1
0
mirror of https://github.com/golang/go synced 2024-11-06 10:26:10 -07:00
go/internal/lsp/diff/myers/diff.go
Ian Cottrell b917058f11 internal/lsp: invert the diff dependencies so myers depends on diff
This makes it so the diff package is depended on by all implementations, rather
than the diff package having to depend on the default myers implementation.

Change-Id: I04b9caee6ff1017fa8e5476a7434e4b0e17753c3
Reviewed-on: https://go-review.googlesource.com/c/tools/+/198379
Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2019-10-04 02:16:33 +00:00

211 lines
4.5 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package myers implements the Myers diff algorithm.
package myers
import (
"strings"
"golang.org/x/tools/internal/lsp/diff"
)
// Sources:
// https://blog.jcoglan.com/2017/02/17/the-myers-diff-algorithm-part-3/
// https://www.codeproject.com/Articles/42279/%2FArticles%2F42279%2FInvestigating-Myers-diff-algorithm-Part-1-of-2
type Op struct {
Kind diff.OpKind
Content []string // content from b
I1, I2 int // indices of the line in a
J1 int // indices of the line in b, J2 implied by len(Content)
}
func ApplyEdits(a []string, operations []*Op) []string {
var b []string
var prevI2 int
for _, op := range operations {
// catch up to latest indices
if op.I1-prevI2 > 0 {
for _, c := range a[prevI2:op.I1] {
b = append(b, c)
}
}
switch op.Kind {
case diff.Equal, diff.Insert:
b = append(b, op.Content...)
}
prevI2 = op.I2
}
// final catch up
if len(a)-prevI2 > 0 {
for _, c := range a[prevI2:len(a)] {
b = append(b, c)
}
}
return b
}
// Operations returns the list of operations to convert a into b, consolidating
// operations for multiple lines and not including equal lines.
func Operations(a, b []string) []*Op {
if len(a) == 0 && len(b) == 0 {
return nil
}
trace, offset := shortestEditSequence(a, b)
snakes := backtrack(trace, len(a), len(b), offset)
M, N := len(a), len(b)
var i int
solution := make([]*Op, len(a)+len(b))
add := func(op *Op, i2, j2 int) {
if op == nil {
return
}
op.I2 = i2
if op.Kind == diff.Insert {
op.Content = b[op.J1:j2]
}
solution[i] = op
i++
}
x, y := 0, 0
for _, snake := range snakes {
if len(snake) < 2 {
continue
}
var op *Op
// delete (horizontal)
for snake[0]-snake[1] > x-y {
if op == nil {
op = &Op{
Kind: diff.Delete,
I1: x,
J1: y,
}
}
x++
if x == M {
break
}
}
add(op, x, y)
op = nil
// insert (vertical)
for snake[0]-snake[1] < x-y {
if op == nil {
op = &Op{
Kind: diff.Insert,
I1: x,
J1: y,
}
}
y++
}
add(op, x, y)
op = nil
// equal (diagonal)
for x < snake[0] {
x++
y++
}
if x >= M && y >= N {
break
}
}
return solution[:i]
}
// backtrack uses the trace for the edit sequence computation and returns the
// "snakes" that make up the solution. A "snake" is a single deletion or
// insertion followed by zero or diagonals.
func backtrack(trace [][]int, x, y, offset int) [][]int {
snakes := make([][]int, len(trace))
d := len(trace) - 1
for ; x > 0 && y > 0 && d > 0; d-- {
V := trace[d]
if len(V) == 0 {
continue
}
snakes[d] = []int{x, y}
k := x - y
var kPrev int
if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
kPrev = k + 1
} else {
kPrev = k - 1
}
x = V[kPrev+offset]
y = x - kPrev
}
if x < 0 || y < 0 {
return snakes
}
snakes[d] = []int{x, y}
return snakes
}
// shortestEditSequence returns the shortest edit sequence that converts a into b.
func shortestEditSequence(a, b []string) ([][]int, int) {
M, N := len(a), len(b)
V := make([]int, 2*(N+M)+1)
offset := N + M
trace := make([][]int, N+M+1)
// Iterate through the maximum possible length of the SES (N+M).
for d := 0; d <= N+M; d++ {
copyV := make([]int, len(V))
// k lines are represented by the equation y = x - k. We move in
// increments of 2 because end points for even d are on even k lines.
for k := -d; k <= d; k += 2 {
// At each point, we either go down or to the right. We go down if
// k == -d, and we go to the right if k == d. We also prioritize
// the maximum x value, because we prefer deletions to insertions.
var x int
if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
x = V[k+1+offset] // down
} else {
x = V[k-1+offset] + 1 // right
}
y := x - k
// Diagonal moves while we have equal contents.
for x < M && y < N && a[x] == b[y] {
x++
y++
}
V[k+offset] = x
// Return if we've exceeded the maximum values.
if x == M && y == N {
// Makes sure to save the state of the array before returning.
copy(copyV, V)
trace[d] = copyV
return trace, offset
}
}
// Save the state of the array.
copy(copyV, V)
trace[d] = copyV
}
return nil, 0
}
func SplitLines(text string) []string {
lines := strings.SplitAfter(text, "\n")
if lines[len(lines)-1] == "" {
lines = lines[:len(lines)-1]
}
return lines
}