1
0
mirror of https://github.com/golang/go synced 2024-10-04 20:21:22 -06:00
go/src/pkg/runtime/panic.c
Russ Cox ef12bbfc9d runtime: disable preemption during deferreturn
Deferreturn is synthesizing a new call frame.
It must not be interrupted between copying the args there
and fixing up the program counter, or else the stack will
be in an inconsistent state, one that will confuse the
garbage collector.

R=golang-dev, dvyukov
CC=golang-dev
https://golang.org/cl/11522043
2013-07-18 12:26:47 -04:00

521 lines
13 KiB
C

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "stack.h"
#include "malloc.h"
// Code related to defer, panic and recover.
uint32 runtime·panicking;
static Lock paniclk;
enum
{
DeferChunkSize = 2048
};
// Allocate a Defer, usually as part of the larger frame of deferred functions.
// Each defer must be released with both popdefer and freedefer.
static Defer*
newdefer(int32 siz)
{
int32 total;
DeferChunk *c;
Defer *d;
c = g->dchunk;
total = sizeof(*d) + ROUND(siz, sizeof(uintptr)) - sizeof(d->args);
if(c == nil || total > DeferChunkSize - c->off) {
if(total > DeferChunkSize / 2) {
// Not worth putting in any chunk.
// Allocate a separate block.
d = runtime·malloc(total);
d->siz = siz;
d->special = 1;
d->free = 1;
d->link = g->defer;
g->defer = d;
return d;
}
// Cannot fit in current chunk.
// Switch to next chunk, allocating if necessary.
c = g->dchunknext;
if(c == nil)
c = runtime·malloc(DeferChunkSize);
c->prev = g->dchunk;
c->off = sizeof(*c);
g->dchunk = c;
g->dchunknext = nil;
}
d = (Defer*)((byte*)c + c->off);
c->off += total;
d->siz = siz;
d->special = 0;
d->free = 0;
d->link = g->defer;
g->defer = d;
return d;
}
// Pop the current defer from the defer stack.
// Its contents are still valid until the goroutine begins executing again.
// In particular it is safe to call reflect.call(d->fn, d->argp, d->siz) after
// popdefer returns.
static void
popdefer(void)
{
Defer *d;
DeferChunk *c;
int32 total;
d = g->defer;
if(d == nil)
runtime·throw("runtime: popdefer nil");
g->defer = d->link;
if(d->special) {
// Nothing else to do.
return;
}
total = sizeof(*d) + ROUND(d->siz, sizeof(uintptr)) - sizeof(d->args);
c = g->dchunk;
if(c == nil || (byte*)d+total != (byte*)c+c->off)
runtime·throw("runtime: popdefer phase error");
c->off -= total;
if(c->off == sizeof(*c)) {
// Chunk now empty, so pop from stack.
// Save in dchunknext both to help with pingponging between frames
// and to make sure d is still valid on return.
if(g->dchunknext != nil)
runtime·free(g->dchunknext);
g->dchunknext = c;
g->dchunk = c->prev;
}
}
// Free the given defer.
// For defers in the per-goroutine chunk this just clears the saved arguments.
// For large defers allocated on the heap, this frees them.
// The defer cannot be used after this call.
static void
freedefer(Defer *d)
{
int32 total;
if(d->special) {
if(d->free)
runtime·free(d);
} else {
// Wipe out any possible pointers in argp/pc/fn/args.
total = sizeof(*d) + ROUND(d->siz, sizeof(uintptr)) - sizeof(d->args);
runtime·memclr((byte*)d, total);
}
}
// Create a new deferred function fn with siz bytes of arguments.
// The compiler turns a defer statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred. It's OK for this to call
// functions that split the stack.
#pragma textflag 7
uintptr
runtime·deferproc(int32 siz, FuncVal *fn, ...)
{
Defer *d;
d = newdefer(siz);
d->fn = fn;
d->pc = runtime·getcallerpc(&siz);
if(thechar == '5')
d->argp = (byte*)(&fn+2); // skip caller's saved link register
else
d->argp = (byte*)(&fn+1);
runtime·memmove(d->args, d->argp, d->siz);
// deferproc returns 0 normally.
// a deferred func that stops a panic
// makes the deferproc return 1.
// the code the compiler generates always
// checks the return value and jumps to the
// end of the function if deferproc returns != 0.
return 0;
}
// Run a deferred function if there is one.
// The compiler inserts a call to this at the end of any
// function which calls defer.
// If there is a deferred function, this will call runtime·jmpdefer,
// which will jump to the deferred function such that it appears
// to have been called by the caller of deferreturn at the point
// just before deferreturn was called. The effect is that deferreturn
// is called again and again until there are no more deferred functions.
// Cannot split the stack because we reuse the caller's frame to
// call the deferred function.
//
// The ... in the prototype keeps the compiler from declaring
// an argument frame size. deferreturn is a very special function,
// and if the runtime ever asks for its frame size, that means
// the traceback routines are probably broken.
#pragma textflag 7
void
runtime·deferreturn(uintptr arg0, ...)
{
Defer *d;
byte *argp;
FuncVal *fn;
d = g->defer;
if(d == nil)
return;
argp = (byte*)&arg0;
if(d->argp != argp)
return;
// Moving arguments around.
// Do not allow preemption here, because the garbage collector
// won't know the form of the arguments until the jmpdefer can
// flip the PC over to fn.
m->locks++;
runtime·memmove(argp, d->args, d->siz);
fn = d->fn;
popdefer();
freedefer(d);
m->locks--;
if(m->locks == 0 && g->preempt)
g->stackguard0 = StackPreempt;
runtime·jmpdefer(fn, argp);
}
// Run all deferred functions for the current goroutine.
static void
rundefer(void)
{
Defer *d;
while((d = g->defer) != nil) {
popdefer();
reflect·call(d->fn, (byte*)d->args, d->siz);
freedefer(d);
}
}
// Print all currently active panics. Used when crashing.
static void
printpanics(Panic *p)
{
if(p->link) {
printpanics(p->link);
runtime·printf("\t");
}
runtime·printf("panic: ");
runtime·printany(p->arg);
if(p->recovered)
runtime·printf(" [recovered]");
runtime·printf("\n");
}
static void recovery(G*);
// The implementation of the predeclared function panic.
void
runtime·panic(Eface e)
{
Defer *d;
Panic *p;
void *pc, *argp;
p = runtime·mal(sizeof *p);
p->arg = e;
p->link = g->panic;
p->stackbase = g->stackbase;
g->panic = p;
for(;;) {
d = g->defer;
if(d == nil)
break;
// take defer off list in case of recursive panic
popdefer();
g->ispanic = true; // rock for newstack, where reflect.call ends up
argp = d->argp;
pc = d->pc;
reflect·call(d->fn, (byte*)d->args, d->siz);
freedefer(d);
if(p->recovered) {
g->panic = p->link;
if(g->panic == nil) // must be done with signal
g->sig = 0;
runtime·free(p);
// Pass information about recovering frame to recovery.
g->sigcode0 = (uintptr)argp;
g->sigcode1 = (uintptr)pc;
runtime·mcall(recovery);
runtime·throw("recovery failed"); // mcall should not return
}
}
// ran out of deferred calls - old-school panic now
runtime·startpanic();
printpanics(g->panic);
runtime·dopanic(0);
}
// Unwind the stack after a deferred function calls recover
// after a panic. Then arrange to continue running as though
// the caller of the deferred function returned normally.
static void
recovery(G *gp)
{
void *argp;
uintptr pc;
// Info about defer passed in G struct.
argp = (void*)gp->sigcode0;
pc = (uintptr)gp->sigcode1;
// Unwind to the stack frame with d's arguments in it.
runtime·unwindstack(gp, argp);
// Make the deferproc for this d return again,
// this time returning 1. The calling function will
// jump to the standard return epilogue.
// The -2*sizeof(uintptr) makes up for the
// two extra words that are on the stack at
// each call to deferproc.
// (The pc we're returning to does pop pop
// before it tests the return value.)
// On the arm there are 2 saved LRs mixed in too.
if(thechar == '5')
gp->sched.sp = (uintptr)argp - 4*sizeof(uintptr);
else
gp->sched.sp = (uintptr)argp - 2*sizeof(uintptr);
gp->sched.pc = pc;
gp->sched.lr = 0;
gp->sched.ret = 1;
runtime·gogo(&gp->sched);
}
// Free stack frames until we hit the last one
// or until we find the one that contains the sp.
void
runtime·unwindstack(G *gp, byte *sp)
{
Stktop *top;
byte *stk;
// Must be called from a different goroutine, usually m->g0.
if(g == gp)
runtime·throw("unwindstack on self");
while((top = (Stktop*)gp->stackbase) != 0 && top->stackbase != 0) {
stk = (byte*)gp->stackguard - StackGuard;
if(stk <= sp && sp < (byte*)gp->stackbase)
break;
gp->stackbase = top->stackbase;
gp->stackguard = top->stackguard;
gp->stackguard0 = gp->stackguard;
if(top->free != 0)
runtime·stackfree(stk, top->free);
}
if(sp != nil && (sp < (byte*)gp->stackguard - StackGuard || (byte*)gp->stackbase < sp)) {
runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase);
runtime·throw("bad unwindstack");
}
}
// The implementation of the predeclared function recover.
// Cannot split the stack because it needs to reliably
// find the stack segment of its caller.
#pragma textflag 7
void
runtime·recover(byte *argp, Eface ret)
{
Stktop *top, *oldtop;
Panic *p;
// Must be a panic going on.
if((p = g->panic) == nil || p->recovered)
goto nomatch;
// Frame must be at the top of the stack segment,
// because each deferred call starts a new stack
// segment as a side effect of using reflect.call.
// (There has to be some way to remember the
// variable argument frame size, and the segment
// code already takes care of that for us, so we
// reuse it.)
//
// As usual closures complicate things: the fp that
// the closure implementation function claims to have
// is where the explicit arguments start, after the
// implicit pointer arguments and PC slot.
// If we're on the first new segment for a closure,
// then fp == top - top->args is correct, but if
// the closure has its own big argument frame and
// allocated a second segment (see below),
// the fp is slightly above top - top->args.
// That condition can't happen normally though
// (stack pointers go down, not up), so we can accept
// any fp between top and top - top->args as
// indicating the top of the segment.
top = (Stktop*)g->stackbase;
if(argp < (byte*)top - top->argsize || (byte*)top < argp)
goto nomatch;
// The deferred call makes a new segment big enough
// for the argument frame but not necessarily big
// enough for the function's local frame (size unknown
// at the time of the call), so the function might have
// made its own segment immediately. If that's the
// case, back top up to the older one, the one that
// reflect.call would have made for the panic.
//
// The fp comparison here checks that the argument
// frame that was copied during the split (the top->args
// bytes above top->fp) abuts the old top of stack.
// This is a correct test for both closure and non-closure code.
oldtop = (Stktop*)top->stackbase;
if(oldtop != nil && top->argp == (byte*)oldtop - top->argsize)
top = oldtop;
// Now we have the segment that was created to
// run this call. It must have been marked as a panic segment.
if(!top->panic)
goto nomatch;
// Okay, this is the top frame of a deferred call
// in response to a panic. It can see the panic argument.
p->recovered = 1;
ret = p->arg;
FLUSH(&ret);
return;
nomatch:
ret.type = nil;
ret.data = nil;
FLUSH(&ret);
}
void
runtime·startpanic(void)
{
if(runtime·mheap.cachealloc.size == 0) { // very early
runtime·printf("runtime: panic before malloc heap initialized\n");
m->mallocing = 1; // tell rest of panic not to try to malloc
} else if(m->mcache == nil) // can happen if called from signal handler or throw
m->mcache = runtime·allocmcache();
if(m->dying) {
runtime·printf("panic during panic\n");
runtime·exit(3);
}
m->dying = 1;
runtime·xadd(&runtime·panicking, 1);
runtime·lock(&paniclk);
}
void
runtime·dopanic(int32 unused)
{
static bool didothers;
bool crash;
int32 t;
if(g->sig != 0)
runtime·printf("[signal %x code=%p addr=%p pc=%p]\n",
g->sig, g->sigcode0, g->sigcode1, g->sigpc);
if((t = runtime·gotraceback(&crash)) > 0){
if(g != m->g0) {
runtime·printf("\n");
runtime·goroutineheader(g);
runtime·traceback((uintptr)runtime·getcallerpc(&unused), (uintptr)runtime·getcallersp(&unused), 0, g);
} else if(t >= 2) {
runtime·printf("\nruntime stack:\n");
runtime·traceback((uintptr)runtime·getcallerpc(&unused), (uintptr)runtime·getcallersp(&unused), 0, g);
}
if(!didothers) {
didothers = true;
runtime·tracebackothers(g);
}
}
runtime·unlock(&paniclk);
if(runtime·xadd(&runtime·panicking, -1) != 0) {
// Some other m is panicking too.
// Let it print what it needs to print.
// Wait forever without chewing up cpu.
// It will exit when it's done.
static Lock deadlock;
runtime·lock(&deadlock);
runtime·lock(&deadlock);
}
if(crash)
runtime·crash();
runtime·exit(2);
}
void
runtime·panicindex(void)
{
runtime·panicstring("index out of range");
}
void
runtime·panicslice(void)
{
runtime·panicstring("slice bounds out of range");
}
void
runtime·throwreturn(void)
{
// can only happen if compiler is broken
runtime·throw("no return at end of a typed function - compiler is broken");
}
void
runtime·throwinit(void)
{
// can only happen with linker skew
runtime·throw("recursive call during initialization - linker skew");
}
void
runtime·throw(int8 *s)
{
if(m->throwing == 0)
m->throwing = 1;
runtime·startpanic();
runtime·printf("fatal error: %s\n", s);
runtime·dopanic(0);
*(int32*)0 = 0; // not reached
runtime·exit(1); // even more not reached
}
void
runtime·panicstring(int8 *s)
{
Eface err;
if(m->gcing) {
runtime·printf("panic: %s\n", s);
runtime·throw("panic during gc");
}
runtime·newErrorString(runtime·gostringnocopy((byte*)s), &err);
runtime·panic(err);
}
void
runtime·Goexit(void)
{
rundefer();
runtime·goexit();
}