1
0
mirror of https://github.com/golang/go synced 2024-11-18 07:24:45 -07:00
go/ssa/util.go
Alan Donovan 20029fe5f7 go.tools/ssa: utility functions mapping source intervals to ast.Nodes.
PathEnclosingInterval: 	maps a source position to an ast.Node.
EnclosingFunction:   	finds ssa.Function enclosing an ast.Node.
HasEnclosingFunction:   cheaper impl of EnclosingFunction()!=nil
NodeDescription:        user friendly node type descriptions.

+ tests.

Also: make ssa.Package.TypeInfo field a pointer.

R=gri, r
CC=golang-dev
https://golang.org/cl/9639045
2013-05-28 15:28:46 -04:00

218 lines
5.5 KiB
Go

package ssa
// This file defines a number of miscellaneous utility functions.
import (
"fmt"
"go/ast"
"io"
"os"
"reflect"
"code.google.com/p/go.tools/go/types"
)
func unreachable() {
panic("unreachable")
}
//// AST utilities
// noparens returns e with any enclosing parentheses stripped.
func noparens(e ast.Expr) ast.Expr {
for {
p, ok := e.(*ast.ParenExpr)
if !ok {
break
}
e = p.X
}
return e
}
// isBlankIdent returns true iff e is an Ident with name "_".
// They have no associated types.Object, and thus no type.
//
// TODO(gri): consider making typechecker not treat them differently.
// It's one less thing for clients like us to worry about.
//
func isBlankIdent(e ast.Expr) bool {
id, ok := e.(*ast.Ident)
return ok && id.Name == "_"
}
//// Type utilities. Some of these belong in go/types.
// isPointer returns true for types whose underlying type is a pointer.
func isPointer(typ types.Type) bool {
if nt, ok := typ.(*types.Named); ok {
typ = nt.Underlying()
}
_, ok := typ.(*types.Pointer)
return ok
}
// pointer(typ) returns the type that is a pointer to typ.
// TODO(adonovan): inline and eliminate.
func pointer(typ types.Type) *types.Pointer {
return types.NewPointer(typ)
}
// methodIndex returns the method (and its index) named id within the
// method table of named or interface type typ. If not found,
// panic ensues.
//
func methodIndex(typ types.Type, id Id) (int, *types.Func) {
t := typ.(interface {
NumMethods() int
Method(i int) *types.Func
})
for i, n := 0, t.NumMethods(); i < n; i++ {
m := t.Method(i)
if MakeId(m.Name(), m.Pkg()) == id {
return i, m
}
}
panic(fmt.Sprint("method not found: ", id, " in interface ", typ))
}
// isSuperinterface returns true if x is a superinterface of y,
// i.e. x's methods are a subset of y's.
//
func isSuperinterface(x, y *types.Interface) bool {
if y.NumMethods() < x.NumMethods() {
return false
}
// TODO(adonovan): opt: this is quadratic.
outer:
for i, n := 0, x.NumMethods(); i < n; i++ {
xm := x.Method(i)
for j, m := 0, y.NumMethods(); j < m; j++ {
ym := y.Method(j)
if MakeId(xm.Name(), xm.Pkg()) == MakeId(ym.Name(), ym.Pkg()) {
if !types.IsIdentical(xm.Type(), ym.Type()) {
return false // common name but conflicting types
}
continue outer
}
}
return false // y doesn't have this method
}
return true
}
// objKind returns the syntactic category of the named entity denoted by obj.
func objKind(obj types.Object) ast.ObjKind {
switch obj.(type) {
case *types.Package:
return ast.Pkg
case *types.TypeName:
return ast.Typ
case *types.Const:
return ast.Con
case *types.Var:
return ast.Var
case *types.Func:
return ast.Fun
}
panic(fmt.Sprintf("unexpected Object type: %T", obj))
}
// canHaveConcreteMethods returns true iff typ may have concrete
// methods associated with it. Callers must supply allowPtr=true.
//
// TODO(gri): consider putting this in go/types. It's surprisingly subtle.
func canHaveConcreteMethods(typ types.Type, allowPtr bool) bool {
switch typ := typ.(type) {
case *types.Pointer:
return allowPtr && canHaveConcreteMethods(typ.Elem(), false)
case *types.Named:
switch typ.Underlying().(type) {
case *types.Pointer, *types.Interface:
return false
}
return true
case *types.Struct:
return true
}
return false
}
// DefaultType returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. If there is no
// corresponding untyped type, the result is types.Typ[types.Invalid].
//
// Exported to exp/ssa/interp.
//
// TODO(gri): this is a copy of go/types.defaultType; export that function.
//
func DefaultType(typ types.Type) types.Type {
if t, ok := typ.(*types.Basic); ok {
k := types.Invalid
switch t.Kind() {
// case UntypedNil:
// There is no default type for nil. For a good error message,
// catch this case before calling this function.
case types.UntypedBool:
k = types.Bool
case types.UntypedInt:
k = types.Int
case types.UntypedRune:
k = types.Rune
case types.UntypedFloat:
k = types.Float64
case types.UntypedComplex:
k = types.Complex128
case types.UntypedString:
k = types.String
}
typ = types.Typ[k]
}
return typ
}
// makeId returns the Id (name, pkg) if the name is exported or
// (name, nil) otherwise.
//
// Exported to exp/ssa/interp.
//
func MakeId(name string, pkg *types.Package) (id Id) {
id.Name = name
if !ast.IsExported(name) {
id.Pkg = pkg
// TODO(gri): fix
// if pkg.Path() == "" {
// panic("Package " + pkg.Name() + "has empty Path")
// }
}
return
}
type ids []Id // a sortable slice of Id
func (p ids) Len() int { return len(p) }
func (p ids) Less(i, j int) bool {
x, y := p[i], p[j]
// *Package pointers are canonical so order by them.
// Don't use x.Pkg.ImportPath because sometimes it's empty.
// (TODO(gri): fix that.)
return reflect.ValueOf(x.Pkg).Pointer() < reflect.ValueOf(y.Pkg).Pointer() ||
x.Pkg == y.Pkg && x.Name < y.Name
}
func (p ids) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// logStack prints the formatted "start" message to stderr and
// returns a closure that prints the corresponding "end" message.
// Call using 'defer logStack(...)()' to show builder stack on panic.
// Don't forget trailing parens!
//
func logStack(format string, args ...interface{}) func() {
msg := fmt.Sprintf(format, args...)
io.WriteString(os.Stderr, msg)
io.WriteString(os.Stderr, "\n")
return func() {
io.WriteString(os.Stderr, msg)
io.WriteString(os.Stderr, " end\n")
}
}