1
0
mirror of https://github.com/golang/go synced 2024-10-05 00:11:21 -06:00
go/src/pkg/syscall/exec.go
Robert Griesemer d65a5cce89 1) Change default gofmt default settings for
parsing and printing to new syntax.

   Use -oldparser to parse the old syntax,
   use -oldprinter to print the old syntax.

2) Change default gofmt formatting settings
   to use tabs for indentation only and to use
   spaces for alignment. This will make the code
   alignment insensitive to an editor's tabwidth.

   Use -spaces=false to use tabs for alignment.

3) Manually changed src/exp/parser/parser_test.go
   so that it doesn't try to parse the parser's
   source files using the old syntax (they have
   new syntax now).

4) gofmt -w src misc test/bench

4th set of files.

R=rsc
CC=golang-dev
https://golang.org/cl/180049
2009-12-15 15:40:16 -08:00

313 lines
8.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Fork, exec, wait, etc.
package syscall
import (
"sync"
"unsafe"
)
// Lock synchronizing creation of new file descriptors with fork.
//
// We want the child in a fork/exec sequence to inherit only the
// file descriptors we intend. To do that, we mark all file
// descriptors close-on-exec and then, in the child, explicitly
// unmark the ones we want the exec'ed program to keep.
// Unix doesn't make this easy: there is, in general, no way to
// allocate a new file descriptor close-on-exec. Instead you
// have to allocate the descriptor and then mark it close-on-exec.
// If a fork happens between those two events, the child's exec
// will inherit an unwanted file descriptor.
//
// This lock solves that race: the create new fd/mark close-on-exec
// operation is done holding ForkLock for reading, and the fork itself
// is done holding ForkLock for writing. At least, that's the idea.
// There are some complications.
//
// Some system calls that create new file descriptors can block
// for arbitrarily long times: open on a hung NFS server or named
// pipe, accept on a socket, and so on. We can't reasonably grab
// the lock across those operations.
//
// It is worse to inherit some file descriptors than others.
// If a non-malicious child accidentally inherits an open ordinary file,
// that's not a big deal. On the other hand, if a long-lived child
// accidentally inherits the write end of a pipe, then the reader
// of that pipe will not see EOF until that child exits, potentially
// causing the parent program to hang. This is a common problem
// in threaded C programs that use popen.
//
// Luckily, the file descriptors that are most important not to
// inherit are not the ones that can take an arbitrarily long time
// to create: pipe returns instantly, and the net package uses
// non-blocking I/O to accept on a listening socket.
// The rules for which file descriptor-creating operations use the
// ForkLock are as follows:
//
// 1) Pipe. Does not block. Use the ForkLock.
// 2) Socket. Does not block. Use the ForkLock.
// 3) Accept. If using non-blocking mode, use the ForkLock.
// Otherwise, live with the race.
// 4) Open. Can block. Use O_CLOEXEC if available (Linux).
// Otherwise, live with the race.
// 5) Dup. Does not block. Use the ForkLock.
// On Linux, could use fcntl F_DUPFD_CLOEXEC
// instead of the ForkLock, but only for dup(fd, -1).
var ForkLock sync.RWMutex
// Convert array of string to array
// of NUL-terminated byte pointer.
func StringArrayPtr(ss []string) []*byte {
bb := make([]*byte, len(ss)+1)
for i := 0; i < len(ss); i++ {
bb[i] = StringBytePtr(ss[i])
}
bb[len(ss)] = nil
return bb
}
func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC) }
func SetNonblock(fd int, nonblocking bool) (errno int) {
flag, err := fcntl(fd, F_GETFL, 0)
if err != 0 {
return err
}
if nonblocking {
flag |= O_NONBLOCK
} else {
flag &= ^O_NONBLOCK
}
_, err = fcntl(fd, F_SETFL, flag)
return err
}
// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
// If a dup or exec fails, write the errno int to pipe.
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
// In the child, this function must not acquire any locks, because
// they might have been locked at the time of the fork. This means
// no rescheduling, no malloc calls, and no new stack segments.
// The calls to RawSyscall are okay because they are assembly
// functions that do not grow the stack.
func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) {
// Declare all variables at top in case any
// declarations require heap allocation (e.g., err1).
var r1, r2, err1 uintptr
var nextfd int
var i int
darwin := OS == "darwin"
// About to call fork.
// No more allocation or calls of non-assembly functions.
r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0)
if err1 != 0 {
return 0, int(err1)
}
// On Darwin:
// r1 = child pid in both parent and child.
// r2 = 0 in parent, 1 in child.
// Convert to normal Unix r1 = 0 in child.
if darwin && r2 == 1 {
r1 = 0
}
if r1 != 0 {
// parent; return PID
return int(r1), 0
}
// Fork succeeded, now in child.
// Enable tracing if requested.
if traceme {
_, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0)
if err1 != 0 {
goto childerror
}
}
// Chdir
if dir != nil {
_, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
if err1 != 0 {
goto childerror
}
}
// Pass 1: look for fd[i] < i and move those up above len(fd)
// so that pass 2 won't stomp on an fd it needs later.
nextfd = int(len(fd))
if pipe < nextfd {
_, _, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0)
if err1 != 0 {
goto childerror
}
RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC)
pipe = nextfd
nextfd++
}
for i = 0; i < len(fd); i++ {
if fd[i] >= 0 && fd[i] < int(i) {
_, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0)
if err1 != 0 {
goto childerror
}
RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC)
fd[i] = nextfd
nextfd++
if nextfd == pipe { // don't stomp on pipe
nextfd++
}
}
}
// Pass 2: dup fd[i] down onto i.
for i = 0; i < len(fd); i++ {
if fd[i] == -1 {
RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
continue
}
if fd[i] == int(i) {
// dup2(i, i) won't clear close-on-exec flag on Linux,
// probably not elsewhere either.
_, _, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0)
if err1 != 0 {
goto childerror
}
continue
}
// The new fd is created NOT close-on-exec,
// which is exactly what we want.
_, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0)
if err1 != 0 {
goto childerror
}
}
// By convention, we don't close-on-exec the fds we are
// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
// Programs that know they inherit fds >= 3 will need
// to set them close-on-exec.
for i = len(fd); i < 3; i++ {
RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
}
// Time to exec.
_, _, err1 = RawSyscall(SYS_EXECVE,
uintptr(unsafe.Pointer(argv0)),
uintptr(unsafe.Pointer(&argv[0])),
uintptr(unsafe.Pointer(&envv[0])))
childerror:
// send error code on pipe
RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1)))
for {
RawSyscall(SYS_EXIT, 253, 0, 0)
}
// Calling panic is not actually safe,
// but the for loop above won't break
// and this shuts up the compiler.
panic("unreached")
}
func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) {
var p [2]int
var n int
var err1 uintptr
var wstatus WaitStatus
p[0] = -1
p[1] = -1
// Convert args to C form.
argv0p := StringBytePtr(argv0)
argvp := StringArrayPtr(argv)
envvp := StringArrayPtr(envv)
var dirp *byte
if len(dir) > 0 {
dirp = StringBytePtr(dir)
}
// Acquire the fork lock so that no other threads
// create new fds that are not yet close-on-exec
// before we fork.
ForkLock.Lock()
// Allocate child status pipe close on exec.
if err = Pipe(&p); err != 0 {
goto error
}
if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 {
goto error
}
if _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 {
goto error
}
// Kick off child.
pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1])
if err != 0 {
error:
if p[0] >= 0 {
Close(p[0])
Close(p[1])
}
ForkLock.Unlock()
return 0, err
}
ForkLock.Unlock()
// Read child error status from pipe.
Close(p[1])
n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1))
Close(p[0])
if err != 0 || n != 0 {
if n == unsafe.Sizeof(err1) {
err = int(err1)
}
if err == 0 {
err = EPIPE
}
// Child failed; wait for it to exit, to make sure
// the zombies don't accumulate.
_, err1 := Wait4(pid, &wstatus, 0, nil)
for err1 == EINTR {
_, err1 = Wait4(pid, &wstatus, 0, nil)
}
return 0, err
}
// Read got EOF, so pipe closed on exec, so exec succeeded.
return pid, 0
}
// Combination of fork and exec, careful to be thread safe.
func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
return forkExec(argv0, argv, envv, false, dir, fd)
}
// PtraceForkExec is like ForkExec, but starts the child in a traced state.
func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
return forkExec(argv0, argv, envv, true, dir, fd)
}
// Ordinary exec.
func Exec(argv0 string, argv []string, envv []string) (err int) {
_, _, err1 := RawSyscall(SYS_EXECVE,
uintptr(unsafe.Pointer(StringBytePtr(argv0))),
uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])),
uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0])))
return int(err1)
}