1
0
mirror of https://github.com/golang/go synced 2024-11-19 20:54:39 -07:00
go/src/pkg/runtime/proc.p
Russ Cox ba134539c5 runtime: faster entersyscall/exitsyscall
Replace cas with xadd in scheduler.
Suggested by Dmitriy in last code review.
Verified with Promela model.

When there's actual contention for the atomic word,
this avoids the looping that compare-and-swap requires.

benchmark                            old ns/op    new ns/op    delta
runtime_test.BenchmarkSyscall               32           26  -17.08%
runtime_test.BenchmarkSyscall-2            155           59  -61.81%
runtime_test.BenchmarkSyscall-3            112           52  -52.95%
runtime_test.BenchmarkSyscall-4             94           48  -48.57%
runtime_test.BenchmarkSyscallWork          871          872   +0.11%
runtime_test.BenchmarkSyscallWork-2        481          477   -0.83%
runtime_test.BenchmarkSyscallWork-3        338          335   -0.89%
runtime_test.BenchmarkSyscallWork-4        263          256   -2.66%

R=golang-dev, iant
CC=golang-dev
https://golang.org/cl/4800047
2011-07-23 12:22:55 -04:00

527 lines
9.6 KiB
OpenEdge ABL

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
model for proc.c as of 2011/07/22.
takes 4900 seconds to explore 1189070 states
with G=3, var_gomaxprocs=1
on a Core i7 L640 2.13 GHz Lenovo X201s.
rm -f proc.p.trail pan.* pan
spin -a proc.p
gcc -DSAFETY -DREACH -DMEMLIM'='4000 -o pan pan.c
pan -w28 -n -i -m500000
test -f proc.p.trail && pan -r proc.p.trail
*/
/*
* scheduling parameters
*/
/*
* the number of goroutines G doubles as the maximum
* number of OS threads; the max is reachable when all
* the goroutines are blocked in system calls.
*/
#define G 3
/*
* whether to allow gomaxprocs to vary during execution.
* enabling this checks the scheduler even when code is
* calling GOMAXPROCS, but it also slows down the verification
* by about 10x.
*/
#define var_gomaxprocs 1 /* allow gomaxprocs to vary */
/* gomaxprocs */
#if var_gomaxprocs
byte gomaxprocs = 3;
#else
#define gomaxprocs 3
#endif
/* queue of waiting M's: sched_mhead[:mwait] */
byte mwait;
byte sched_mhead[G];
/* garbage collector state */
bit gc_lock, gcwaiting;
/* goroutines sleeping, waiting to run */
byte gsleep, gwait;
/* scheduler state */
bit sched_lock;
bit sched_stopped;
bit atomic_gwaiting, atomic_waitstop;
byte atomic_mcpu, atomic_mcpumax;
/* M struct fields - state for handing off g to m. */
bit m_waitnextg[G];
bit m_havenextg[G];
bit m_nextg[G];
/*
* opt_atomic/opt_dstep mark atomic/deterministics
* sequences that are marked only for reasons of
* optimization, not for correctness of the algorithms.
*
* in general any code that runs while holding the
* schedlock and does not refer to or modify the atomic_*
* fields can be marked atomic/dstep without affecting
* the usefulness of the model. since we trust the lock
* implementation, what we really want to test is the
* interleaving of the atomic fast paths with entersyscall
* and exitsyscall.
*/
#define opt_atomic atomic
#define opt_dstep d_step
/* locks */
inline lock(x) {
d_step { x == 0; x = 1 }
}
inline unlock(x) {
d_step { assert x == 1; x = 0 }
}
/* notes */
inline noteclear(x) {
x = 0
}
inline notesleep(x) {
x == 1
}
inline notewakeup(x) {
opt_dstep { assert x == 0; x = 1 }
}
/*
* scheduler
*/
inline schedlock() {
lock(sched_lock)
}
inline schedunlock() {
unlock(sched_lock)
}
/*
* canaddmcpu is like the C function but takes
* an extra argument to include in the test, to model
* "cannget() && canaddmcpu()" as "canaddmcpu(cangget())"
*/
inline canaddmcpu(g) {
d_step {
g && atomic_mcpu < atomic_mcpumax;
atomic_mcpu++;
}
}
/*
* gput is like the C function.
* instead of tracking goroutines explicitly we
* maintain only the count of the number of
* waiting goroutines.
*/
inline gput() {
/* omitted: lockedm, idlem concerns */
opt_dstep {
gwait++;
if
:: gwait == 1 ->
atomic_gwaiting = 1
:: else
fi
}
}
/*
* cangget is a macro so it can be passed to
* canaddmcpu (see above).
*/
#define cangget() (gwait>0)
/*
* gget is like the C function.
*/
inline gget() {
opt_dstep {
assert gwait > 0;
gwait--;
if
:: gwait == 0 ->
atomic_gwaiting = 0
:: else
fi
}
}
/*
* mput is like the C function.
* here we do keep an explicit list of waiting M's,
* so that we know which ones can be awakened.
* we use _pid-1 because the monitor is proc 0.
*/
inline mput() {
opt_dstep {
sched_mhead[mwait] = _pid - 1;
mwait++
}
}
/*
* mnextg is like the C function mnextg(m, g).
* it passes an unspecified goroutine to m to start running.
*/
inline mnextg(m) {
opt_dstep {
m_nextg[m] = 1;
if
:: m_waitnextg[m] ->
m_waitnextg[m] = 0;
notewakeup(m_havenextg[m])
:: else
fi
}
}
/*
* mgetnextg handles the main m handoff in matchmg.
* it is like mget() || new M followed by mnextg(m, g),
* but combined to avoid a local variable.
* unlike the C code, a new M simply assumes it is
* running a g instead of using the mnextg coordination
* to obtain one.
*/
inline mgetnextg() {
opt_atomic {
if
:: mwait > 0 ->
mwait--;
mnextg(sched_mhead[mwait]);
sched_mhead[mwait] = 0;
:: else ->
run mstart();
fi
}
}
/*
* nextgandunlock is like the C function.
* it pulls a g off the queue or else waits for one.
*/
inline nextgandunlock() {
assert atomic_mcpu <= G;
if
:: m_nextg[_pid-1] ->
m_nextg[_pid-1] = 0;
schedunlock();
:: canaddmcpu(!m_nextg[_pid-1] && cangget()) ->
gget();
schedunlock();
:: else ->
opt_dstep {
mput();
m_nextg[_pid-1] = 0;
m_waitnextg[_pid-1] = 1;
noteclear(m_havenextg[_pid-1]);
}
if
:: atomic_waitstop && atomic_mcpu <= atomic_mcpumax ->
atomic_waitstop = 0;
notewakeup(sched_stopped)
:: else
fi;
schedunlock();
opt_dstep {
notesleep(m_havenextg[_pid-1]);
assert m_nextg[_pid-1];
m_nextg[_pid-1] = 0;
}
fi
}
/*
* stoptheworld is like the C function.
*/
inline stoptheworld() {
schedlock();
gcwaiting = 1;
atomic_mcpumax = 1;
do
:: d_step { atomic_mcpu > 1 ->
noteclear(sched_stopped);
assert !atomic_waitstop;
atomic_waitstop = 1 }
schedunlock();
notesleep(sched_stopped);
schedlock();
:: else ->
break
od;
schedunlock();
}
/*
* starttheworld is like the C function.
*/
inline starttheworld() {
schedlock();
gcwaiting = 0;
atomic_mcpumax = gomaxprocs;
matchmg();
schedunlock();
}
/*
* matchmg is like the C function.
*/
inline matchmg() {
do
:: canaddmcpu(cangget()) ->
gget();
mgetnextg();
:: else -> break
od
}
/*
* ready is like the C function.
* it puts a g on the run queue.
*/
inline ready() {
schedlock();
gput()
matchmg()
schedunlock()
}
/*
* schedule simulates the C scheduler.
* it assumes that there is always a goroutine
* running already, and the goroutine has entered
* the scheduler for an unspecified reason,
* either to yield or to block.
*/
inline schedule() {
schedlock();
mustsched = 0;
atomic_mcpu--;
assert atomic_mcpu <= G;
if
:: skip ->
// goroutine yields, still runnable
gput();
:: gsleep+1 < G ->
// goroutine goes to sleep (but there is another that can wake it)
gsleep++
fi;
// Find goroutine to run.
nextgandunlock()
}
/*
* schedpend is > 0 if a goroutine is about to committed to
* entering the scheduler but has not yet done so.
* Just as we don't test for the undesirable conditions when a
* goroutine is in the scheduler, we don't test for them when
* a goroutine will be in the scheduler shortly.
* Modeling this state lets us replace mcpu cas loops with
* simpler mcpu atomic adds.
*/
byte schedpend;
/*
* entersyscall is like the C function.
*/
inline entersyscall() {
bit willsched;
/*
* Fast path. Check all the conditions tested during schedlock/schedunlock
* below, and if we can get through the whole thing without stopping, run it
* in one atomic cas-based step.
*/
atomic {
atomic_mcpu--;
if
:: atomic_gwaiting ->
skip
:: atomic_waitstop && atomic_mcpu <= atomic_mcpumax ->
skip
:: else ->
goto Lreturn_entersyscall;
fi;
willsched = 1;
schedpend++;
}
/*
* Normal path.
*/
schedlock()
opt_dstep {
if
:: willsched ->
schedpend--;
willsched = 0
:: else
fi
}
if
:: atomic_gwaiting ->
matchmg()
:: else
fi;
if
:: atomic_waitstop && atomic_mcpu <= atomic_mcpumax ->
atomic_waitstop = 0;
notewakeup(sched_stopped)
:: else
fi;
schedunlock();
Lreturn_entersyscall:
skip
}
/*
* exitsyscall is like the C function.
*/
inline exitsyscall() {
/*
* Fast path. If there's a cpu available, use it.
*/
atomic {
// omitted profilehz check
atomic_mcpu++;
if
:: atomic_mcpu >= atomic_mcpumax ->
skip
:: else ->
goto Lreturn_exitsyscall
fi
}
/*
* Normal path.
*/
schedlock();
d_step {
if
:: atomic_mcpu <= atomic_mcpumax ->
skip
:: else ->
mustsched = 1
fi
}
schedunlock()
Lreturn_exitsyscall:
skip
}
#if var_gomaxprocs
inline gomaxprocsfunc() {
schedlock();
opt_atomic {
if
:: gomaxprocs != 1 -> gomaxprocs = 1
:: gomaxprocs != 2 -> gomaxprocs = 2
:: gomaxprocs != 3 -> gomaxprocs = 3
fi;
}
if
:: gcwaiting != 0 ->
assert atomic_mcpumax == 1
:: else ->
atomic_mcpumax = gomaxprocs;
if
:: atomic_mcpu > gomaxprocs ->
mustsched = 1
:: else ->
matchmg()
fi
fi;
schedunlock();
}
#endif
/*
* mstart is the entry point for a new M.
* our model of an M is always running some
* unspecified goroutine.
*/
proctype mstart() {
/*
* mustsched is true if the goroutine must enter the
* scheduler instead of continuing to execute.
*/
bit mustsched;
do
:: skip ->
// goroutine reschedules.
schedule()
:: !mustsched ->
// goroutine does something.
if
:: skip ->
// goroutine executes system call
entersyscall();
exitsyscall()
:: atomic { gsleep > 0; gsleep-- } ->
// goroutine wakes another goroutine
ready()
:: lock(gc_lock) ->
// goroutine runs a garbage collection
stoptheworld();
starttheworld();
unlock(gc_lock)
#if var_gomaxprocs
:: skip ->
// goroutine picks a new gomaxprocs
gomaxprocsfunc()
#endif
fi
od;
assert 0;
}
/*
* monitor initializes the scheduler state
* and then watches for impossible conditions.
*/
active proctype monitor() {
opt_dstep {
byte i = 1;
do
:: i < G ->
gput();
i++
:: else -> break
od;
atomic_mcpu = 1;
atomic_mcpumax = 1;
}
run mstart();
do
// Should never have goroutines waiting with procs available.
:: !sched_lock && schedpend==0 && gwait > 0 && atomic_mcpu < atomic_mcpumax ->
assert 0
// Should never have gc waiting for stop if things have already stopped.
:: !sched_lock && schedpend==0 && atomic_waitstop && atomic_mcpu <= atomic_mcpumax ->
assert 0
od
}