1
0
mirror of https://github.com/golang/go synced 2024-11-19 14:34:42 -07:00
go/src/runtime/complex.go
Martin Möhrmann 16200c7333 runtime: make complex division c99 compatible
- changes tests to check that the real and imaginary part of the go complex
  division result is equal to the result gcc produces for c99
- changes complex division code to satisfy new complex division test
- adds float functions isNan, isFinite, isInf, abs and copysign
  in the runtime package

Fixes #14644.

name                   old time/op  new time/op  delta
Complex128DivNormal-4  21.8ns ± 6%  13.9ns ± 6%  -36.37%  (p=0.000 n=20+20)
Complex128DivNisNaN-4  14.1ns ± 1%  15.0ns ± 1%   +5.86%  (p=0.000 n=20+19)
Complex128DivDisNaN-4  12.5ns ± 1%  16.7ns ± 1%  +33.79%  (p=0.000 n=19+20)
Complex128DivNisInf-4  10.1ns ± 1%  13.0ns ± 1%  +28.25%  (p=0.000 n=20+19)
Complex128DivDisInf-4  11.0ns ± 1%  20.9ns ± 1%  +90.69%  (p=0.000 n=16+19)
ComplexAlgMap-4        86.7ns ± 1%  86.8ns ± 2%     ~     (p=0.804 n=20+20)

Change-Id: I261f3b4a81f6cc858bc7ff48f6fd1b39c300abf0
Reviewed-on: https://go-review.googlesource.com/37441
Reviewed-by: Robert Griesemer <gri@golang.org>
2017-03-15 22:45:17 +00:00

62 lines
1.6 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
// inf2one returns a signed 1 if f is an infinity and a signed 0 otherwise.
// The sign of the result is the sign of f.
func inf2one(f float64) float64 {
g := 0.0
if isInf(f) {
g = 1.0
}
return copysign(g, f)
}
func complex128div(n complex128, m complex128) complex128 {
var e, f float64 // complex(e, f) = n/m
// Algorithm for robust complex division as described in
// Robert L. Smith: Algorithm 116: Complex division. Commun. ACM 5(8): 435 (1962).
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m)
denom := real(m) + ratio*imag(m)
e = (real(n) + imag(n)*ratio) / denom
f = (imag(n) - real(n)*ratio) / denom
} else {
ratio := real(m) / imag(m)
denom := imag(m) + ratio*real(m)
e = (real(n)*ratio + imag(n)) / denom
f = (imag(n)*ratio - real(n)) / denom
}
if isNaN(e) && isNaN(f) {
// Correct final result to infinities and zeros if applicable.
// Matches C99: ISO/IEC 9899:1999 - G.5.1 Multiplicative operators.
a, b := real(n), imag(n)
c, d := real(m), imag(m)
switch {
case m == 0 && (!isNaN(a) || !isNaN(b)):
e = copysign(inf, c) * a
f = copysign(inf, c) * b
case (isInf(a) || isInf(b)) && isFinite(c) && isFinite(d):
a = inf2one(a)
b = inf2one(b)
e = inf * (a*c + b*d)
f = inf * (b*c - a*d)
case (isInf(c) || isInf(d)) && isFinite(a) && isFinite(b):
c = inf2one(c)
d = inf2one(d)
e = 0 * (a*c + b*d)
f = 0 * (b*c - a*d)
}
}
return complex(e, f)
}