1
0
mirror of https://github.com/golang/go synced 2024-11-19 18:44:41 -07:00
go/src/pkg/runtime/asm_arm.s
Russ Cox db58ab96fa runtime: more C to Go conversion adjustments
Mostly NOSPLIT additions.
Had to rewrite atomic_arm.c in Go because it calls lock,
and lock is too complex.

With this CL, I find no Go -> C calls that can split the stack
on any system except Solaris and Windows.

Solaris and Windows need more work and will be done separately.

LGTM=iant, dave
R=golang-codereviews, bradfitz, iant, dave
CC=dvyukov, golang-codereviews, khr, r
https://golang.org/cl/137160043
2014-09-04 21:12:31 -04:00

1313 lines
30 KiB
ArmAsm

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "zasm_GOOS_GOARCH.h"
#include "funcdata.h"
#include "../../cmd/ld/textflag.h"
// using frame size $-4 means do not save LR on stack.
TEXT runtime·rt0_go(SB),NOSPLIT,$-4
MOVW $0xcafebabe, R12
// copy arguments forward on an even stack
// use R13 instead of SP to avoid linker rewriting the offsets
MOVW 0(R13), R0 // argc
MOVW 4(R13), R1 // argv
SUB $64, R13 // plenty of scratch
AND $~7, R13
MOVW R0, 60(R13) // save argc, argv away
MOVW R1, 64(R13)
// set up g register
// g is R10
MOVW $runtime·g0(SB), g
MOVW $runtime·m0(SB), R8
// save m->g0 = g0
MOVW g, m_g0(R8)
// save g->m = m0
MOVW R8, g_m(g)
// create istack out of the OS stack
MOVW $(-8192+104)(R13), R0
MOVW R0, g_stackguard(g) // (w 104b guard)
MOVW R0, g_stackguard0(g)
MOVW R13, g_stackbase(g)
BL runtime·emptyfunc(SB) // fault if stack check is wrong
#ifndef GOOS_nacl
// if there is an _cgo_init, call it.
MOVW _cgo_init(SB), R4
CMP $0, R4
B.EQ nocgo
MRC 15, 0, R0, C13, C0, 3 // load TLS base pointer
MOVW R0, R3 // arg 3: TLS base pointer
MOVW $runtime·tlsg(SB), R2 // arg 2: tlsg
MOVW $setg_gcc<>(SB), R1 // arg 1: setg
MOVW g, R0 // arg 0: G
BL (R4) // will clobber R0-R3
#endif
nocgo:
// update stackguard after _cgo_init
MOVW g_stackguard0(g), R0
MOVW R0, g_stackguard(g)
BL runtime·checkgoarm(SB)
BL runtime·check(SB)
// saved argc, argv
MOVW 60(R13), R0
MOVW R0, 4(R13)
MOVW 64(R13), R1
MOVW R1, 8(R13)
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVW $runtime·main·f(SB), R0
MOVW.W R0, -4(R13)
MOVW $8, R0
MOVW.W R0, -4(R13)
MOVW $0, R0
MOVW.W R0, -4(R13) // push $0 as guard
ARGSIZE(12)
BL runtime·newproc(SB)
ARGSIZE(-1)
MOVW $12(R13), R13 // pop args and LR
// start this M
BL runtime·mstart(SB)
MOVW $1234, R0
MOVW $1000, R1
MOVW R0, (R1) // fail hard
DATA runtime·main·f+0(SB)/4,$runtime·main(SB)
GLOBL runtime·main·f(SB),RODATA,$4
TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
// gdb won't skip this breakpoint instruction automatically,
// so you must manually "set $pc+=4" to skip it and continue.
#ifdef GOOS_nacl
WORD $0xe125be7f // BKPT 0x5bef, NACL_INSTR_ARM_BREAKPOINT
#else
WORD $0xe1200071 // BKPT 0x0001
#endif
RET
TEXT runtime·asminit(SB),NOSPLIT,$0-0
// disable runfast (flush-to-zero) mode of vfp if runtime.goarm > 5
MOVB runtime·goarm(SB), R11
CMP $5, R11
BLE 4(PC)
WORD $0xeef1ba10 // vmrs r11, fpscr
BIC $(1<<24), R11
WORD $0xeee1ba10 // vmsr fpscr, r11
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB),NOSPLIT,$-4-4
MOVW 0(FP), R0 // gobuf
MOVW SP, gobuf_sp(R0)
MOVW LR, gobuf_pc(R0)
MOVW g, gobuf_g(R0)
MOVW $0, R11
MOVW R11, gobuf_lr(R0)
MOVW R11, gobuf_ret(R0)
MOVW R11, gobuf_ctxt(R0)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB),NOSPLIT,$-4-4
MOVW 0(FP), R1 // gobuf
MOVW gobuf_g(R1), g
MOVW 0(g), R2 // make sure g != nil
MOVB runtime·iscgo(SB), R2
CMP $0, R2 // if in Cgo, we have to save g
BL.NE runtime·save_g(SB) // this call will clobber R0
MOVW gobuf_sp(R1), SP // restore SP
MOVW gobuf_lr(R1), LR
MOVW gobuf_ret(R1), R0
MOVW gobuf_ctxt(R1), R7
MOVW $0, R11
MOVW R11, gobuf_sp(R1) // clear to help garbage collector
MOVW R11, gobuf_ret(R1)
MOVW R11, gobuf_lr(R1)
MOVW R11, gobuf_ctxt(R1)
CMP R11, R11 // set condition codes for == test, needed by stack split
MOVW gobuf_pc(R1), R11
B (R11)
// func mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB),NOSPLIT,$-4-4
// Save caller state in g->sched.
MOVW SP, (g_sched+gobuf_sp)(g)
MOVW LR, (g_sched+gobuf_pc)(g)
MOVW $0, R11
MOVW R11, (g_sched+gobuf_lr)(g)
MOVW g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVW g, R1
MOVW g_m(g), R8
MOVW m_g0(R8), g
CMP g, R1
B.NE 2(PC)
B runtime·badmcall(SB)
MOVB runtime·iscgo(SB), R11
CMP $0, R11
BL.NE runtime·save_g(SB)
MOVW fn+0(FP), R0
MOVW (g_sched+gobuf_sp)(g), SP
SUB $8, SP
MOVW R1, 4(SP)
MOVW R0, R7
MOVW 0(R0), R0
BL (R0)
B runtime·badmcall2(SB)
RET
// switchtoM is a dummy routine that onM leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the M stack because the one at the top of
// the M stack terminates the stack walk (see topofstack()).
TEXT runtime·switchtoM(SB),NOSPLIT,$0-4
MOVW $0, R0
BL (R0) // clobber lr to ensure push {lr} is kept
RET
// func onM(fn func())
TEXT runtime·onM(SB),NOSPLIT,$0-4
MOVW fn+0(FP), R0 // R0 = fn
MOVW g_m(g), R1 // R1 = m
MOVW m_g0(R1), R2 // R2 = g0
CMP g, R2
B.EQ onm
MOVW m_curg(R1), R3
CMP g, R3
B.EQ oncurg
// Not g0, not curg. Must be gsignal, but that's not allowed.
// Hide call from linker nosplit analysis.
MOVW $runtime·badonm(SB), R0
BL (R0)
oncurg:
// save our state in g->sched. Pretend to
// be switchtoM if the G stack is scanned.
MOVW $runtime·switchtoM(SB), R3
ADD $4, R3, R3 // get past push {lr}
MOVW R3, (g_sched+gobuf_pc)(g)
MOVW SP, (g_sched+gobuf_sp)(g)
MOVW LR, (g_sched+gobuf_lr)(g)
MOVW g, (g_sched+gobuf_g)(g)
// switch to g0
MOVW R2, g
MOVW (g_sched+gobuf_sp)(R2), SP
// call target function
ARGSIZE(0)
MOVW R0, R7
MOVW 0(R0), R0
BL (R0)
// switch back to g
MOVW g_m(g), R1
MOVW m_curg(R1), g
MOVW (g_sched+gobuf_sp)(g), SP
MOVW $0, R3
MOVW R3, (g_sched+gobuf_sp)(g)
RET
onm:
MOVW R0, R7
MOVW 0(R0), R0
BL (R0)
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// R1 frame size
// R2 arg size
// R3 prolog's LR
// NB. we do not save R0 because we've forced 5c to pass all arguments
// on the stack.
// using frame size $-4 means do not save LR on stack.
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$-4-0
// Cannot grow scheduler stack (m->g0).
MOVW g_m(g), R8
MOVW m_g0(R8), R4
CMP g, R4
BL.EQ runtime·abort(SB)
MOVW R1, m_moreframesize(R8)
MOVW R2, m_moreargsize(R8)
// Called from f.
// Set g->sched to context in f.
MOVW R7, (g_sched+gobuf_ctxt)(g)
MOVW SP, (g_sched+gobuf_sp)(g)
MOVW LR, (g_sched+gobuf_pc)(g)
MOVW R3, (g_sched+gobuf_lr)(g)
// Called from f.
// Set m->morebuf to f's caller.
MOVW R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
MOVW SP, (m_morebuf+gobuf_sp)(R8) // f's caller's SP
MOVW $4(SP), R3 // f's argument pointer
MOVW R3, m_moreargp(R8)
MOVW g, (m_morebuf+gobuf_g)(R8)
// Call newstack on m->g0's stack.
MOVW m_g0(R8), g
MOVW (g_sched+gobuf_sp)(g), SP
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
RET
TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-4-0
MOVW $0, R7
B runtime·morestack(SB)
// Called from panic. Mimics morestack,
// reuses stack growth code to create a frame
// with the desired args running the desired function.
//
// func call(fn *byte, arg *byte, argsize uint32).
TEXT runtime·newstackcall(SB),NOSPLIT,$-4-12
// Save our caller's state as the PC and SP to
// restore when returning from f.
MOVW g_m(g), R8
MOVW LR, (m_morebuf+gobuf_pc)(R8) // our caller's PC
MOVW SP, (m_morebuf+gobuf_sp)(R8) // our caller's SP
MOVW g, (m_morebuf+gobuf_g)(R8)
// Save our own state as the PC and SP to restore
// if this goroutine needs to be restarted.
MOVW $runtime·newstackcall(SB), R11
MOVW R11, (g_sched+gobuf_pc)(g)
MOVW LR, (g_sched+gobuf_lr)(g)
MOVW SP, (g_sched+gobuf_sp)(g)
// Set up morestack arguments to call f on a new stack.
// We set f's frame size to 1, as a hint to newstack
// that this is a call from runtime·newstackcall.
// If it turns out that f needs a larger frame than
// the default stack, f's usual stack growth prolog will
// allocate a new segment (and recopy the arguments).
MOVW 4(SP), R0 // fn
MOVW 8(SP), R1 // arg frame
MOVW 12(SP), R2 // arg size
MOVW R0, m_cret(R8) // f's PC
MOVW R1, m_moreargp(R8) // f's argument pointer
MOVW R2, m_moreargsize(R8) // f's argument size
MOVW $1, R3
MOVW R3, m_moreframesize(R8) // f's frame size
// Call newstack on m->g0's stack.
MOVW m_g0(R8), g
MOVW (g_sched+gobuf_sp)(g), SP
B runtime·newstack(SB)
// reflect·call: call a function with the given argument list
// func call(f *FuncVal, arg *byte, argsize uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
CMP $MAXSIZE, R0; \
B.HI 3(PC); \
MOVW $NAME(SB), R1; \
B (R1)
TEXT reflect·call(SB),NOSPLIT,$-4-16
MOVW argsize+8(FP), R0
DISPATCH(runtime·call16, 16)
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVW $runtime·badreflectcall(SB), R1
B (R1)
// Argument map for the callXX frames. Each has one
// stack map (for the single call) with 3 arguments.
DATA gcargs_reflectcall<>+0x00(SB)/4, $1 // 1 stackmap
DATA gcargs_reflectcall<>+0x04(SB)/4, $6 // 3 args
DATA gcargs_reflectcall<>+0x08(SB)/4, $(const_BitsPointer+(const_BitsPointer<<2)+(const_BitsScalar<<4))
GLOBL gcargs_reflectcall<>(SB),RODATA,$12
// callXX frames have no locals
DATA gclocals_reflectcall<>+0x00(SB)/4, $1 // 1 stackmap
DATA gclocals_reflectcall<>+0x04(SB)/4, $0 // 0 locals
GLOBL gclocals_reflectcall<>(SB),RODATA,$8
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-16; \
FUNCDATA $FUNCDATA_ArgsPointerMaps,gcargs_reflectcall<>(SB); \
FUNCDATA $FUNCDATA_LocalsPointerMaps,gclocals_reflectcall<>(SB);\
/* copy arguments to stack */ \
MOVW argptr+4(FP), R0; \
MOVW argsize+8(FP), R2; \
ADD $4, SP, R1; \
CMP $0, R2; \
B.EQ 5(PC); \
MOVBU.P 1(R0), R5; \
MOVBU.P R5, 1(R1); \
SUB $1, R2, R2; \
B -5(PC); \
/* call function */ \
MOVW f+0(FP), R7; \
MOVW (R7), R0; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (R0); \
/* copy return values back */ \
MOVW argptr+4(FP), R0; \
MOVW argsize+8(FP), R2; \
MOVW retoffset+12(FP), R3; \
ADD $4, SP, R1; \
ADD R3, R1; \
ADD R3, R0; \
SUB R3, R2; \
CMP $0, R2; \
RET.EQ ; \
MOVBU.P 1(R1), R5; \
MOVBU.P R5, 1(R0); \
SUB $1, R2, R2; \
B -5(PC) \
CALLFN(runtime·call16, 16)
CALLFN(runtime·call32, 32)
CALLFN(runtime·call64, 64)
CALLFN(runtime·call128, 128)
CALLFN(runtime·call256, 256)
CALLFN(runtime·call512, 512)
CALLFN(runtime·call1024, 1024)
CALLFN(runtime·call2048, 2048)
CALLFN(runtime·call4096, 4096)
CALLFN(runtime·call8192, 8192)
CALLFN(runtime·call16384, 16384)
CALLFN(runtime·call32768, 32768)
CALLFN(runtime·call65536, 65536)
CALLFN(runtime·call131072, 131072)
CALLFN(runtime·call262144, 262144)
CALLFN(runtime·call524288, 524288)
CALLFN(runtime·call1048576, 1048576)
CALLFN(runtime·call2097152, 2097152)
CALLFN(runtime·call4194304, 4194304)
CALLFN(runtime·call8388608, 8388608)
CALLFN(runtime·call16777216, 16777216)
CALLFN(runtime·call33554432, 33554432)
CALLFN(runtime·call67108864, 67108864)
CALLFN(runtime·call134217728, 134217728)
CALLFN(runtime·call268435456, 268435456)
CALLFN(runtime·call536870912, 536870912)
CALLFN(runtime·call1073741824, 1073741824)
// Return point when leaving stack.
// using frame size $-4 means do not save LR on stack.
//
// Lessstack can appear in stack traces for the same reason
// as morestack; in that context, it has 0 arguments.
TEXT runtime·lessstack(SB),NOSPLIT,$-4-0
// Save return value in m->cret
MOVW g_m(g), R8
MOVW R0, m_cret(R8)
// Call oldstack on m->g0's stack.
MOVW m_g0(R8), g
MOVW (g_sched+gobuf_sp)(g), SP
BL runtime·oldstack(SB)
// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 4 bytes to get back to BL deferreturn
// 3. B to fn
// TODO(rsc): Push things on stack and then use pop
// to load all registers simultaneously, so that a profiling
// interrupt can never see mismatched SP/LR/PC.
// (And double-check that pop is atomic in that way.)
TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8
MOVW 0(SP), LR
MOVW $-4(LR), LR // BL deferreturn
MOVW fv+0(FP), R7
MOVW argp+4(FP), SP
MOVW $-4(SP), SP // SP is 4 below argp, due to saved LR
MOVW 0(R7), R1
B (R1)
// Save state of caller into g->sched. Smashes R11.
TEXT gosave<>(SB),NOSPLIT,$0
MOVW LR, (g_sched+gobuf_pc)(g)
MOVW R13, (g_sched+gobuf_sp)(g)
MOVW $0, R11
MOVW R11, (g_sched+gobuf_lr)(g)
MOVW R11, (g_sched+gobuf_ret)(g)
MOVW R11, (g_sched+gobuf_ctxt)(g)
RET
// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),NOSPLIT,$0-8
MOVW fn+0(FP), R1
MOVW arg+4(FP), R0
BL asmcgocall<>(SB)
RET
TEXT runtime·asmcgocall_errno(SB),NOSPLIT,$0-12
MOVW fn+0(FP), R1
MOVW arg+4(FP), R0
BL asmcgocall<>(SB)
MOVW R0, ret+8(FP)
RET
TEXT asmcgocall<>(SB),NOSPLIT,$0-0
// fn in R1, arg in R0.
MOVW R13, R2
MOVW g, R5
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVW g_m(g), R8
MOVW m_g0(R8), R3
CMP R3, g
BEQ 4(PC)
BL gosave<>(SB)
MOVW R3, g
MOVW (g_sched+gobuf_sp)(g), R13
// Now on a scheduling stack (a pthread-created stack).
SUB $24, R13
BIC $0x7, R13 // alignment for gcc ABI
MOVW R5, 20(R13) // save old g
MOVW R2, 16(R13) // save old SP
// R0 already contains the first argument
BL (R1)
// Restore registers, g, stack pointer.
MOVW 20(R13), g
MOVW 16(R13), R13
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$12-12
MOVW $fn+0(FP), R0
MOVW R0, 4(R13)
MOVW frame+4(FP), R0
MOVW R0, 8(R13)
MOVW framesize+8(FP), R0
MOVW R0, 12(R13)
MOVW $runtime·cgocallback_gofunc(SB), R0
BL (R0)
RET
// cgocallback_gofunc(void (*fn)(void*), void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback_gofunc(SB),NOSPLIT,$8-12
// Load m and g from thread-local storage.
MOVB runtime·iscgo(SB), R0
CMP $0, R0
BL.NE runtime·load_g(SB)
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMP $0, g
B.NE havem
MOVW g, savedm-4(SP) // g is zero, so is m.
MOVW $runtime·needm(SB), R0
BL (R0)
havem:
MOVW g_m(g), R8
MOVW R8, savedm-4(SP)
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-8(SP).
MOVW m_g0(R8), R3
MOVW (g_sched+gobuf_sp)(R3), R4
MOVW R4, savedsp-8(SP)
MOVW R13, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -8(SP) and -4(SP) are unused.
MOVW m_curg(R8), g
MOVW (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVW (g_sched+gobuf_pc)(g), R5
MOVW R5, -12(R4)
MOVW $-12(R4), R13
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVW 0(R13), R5
MOVW R5, (g_sched+gobuf_pc)(g)
MOVW $12(R13), R4
MOVW R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVW g_m(g), R8
MOVW m_g0(R8), g
MOVW (g_sched+gobuf_sp)(g), R13
MOVW savedsp-8(SP), R4
MOVW R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVW savedm-4(SP), R6
CMP $0, R6
B.NE 3(PC)
MOVW $runtime·dropm(SB), R0
BL (R0)
// Done!
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB),NOSPLIT,$0-4
MOVW gg+0(FP), g
// Save g to thread-local storage.
MOVB runtime·iscgo(SB), R0
CMP $0, R0
BL.NE runtime·save_g(SB)
RET
TEXT runtime·getcallerpc(SB),NOSPLIT,$-4-4
MOVW 0(SP), R0
MOVW R0, ret+4(FP)
RET
TEXT runtime·gogetcallerpc(SB),NOSPLIT,$-4-8
MOVW R14, ret+4(FP)
RET
TEXT runtime·setcallerpc(SB),NOSPLIT,$-4-8
MOVW pc+4(FP), R0
MOVW R0, 0(SP)
RET
TEXT runtime·getcallersp(SB),NOSPLIT,$-4-4
MOVW 0(FP), R0
MOVW $-4(R0), R0
MOVW R0, ret+4(FP)
RET
// func gogetcallersp(p unsafe.Pointer) uintptr
TEXT runtime·gogetcallersp(SB),NOSPLIT,$-4-8
MOVW 0(FP), R0
MOVW $-4(R0), R0
MOVW R0, ret+4(FP)
RET
TEXT runtime·emptyfunc(SB),0,$0-0
RET
TEXT runtime·abort(SB),NOSPLIT,$-4-0
MOVW $0, R0
MOVW (R0), R1
// bool armcas(int32 *val, int32 old, int32 new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
// }else
// return 0;
//
// To implement runtime·cas in sys_$GOOS_arm.s
// using the native instructions, use:
//
// TEXT runtime·cas(SB),NOSPLIT,$0
// B runtime·armcas(SB)
//
TEXT runtime·armcas(SB),NOSPLIT,$0-13
MOVW valptr+0(FP), R1
MOVW old+4(FP), R2
MOVW new+8(FP), R3
casl:
LDREX (R1), R0
CMP R0, R2
BNE casfail
STREX R3, (R1), R0
CMP $0, R0
BNE casl
MOVW $1, R0
MOVB R0, ret+12(FP)
RET
casfail:
MOVW $0, R0
MOVB R0, ret+12(FP)
RET
TEXT runtime·casuintptr(SB),NOSPLIT,$0-13
B runtime·cas(SB)
TEXT runtime·atomicloaduintptr(SB),NOSPLIT,$0-8
B runtime·atomicload(SB)
TEXT runtime·atomicloaduint(SB),NOSPLIT,$0-8
B runtime·atomicload(SB)
TEXT runtime·stackguard(SB),NOSPLIT,$0-8
MOVW R13, R1
MOVW g_stackguard(g), R2
MOVW R1, sp+0(FP)
MOVW R2, limit+4(FP)
RET
// AES hashing not implemented for ARM
TEXT runtime·aeshash(SB),NOSPLIT,$-4-0
MOVW $0, R0
MOVW (R0), R1
TEXT runtime·aeshash32(SB),NOSPLIT,$-4-0
MOVW $0, R0
MOVW (R0), R1
TEXT runtime·aeshash64(SB),NOSPLIT,$-4-0
MOVW $0, R0
MOVW (R0), R1
TEXT runtime·aeshashstr(SB),NOSPLIT,$-4-0
MOVW $0, R0
MOVW (R0), R1
TEXT runtime·memeq(SB),NOSPLIT,$-4-13
MOVW a+0(FP), R1
MOVW b+4(FP), R2
MOVW size+8(FP), R3
ADD R1, R3, R6
MOVW $1, R0
MOVB R0, ret+12(FP)
_next2:
CMP R1, R6
RET.EQ
MOVBU.P 1(R1), R4
MOVBU.P 1(R2), R5
CMP R4, R5
BEQ _next2
MOVW $0, R0
MOVB R0, ret+12(FP)
RET
// eqstring tests whether two strings are equal.
// See runtime_test.go:eqstring_generic for
// equivalent Go code.
TEXT runtime·eqstring(SB),NOSPLIT,$-4-17
MOVW s1len+4(FP), R0
MOVW s2len+12(FP), R1
MOVW $0, R7
CMP R0, R1
MOVB.NE R7, v+16(FP)
RET.NE
MOVW s1str+0(FP), R2
MOVW s2str+8(FP), R3
MOVW $1, R8
MOVB R8, v+16(FP)
CMP R2, R3
RET.EQ
ADD R2, R0, R6
_eqnext:
CMP R2, R6
RET.EQ
MOVBU.P 1(R2), R4
MOVBU.P 1(R3), R5
CMP R4, R5
BEQ _eqnext
MOVB R7, v+16(FP)
RET
// void setg_gcc(G*); set g called from gcc.
TEXT setg_gcc<>(SB),NOSPLIT,$0
MOVW R0, g
B runtime·save_g(SB)
// TODO: share code with memeq?
TEXT bytes·Equal(SB),NOSPLIT,$0
MOVW a_len+4(FP), R1
MOVW b_len+16(FP), R3
CMP R1, R3 // unequal lengths are not equal
B.NE _notequal
MOVW a+0(FP), R0
MOVW b+12(FP), R2
ADD R0, R1 // end
_byteseq_next:
CMP R0, R1
B.EQ _equal // reached the end
MOVBU.P 1(R0), R4
MOVBU.P 1(R2), R5
CMP R4, R5
B.EQ _byteseq_next
_notequal:
MOVW $0, R0
MOVBU R0, ret+24(FP)
RET
_equal:
MOVW $1, R0
MOVBU R0, ret+24(FP)
RET
TEXT bytes·IndexByte(SB),NOSPLIT,$0
MOVW s+0(FP), R0
MOVW s_len+4(FP), R1
MOVBU c+12(FP), R2 // byte to find
MOVW R0, R4 // store base for later
ADD R0, R1 // end
_loop:
CMP R0, R1
B.EQ _notfound
MOVBU.P 1(R0), R3
CMP R2, R3
B.NE _loop
SUB $1, R0 // R0 will be one beyond the position we want
SUB R4, R0 // remove base
MOVW R0, ret+16(FP)
RET
_notfound:
MOVW $-1, R0
MOVW R0, ret+16(FP)
RET
TEXT strings·IndexByte(SB),NOSPLIT,$0
MOVW s+0(FP), R0
MOVW s_len+4(FP), R1
MOVBU c+8(FP), R2 // byte to find
MOVW R0, R4 // store base for later
ADD R0, R1 // end
_sib_loop:
CMP R0, R1
B.EQ _sib_notfound
MOVBU.P 1(R0), R3
CMP R2, R3
B.NE _sib_loop
SUB $1, R0 // R0 will be one beyond the position we want
SUB R4, R0 // remove base
MOVW R0, ret+12(FP)
RET
_sib_notfound:
MOVW $-1, R0
MOVW R0, ret+12(FP)
RET
TEXT runtime·timenow(SB),NOSPLIT,$0-0
B time·now(SB)
// A Duff's device for zeroing memory.
// The compiler jumps to computed addresses within
// this routine to zero chunks of memory. Do not
// change this code without also changing the code
// in ../../cmd/5g/ggen.c:clearfat.
// R0: zero
// R1: ptr to memory to be zeroed
// R1 is updated as a side effect.
TEXT runtime·duffzero(SB),NOSPLIT,$0-0
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
MOVW.P R0, 4(R1)
RET
// A Duff's device for copying memory.
// The compiler jumps to computed addresses within
// this routine to copy chunks of memory. Source
// and destination must not overlap. Do not
// change this code without also changing the code
// in ../../cmd/5g/cgen.c:sgen.
// R0: scratch space
// R1: ptr to source memory
// R2: ptr to destination memory
// R1 and R2 are updated as a side effect
TEXT runtime·duffcopy(SB),NOSPLIT,$0-0
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
MOVW.P 4(R1), R0
MOVW.P R0, 4(R2)
RET
TEXT runtime·fastrand1(SB),NOSPLIT,$-4-4
MOVW g_m(g), R1
MOVW m_fastrand(R1), R0
ADD.S R0, R0
EOR.MI $0x88888eef, R0
MOVW R0, m_fastrand(R1)
MOVW R0, ret+0(FP)
RET
TEXT runtime·gocputicks(SB),NOSPLIT,$0
B runtime·cputicks(SB)
TEXT runtime·return0(SB),NOSPLIT,$0
MOVW $0, R0
RET
TEXT runtime·procyield(SB),NOSPLIT,$-4
MOVW cycles+0(FP), R1
MOVW $0, R0
yieldloop:
CMP R0, R1
B.NE 2(PC)
RET
SUB $1, R1
B yieldloop