", err)
}
outDwarf = filepath.Join(outDwarf, filepath.Base(inputExe))
}
dwarfFile, buffer := CreateMmapFile(outDwarf, int64(newtoc.FileSize()))
// (1) Linkedit segment
// Symbol table
offset = uint32(newlinkedit.Offset)
for i := range linkeditsyms {
if exeMacho.Magic == macho.Magic64 {
offset += linkeditsyms[i].Put64(buffer[offset:], newtoc.ByteOrder)
} else {
offset += linkeditsyms[i].Put32(buffer[offset:], newtoc.ByteOrder)
}
}
// Initial two bytes of string table, followed by actual zero-terminated strings.
buffer[linkeditstringbase] = ' '
buffer[linkeditstringbase+1] = 0
offset = linkeditstringbase + 2
for _, str := range linkeditstrings {
for i := 0; i < len(str); i++ {
buffer[offset] = str[i]
offset++
}
buffer[offset] = 0
offset++
}
// (2) DWARF segment
ioff := newdwarf.Firstsect - dwarf.Firstsect
for i := dwarf.Firstsect; i < dwarf.Firstsect+dwarf.Nsect; i++ {
s := exeMacho.Sections[i]
j := i + ioff
s.PutUncompressedData(buffer[newtoc.Sections[j].Offset:])
}
// Because "text" overlaps the header and the loads, write them afterwards, just in case.
// Write header.
newtoc.Put(buffer)
err = syscall.Munmap(buffer)
if err != nil {
fail("Munmap %s for dwarf output failed, %v", outDwarf, err)
}
err = dwarfFile.Close()
if err != nil {
fail("Close %s for dwarf output after mmap/munmap failed, %v", outDwarf, err)
}
if exeNeedsUuid { // Map the original exe, modify the header, and write the UUID command
hdr := exeMacho.FileTOC.FileHeader
oldCommandEnd := hdr.SizeCommands + newtoc.HdrSize()
hdr.NCommands += 1
hdr.SizeCommands += uuid.LoadSize(newtoc)
mapf, err := os.OpenFile(inputExe, os.O_RDWR, 0)
if err != nil {
fail("Updating UUID in binary failed, %v", err)
}
exebuf, err := syscall.Mmap(int(mapf.Fd()), 0, int(macho.RoundUp(uint64(hdr.SizeCommands), 1<<pageAlign)),
syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_FILE|syscall.MAP_SHARED)
if err != nil {
fail("Mmap of %s for UUID update failed, %v", inputExe, err)
}
_ = hdr.Put(exebuf, newtoc.ByteOrder)
_ = uuid.Put(exebuf[oldCommandEnd:], newtoc.ByteOrder)
err = syscall.Munmap(exebuf)
if err != nil {
fail("Munmap of %s for UUID update failed, %v", inputExe, err)
}
}
}
// CreateMmapFile creates the file 'outDwarf' of the specified size, mmaps that file,
// and returns the file descriptor and mapped buffer.
func CreateMmapFile(outDwarf string, size int64) (*os.File, []byte) {
dwarfFile, err := os.OpenFile(outDwarf, os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0666)
if err != nil {
fail("Open for mmap failed, %v", err)
}
err = os.Truncate(outDwarf, size)
if err != nil {
fail("Truncate/extend of %s to %d bytes failed, %v", dwarfFile, size, err)
}
buffer, err := syscall.Mmap(int(dwarfFile.Fd()), 0, int(size), syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_FILE|syscall.MAP_SHARED)
if err != nil {
fail("Mmap %s for dwarf output update failed, %v", outDwarf, err)
}
return dwarfFile, buffer
}
func describe(exem *macho.FileTOC) {
note("Type = %s, Flags=0x%x", exem.Type, uint32(exem.Flags))
for i, l := range exem.Loads {
if s, ok := l.(*macho.Segment); ok {
fmt.Printf("Load %d is Segment %s, offset=0x%x, filesz=%d, addr=0x%x, memsz=%d, nsect=%d\n", i, s.Name,
s.Offset, s.Filesz, s.Addr, s.Memsz, s.Nsect)
for j := uint32(0); j < s.Nsect; j++ {
c := exem.Sections[j+s.Firstsect]
fmt.Printf(" Section %s, offset=0x%x, size=%d, addr=0x%x, flags=0x%x, nreloc=%d, res1=%d, res2=%d, res3=%d\n", c.Name, c.Offset, c.Size, c.Addr, c.Flags, c.Nreloc, c.Reserved1, c.Reserved2, c.Reserved3)
}
} else {
fmt.Printf("Load %d is %v\n", i, l)
}
}
if exem.SizeCommands != exem.LoadSize() {
fail("recorded command size %d does not equal computed command size %d", exem.SizeCommands, exem.LoadSize())
} else {
note("recorded command size %d, computed command size %d", exem.SizeCommands, exem.LoadSize())
}
note("File size is %d", exem.FileSize())
}
// contentuuid returns a UUID derived from (some of) the content of an executable.
// specifically included are the non-DWARF sections, specifically excluded are things
// that surely depend on the presence or absence of DWARF sections (e.g., section
// numbers, positions with file, number of load commands).
// (It was considered desirable if this was insensitive to the presence of the
// __DWARF segment, however because it is not last, it moves other segments,
// whose contents appear to contain file offset references.)
func contentuuid(exem *macho.FileTOC) []byte {
h := sha256.New()
for _, l := range exem.Loads {
if l.Command() == macho.LcUuid {
continue
}
if s, ok := l.(*macho.Segment); ok {
if s.Name == "__DWARF" || s.Name == "__PAGEZERO" {
continue
}
for j := uint32(0); j < s.Nsect; j++ {
c := exem.Sections[j+s.Firstsect]
io.Copy(h, c.Open())
}
} // Getting dependence on other load commands right is fiddly.
}
return h.Sum(nil)
}