mirror of
https://github.com/golang/go
synced 2024-11-20 09:24:50 -07:00
1de9c4073b
Random is bad, it can block and prevent binaries from starting. Use urandom instead. We'd rather have bad random bits than no random bits. Change-Id: I360e1cb90ace5518a1b51708822a1dae27071ebd Reviewed-on: https://go-review.googlesource.com/2582 Reviewed-by: Dave Cheney <dave@cheney.net> Reviewed-by: Minux Ma <minux@golang.org>
290 lines
7.6 KiB
Go
290 lines
7.6 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import "unsafe"
|
|
|
|
var sigset_none sigset
|
|
var sigset_all sigset = sigset{^uint32(0), ^uint32(0)}
|
|
|
|
// Linux futex.
|
|
//
|
|
// futexsleep(uint32 *addr, uint32 val)
|
|
// futexwakeup(uint32 *addr)
|
|
//
|
|
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
|
|
// Futexwakeup wakes up threads sleeping on addr.
|
|
// Futexsleep is allowed to wake up spuriously.
|
|
|
|
const (
|
|
_FUTEX_WAIT = 0
|
|
_FUTEX_WAKE = 1
|
|
)
|
|
|
|
// Atomically,
|
|
// if(*addr == val) sleep
|
|
// Might be woken up spuriously; that's allowed.
|
|
// Don't sleep longer than ns; ns < 0 means forever.
|
|
//go:nosplit
|
|
func futexsleep(addr *uint32, val uint32, ns int64) {
|
|
var ts timespec
|
|
|
|
// Some Linux kernels have a bug where futex of
|
|
// FUTEX_WAIT returns an internal error code
|
|
// as an errno. Libpthread ignores the return value
|
|
// here, and so can we: as it says a few lines up,
|
|
// spurious wakeups are allowed.
|
|
if ns < 0 {
|
|
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
|
|
return
|
|
}
|
|
|
|
// It's difficult to live within the no-split stack limits here.
|
|
// On ARM and 386, a 64-bit divide invokes a general software routine
|
|
// that needs more stack than we can afford. So we use timediv instead.
|
|
// But on real 64-bit systems, where words are larger but the stack limit
|
|
// is not, even timediv is too heavy, and we really need to use just an
|
|
// ordinary machine instruction.
|
|
if ptrSize == 8 {
|
|
ts.set_sec(ns / 1000000000)
|
|
ts.set_nsec(int32(ns % 1000000000))
|
|
} else {
|
|
ts.tv_nsec = 0
|
|
ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
|
|
}
|
|
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
|
|
}
|
|
|
|
// If any procs are sleeping on addr, wake up at most cnt.
|
|
//go:nosplit
|
|
func futexwakeup(addr *uint32, cnt uint32) {
|
|
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
|
|
if ret >= 0 {
|
|
return
|
|
}
|
|
|
|
// I don't know that futex wakeup can return
|
|
// EAGAIN or EINTR, but if it does, it would be
|
|
// safe to loop and call futex again.
|
|
systemstack(func() {
|
|
print("futexwakeup addr=", addr, " returned ", ret, "\n")
|
|
})
|
|
|
|
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
|
|
}
|
|
|
|
func getproccount() int32 {
|
|
var buf [16]uintptr
|
|
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
|
|
n := int32(0)
|
|
for _, v := range buf[:r/ptrSize] {
|
|
for i := 0; i < 64; i++ {
|
|
n += int32(v & 1)
|
|
v >>= 1
|
|
}
|
|
}
|
|
if n == 0 {
|
|
n = 1
|
|
}
|
|
return n
|
|
}
|
|
|
|
// Clone, the Linux rfork.
|
|
const (
|
|
_CLONE_VM = 0x100
|
|
_CLONE_FS = 0x200
|
|
_CLONE_FILES = 0x400
|
|
_CLONE_SIGHAND = 0x800
|
|
_CLONE_PTRACE = 0x2000
|
|
_CLONE_VFORK = 0x4000
|
|
_CLONE_PARENT = 0x8000
|
|
_CLONE_THREAD = 0x10000
|
|
_CLONE_NEWNS = 0x20000
|
|
_CLONE_SYSVSEM = 0x40000
|
|
_CLONE_SETTLS = 0x80000
|
|
_CLONE_PARENT_SETTID = 0x100000
|
|
_CLONE_CHILD_CLEARTID = 0x200000
|
|
_CLONE_UNTRACED = 0x800000
|
|
_CLONE_CHILD_SETTID = 0x1000000
|
|
_CLONE_STOPPED = 0x2000000
|
|
_CLONE_NEWUTS = 0x4000000
|
|
_CLONE_NEWIPC = 0x8000000
|
|
)
|
|
|
|
func newosproc(mp *m, stk unsafe.Pointer) {
|
|
/*
|
|
* note: strace gets confused if we use CLONE_PTRACE here.
|
|
*/
|
|
var flags int32 = _CLONE_VM | /* share memory */
|
|
_CLONE_FS | /* share cwd, etc */
|
|
_CLONE_FILES | /* share fd table */
|
|
_CLONE_SIGHAND | /* share sig handler table */
|
|
_CLONE_THREAD /* revisit - okay for now */
|
|
|
|
mp.tls[0] = uintptr(mp.id) // so 386 asm can find it
|
|
if false {
|
|
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n")
|
|
}
|
|
|
|
// Disable signals during clone, so that the new thread starts
|
|
// with signals disabled. It will enable them in minit.
|
|
var oset sigset
|
|
rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset)))
|
|
ret := clone(flags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
|
|
rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset)))
|
|
|
|
if ret < 0 {
|
|
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
|
|
throw("newosproc")
|
|
}
|
|
}
|
|
|
|
func osinit() {
|
|
ncpu = getproccount()
|
|
}
|
|
|
|
var urandom_dev = []byte("/dev/urandom\x00")
|
|
|
|
func getRandomData(r []byte) {
|
|
if startupRandomData != nil {
|
|
n := copy(r, startupRandomData)
|
|
extendRandom(r, n)
|
|
return
|
|
}
|
|
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
|
|
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
|
|
close(fd)
|
|
extendRandom(r, int(n))
|
|
}
|
|
|
|
func goenvs() {
|
|
goenvs_unix()
|
|
}
|
|
|
|
// Called to initialize a new m (including the bootstrap m).
|
|
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
|
func mpreinit(mp *m) {
|
|
mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
|
|
mp.gsignal.m = mp
|
|
}
|
|
|
|
// Called to initialize a new m (including the bootstrap m).
|
|
// Called on the new thread, can not allocate memory.
|
|
func minit() {
|
|
// Initialize signal handling.
|
|
_g_ := getg()
|
|
signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024)
|
|
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
|
|
}
|
|
|
|
// Called from dropm to undo the effect of an minit.
|
|
func unminit() {
|
|
signalstack(nil, 0)
|
|
}
|
|
|
|
func memlimit() uintptr {
|
|
/*
|
|
TODO: Convert to Go when something actually uses the result.
|
|
|
|
Rlimit rl;
|
|
extern byte runtime·text[], runtime·end[];
|
|
uintptr used;
|
|
|
|
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
|
|
return 0;
|
|
if(rl.rlim_cur >= 0x7fffffff)
|
|
return 0;
|
|
|
|
// Estimate our VM footprint excluding the heap.
|
|
// Not an exact science: use size of binary plus
|
|
// some room for thread stacks.
|
|
used = runtime·end - runtime·text + (64<<20);
|
|
if(used >= rl.rlim_cur)
|
|
return 0;
|
|
|
|
// If there's not at least 16 MB left, we're probably
|
|
// not going to be able to do much. Treat as no limit.
|
|
rl.rlim_cur -= used;
|
|
if(rl.rlim_cur < (16<<20))
|
|
return 0;
|
|
|
|
return rl.rlim_cur - used;
|
|
*/
|
|
|
|
return 0
|
|
}
|
|
|
|
//#ifdef GOARCH_386
|
|
//#define sa_handler k_sa_handler
|
|
//#endif
|
|
|
|
func sigreturn()
|
|
func sigtramp()
|
|
|
|
func setsig(i int32, fn uintptr, restart bool) {
|
|
var sa sigactiont
|
|
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
|
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER
|
|
if restart {
|
|
sa.sa_flags |= _SA_RESTART
|
|
}
|
|
sa.sa_mask = ^uint64(0)
|
|
// Although Linux manpage says "sa_restorer element is obsolete and
|
|
// should not be used". x86_64 kernel requires it. Only use it on
|
|
// x86.
|
|
if GOARCH == "386" || GOARCH == "amd64" {
|
|
sa.sa_restorer = funcPC(sigreturn)
|
|
}
|
|
if fn == funcPC(sighandler) {
|
|
fn = funcPC(sigtramp)
|
|
}
|
|
sa.sa_handler = fn
|
|
if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
|
throw("rt_sigaction failure")
|
|
}
|
|
}
|
|
|
|
func setsigstack(i int32) {
|
|
var sa sigactiont
|
|
if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
|
throw("rt_sigaction failure")
|
|
}
|
|
if sa.sa_handler == 0 || sa.sa_handler == _SIG_DFL || sa.sa_handler == _SIG_IGN || sa.sa_flags&_SA_ONSTACK != 0 {
|
|
return
|
|
}
|
|
sa.sa_flags |= _SA_ONSTACK
|
|
if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
|
throw("rt_sigaction failure")
|
|
}
|
|
}
|
|
|
|
func getsig(i int32) uintptr {
|
|
var sa sigactiont
|
|
|
|
memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa))
|
|
if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
|
|
throw("rt_sigaction read failure")
|
|
}
|
|
if sa.sa_handler == funcPC(sigtramp) {
|
|
return funcPC(sighandler)
|
|
}
|
|
return sa.sa_handler
|
|
}
|
|
|
|
func signalstack(p *byte, n int32) {
|
|
var st sigaltstackt
|
|
st.ss_sp = p
|
|
st.ss_size = uintptr(n)
|
|
st.ss_flags = 0
|
|
if p == nil {
|
|
st.ss_flags = _SS_DISABLE
|
|
}
|
|
sigaltstack(&st, nil)
|
|
}
|
|
|
|
func unblocksignals() {
|
|
rtsigprocmask(_SIG_SETMASK, &sigset_none, nil, int32(unsafe.Sizeof(sigset_none)))
|
|
}
|