mirror of
https://github.com/golang/go
synced 2024-11-15 01:00:29 -07:00
cd9fd640db
Trying this CL again, with a fixed test that allows platforms to disagree on the exact behavior of converting NaNs. We store 32-bit floating point constants in a 64-bit field, by converting that 32-bit float to 64-bit float to store it, and convert it back to use it. That works for *almost* all floating-point constants. The exception is signaling NaNs. The round trip described above means we can't represent a 32-bit signaling NaN, because conversions strip the signaling bit. To fix this issue, just forbid NaNs as floating-point constants in SSA form. This shouldn't affect any real-world code, as people seldom constant-propagate NaNs (except in test code). Additionally, NaNs are somewhat underspecified (which of the many NaNs do you get when dividing 0/0?), so when cross-compiling there's a danger of using the compiler machine's NaN regime for some math, and the target machine's NaN regime for other math. Better to use the target machine's NaN regime always. Update #36400 Change-Id: Idf203b688a15abceabbd66ba290d4e9f63619ecb Reviewed-on: https://go-review.googlesource.com/c/go/+/221790 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
218 lines
5.1 KiB
Go
218 lines
5.1 KiB
Go
// asmcheck
|
|
|
|
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package codegen
|
|
|
|
import "math"
|
|
|
|
var sink64 [8]float64
|
|
|
|
func approx(x float64) {
|
|
// s390x:"FIDBR\t[$]6"
|
|
// arm64:"FRINTPD"
|
|
// ppc64:"FRIP"
|
|
// ppc64le:"FRIP"
|
|
// wasm:"F64Ceil"
|
|
sink64[0] = math.Ceil(x)
|
|
|
|
// s390x:"FIDBR\t[$]7"
|
|
// arm64:"FRINTMD"
|
|
// ppc64:"FRIM"
|
|
// ppc64le:"FRIM"
|
|
// wasm:"F64Floor"
|
|
sink64[1] = math.Floor(x)
|
|
|
|
// s390x:"FIDBR\t[$]1"
|
|
// arm64:"FRINTAD"
|
|
// ppc64:"FRIN"
|
|
// ppc64le:"FRIN"
|
|
sink64[2] = math.Round(x)
|
|
|
|
// s390x:"FIDBR\t[$]5"
|
|
// arm64:"FRINTZD"
|
|
// ppc64:"FRIZ"
|
|
// ppc64le:"FRIZ"
|
|
// wasm:"F64Trunc"
|
|
sink64[3] = math.Trunc(x)
|
|
|
|
// s390x:"FIDBR\t[$]4"
|
|
// arm64:"FRINTND"
|
|
// wasm:"F64Nearest"
|
|
sink64[4] = math.RoundToEven(x)
|
|
}
|
|
|
|
func sqrt(x float64) float64 {
|
|
// amd64:"SQRTSD"
|
|
// 386/387:"FSQRT" 386/sse2:"SQRTSD"
|
|
// arm64:"FSQRTD"
|
|
// arm/7:"SQRTD"
|
|
// mips/hardfloat:"SQRTD" mips/softfloat:-"SQRTD"
|
|
// mips64/hardfloat:"SQRTD" mips64/softfloat:-"SQRTD"
|
|
// wasm:"F64Sqrt"
|
|
return math.Sqrt(x)
|
|
}
|
|
|
|
// Check that it's using integer registers
|
|
func abs(x, y float64) {
|
|
// amd64:"BTRQ\t[$]63"
|
|
// arm64:"FABSD\t"
|
|
// s390x:"LPDFR\t",-"MOVD\t" (no integer load/store)
|
|
// ppc64:"FABS\t"
|
|
// ppc64le:"FABS\t"
|
|
// wasm:"F64Abs"
|
|
// arm/6:"ABSD\t"
|
|
sink64[0] = math.Abs(x)
|
|
|
|
// amd64:"BTRQ\t[$]63","PXOR" (TODO: this should be BTSQ)
|
|
// s390x:"LNDFR\t",-"MOVD\t" (no integer load/store)
|
|
// ppc64:"FNABS\t"
|
|
// ppc64le:"FNABS\t"
|
|
sink64[1] = -math.Abs(y)
|
|
}
|
|
|
|
// Check that it's using integer registers
|
|
func abs32(x float32) float32 {
|
|
// s390x:"LPDFR",-"LDEBR",-"LEDBR" (no float64 conversion)
|
|
return float32(math.Abs(float64(x)))
|
|
}
|
|
|
|
// Check that it's using integer registers
|
|
func copysign(a, b, c float64) {
|
|
// amd64:"BTRQ\t[$]63","ANDQ","ORQ"
|
|
// s390x:"CPSDR",-"MOVD" (no integer load/store)
|
|
// ppc64:"FCPSGN"
|
|
// ppc64le:"FCPSGN"
|
|
// wasm:"F64Copysign"
|
|
sink64[0] = math.Copysign(a, b)
|
|
|
|
// amd64:"BTSQ\t[$]63"
|
|
// s390x:"LNDFR\t",-"MOVD\t" (no integer load/store)
|
|
// ppc64:"FCPSGN"
|
|
// ppc64le:"FCPSGN"
|
|
// arm64:"ORR", -"AND"
|
|
sink64[1] = math.Copysign(c, -1)
|
|
|
|
// Like math.Copysign(c, -1), but with integer operations. Useful
|
|
// for platforms that have a copysign opcode to see if it's detected.
|
|
// s390x:"LNDFR\t",-"MOVD\t" (no integer load/store)
|
|
sink64[2] = math.Float64frombits(math.Float64bits(a) | 1<<63)
|
|
|
|
// amd64:"ANDQ","ORQ"
|
|
// s390x:"CPSDR\t",-"MOVD\t" (no integer load/store)
|
|
// ppc64:"FCPSGN"
|
|
// ppc64le:"FCPSGN"
|
|
sink64[3] = math.Copysign(-1, c)
|
|
}
|
|
|
|
func fma(x, y, z float64) float64 {
|
|
// amd64:"VFMADD231SD"
|
|
// arm/6:"FMULAD"
|
|
// arm64:"FMADDD"
|
|
// s390x:"FMADD"
|
|
// ppc64:"FMADD"
|
|
// ppc64le:"FMADD"
|
|
return math.FMA(x, y, z)
|
|
}
|
|
|
|
func fromFloat64(f64 float64) uint64 {
|
|
// amd64:"MOVQ\tX.*, [^X].*"
|
|
// arm64:"FMOVD\tF.*, R.*"
|
|
// ppc64:"MFVSRD"
|
|
// ppc64le:"MFVSRD"
|
|
return math.Float64bits(f64+1) + 1
|
|
}
|
|
|
|
func fromFloat32(f32 float32) uint32 {
|
|
// amd64:"MOVL\tX.*, [^X].*"
|
|
// arm64:"FMOVS\tF.*, R.*"
|
|
return math.Float32bits(f32+1) + 1
|
|
}
|
|
|
|
func toFloat64(u64 uint64) float64 {
|
|
// amd64:"MOVQ\t[^X].*, X.*"
|
|
// arm64:"FMOVD\tR.*, F.*"
|
|
// ppc64:"MTVSRD"
|
|
// ppc64le:"MTVSRD"
|
|
return math.Float64frombits(u64+1) + 1
|
|
}
|
|
|
|
func toFloat32(u32 uint32) float32 {
|
|
// amd64:"MOVL\t[^X].*, X.*"
|
|
// arm64:"FMOVS\tR.*, F.*"
|
|
return math.Float32frombits(u32+1) + 1
|
|
}
|
|
|
|
// Test that comparisons with constants converted to float
|
|
// are evaluated at compile-time
|
|
|
|
func constantCheck64() bool {
|
|
// amd64:"MOVB\t[$]0",-"FCMP",-"MOVB\t[$]1"
|
|
// s390x:"MOV(B|BZ|D)\t[$]0,",-"FCMPU",-"MOV(B|BZ|D)\t[$]1,"
|
|
return 0.5 == float64(uint32(1)) || 1.5 > float64(uint64(1<<63))
|
|
}
|
|
|
|
func constantCheck32() bool {
|
|
// amd64:"MOVB\t[$]1",-"FCMP",-"MOVB\t[$]0"
|
|
// s390x:"MOV(B|BZ|D)\t[$]1,",-"FCMPU",-"MOV(B|BZ|D)\t[$]0,"
|
|
return float32(0.5) <= float32(int64(1)) && float32(1.5) >= float32(int32(-1<<31))
|
|
}
|
|
|
|
// Test that integer constants are converted to floating point constants
|
|
// at compile-time
|
|
|
|
func constantConvert32(x float32) float32 {
|
|
// amd64:"MOVSS\t[$]f32.3f800000\\(SB\\)"
|
|
// s390x:"FMOVS\t[$]f32.3f800000\\(SB\\)"
|
|
// ppc64:"FMOVS\t[$]f32.3f800000\\(SB\\)"
|
|
// ppc64le:"FMOVS\t[$]f32.3f800000\\(SB\\)"
|
|
// arm64:"FMOVS\t[$]\\(1.0\\)"
|
|
if x > math.Float32frombits(0x3f800000) {
|
|
return -x
|
|
}
|
|
return x
|
|
}
|
|
|
|
func constantConvertInt32(x uint32) uint32 {
|
|
// amd64:-"MOVSS"
|
|
// s390x:-"FMOVS"
|
|
// ppc64:-"FMOVS"
|
|
// ppc64le:-"FMOVS"
|
|
// arm64:-"FMOVS"
|
|
if x > math.Float32bits(1) {
|
|
return -x
|
|
}
|
|
return x
|
|
}
|
|
|
|
func nanGenerate64() float64 {
|
|
// Test to make sure we don't generate a NaN while constant propagating.
|
|
// See issue 36400.
|
|
zero := 0.0
|
|
// amd64:-"DIVSD"
|
|
inf := 1 / zero // +inf. We can constant propagate this one.
|
|
negone := -1.0
|
|
|
|
// amd64:"DIVSD"
|
|
z0 := zero / zero
|
|
// amd64:"MULSD"
|
|
z1 := zero * inf
|
|
// amd64:"SQRTSD"
|
|
z2 := math.Sqrt(negone)
|
|
return z0 + z1 + z2
|
|
}
|
|
|
|
func nanGenerate32() float32 {
|
|
zero := float32(0.0)
|
|
// amd64:-"DIVSS"
|
|
inf := 1 / zero // +inf. We can constant propagate this one.
|
|
|
|
// amd64:"DIVSS"
|
|
z0 := zero / zero
|
|
// amd64:"MULSS"
|
|
z1 := zero * inf
|
|
return z0 + z1
|
|
}
|