1
0
mirror of https://github.com/golang/go synced 2024-11-20 02:54:39 -07:00
go/src/runtime/atomic_arm64.s
Austin Clements f5d494bbdf runtime: ensure GC sees type-safe memory on weak machines
Currently its possible for the garbage collector to observe
uninitialized memory or stale heap bitmap bits on weakly ordered
architectures such as ARM and PPC. On such architectures, the stores
that zero newly allocated memory and initialize its heap bitmap may
move after a store in user code that makes the allocated object
observable by the garbage collector.

To fix this, add a "publication barrier" (also known as an "export
barrier") before returning from mallocgc. This is a store/store
barrier that ensures any write done by user code that makes the
returned object observable to the garbage collector will be ordered
after the initialization performed by mallocgc. No barrier is
necessary on the reading side because of the data dependency between
loading the pointer and loading the contents of the object.

Fixes one of the issues raised in #9984.

Change-Id: Ia3d96ad9c5fc7f4d342f5e05ec0ceae700cd17c8
Reviewed-on: https://go-review.googlesource.com/11083
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Martin Capitanio <capnm9@gmail.com>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-06-19 15:29:50 +00:00

118 lines
2.3 KiB
ArmAsm

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// uint32 runtime·atomicload(uint32 volatile* addr)
TEXT ·atomicload(SB),NOSPLIT,$-8-12
MOVD ptr+0(FP), R0
LDARW (R0), R0
MOVW R0, ret+8(FP)
RET
// uint64 runtime·atomicload64(uint64 volatile* addr)
TEXT ·atomicload64(SB),NOSPLIT,$-8-16
MOVD ptr+0(FP), R0
LDAR (R0), R0
MOVD R0, ret+8(FP)
RET
// void *runtime·atomicloadp(void *volatile *addr)
TEXT ·atomicloadp(SB),NOSPLIT,$-8-16
MOVD ptr+0(FP), R0
LDAR (R0), R0
MOVD R0, ret+8(FP)
RET
TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-16
B runtime·atomicstore64(SB)
TEXT runtime·atomicstore(SB), NOSPLIT, $0-12
MOVD ptr+0(FP), R0
MOVW val+8(FP), R1
STLRW R1, (R0)
RET
TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16
MOVD ptr+0(FP), R0
MOVD val+8(FP), R1
STLR R1, (R0)
RET
TEXT runtime·xchg(SB), NOSPLIT, $0-20
again:
MOVD ptr+0(FP), R0
MOVW new+8(FP), R1
LDAXRW (R0), R2
STLXRW R1, (R0), R3
CBNZ R3, again
MOVW R2, ret+16(FP)
RET
TEXT runtime·xchg64(SB), NOSPLIT, $0-24
again:
MOVD ptr+0(FP), R0
MOVD new+8(FP), R1
LDAXR (R0), R2
STLXR R1, (R0), R3
CBNZ R3, again
MOVD R2, ret+16(FP)
RET
// bool runtime·cas64(uint64 *ptr, uint64 old, uint64 new)
// Atomically:
// if(*val == *old){
// *val = new;
// return 1;
// } else {
// return 0;
// }
TEXT runtime·cas64(SB), NOSPLIT, $0-25
MOVD ptr+0(FP), R0
MOVD old+8(FP), R1
MOVD new+16(FP), R2
again:
LDAXR (R0), R3
CMP R1, R3
BNE ok
STLXR R2, (R0), R3
CBNZ R3, again
ok:
CSET EQ, R0
MOVB R0, ret+24(FP)
RET
// uint32 xadd(uint32 volatile *ptr, int32 delta)
// Atomically:
// *val += delta;
// return *val;
TEXT runtime·xadd(SB), NOSPLIT, $0-20
again:
MOVD ptr+0(FP), R0
MOVW delta+8(FP), R1
LDAXRW (R0), R2
ADDW R2, R1, R2
STLXRW R2, (R0), R3
CBNZ R3, again
MOVW R2, ret+16(FP)
RET
TEXT runtime·xadd64(SB), NOSPLIT, $0-24
again:
MOVD ptr+0(FP), R0
MOVD delta+8(FP), R1
LDAXR (R0), R2
ADD R2, R1, R2
STLXR R2, (R0), R3
CBNZ R3, again
MOVD R2, ret+16(FP)
RET
TEXT runtime·xchguintptr(SB), NOSPLIT, $0-24
B runtime·xchg64(SB)
TEXT ·publicationBarrier(SB),NOSPLIT,$-8-0
DMB $0xe // DMB ST
RET