1
0
mirror of https://github.com/golang/go synced 2024-10-03 13:21:22 -06:00
go/src/runtime/sys_linux_386.s
Russ Cox 5bfed7c6c0 runtime: log all thread stack traces during GODEBUG=crash on Linux and OS X
Normally, a panic/throw only shows the thread stack for the current thread
and all paused goroutines. Goroutines running on other threads, or other threads
running on their system stacks, are opaque. Change that when GODEBUG=crash,
by passing a SIGQUIT around to all the threads when GODEBUG=crash.
If this works out reasonably well, we might make the SIGQUIT relay part of
the standard panic/throw death, perhaps eliding idle m's.

Change-Id: If7dd354f7f3a6e326d17c254afcf4f7681af2f8b
Reviewed-on: https://go-review.googlesource.com/2811
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-01-14 18:33:38 +00:00

500 lines
11 KiB
ArmAsm

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// System calls and other sys.stuff for 386, Linux
//
#include "go_asm.h"
#include "go_tls.h"
#include "textflag.h"
TEXT runtime·exit(SB),NOSPLIT,$0
MOVL $252, AX // syscall number
MOVL code+0(FP), BX
CALL *runtime·_vdso(SB)
INT $3 // not reached
RET
TEXT runtime·exit1(SB),NOSPLIT,$0
MOVL $1, AX // exit - exit the current os thread
MOVL code+0(FP), BX
CALL *runtime·_vdso(SB)
INT $3 // not reached
RET
TEXT runtime·open(SB),NOSPLIT,$0
MOVL $5, AX // syscall - open
MOVL name+0(FP), BX
MOVL mode+4(FP), CX
MOVL perm+8(FP), DX
CALL *runtime·_vdso(SB)
MOVL AX, ret+12(FP)
RET
TEXT runtime·close(SB),NOSPLIT,$0
MOVL $6, AX // syscall - close
MOVL fd+0(FP), BX
CALL *runtime·_vdso(SB)
MOVL AX, ret+4(FP)
RET
TEXT runtime·write(SB),NOSPLIT,$0
MOVL $4, AX // syscall - write
MOVL fd+0(FP), BX
MOVL p+4(FP), CX
MOVL n+8(FP), DX
CALL *runtime·_vdso(SB)
MOVL AX, ret+12(FP)
RET
TEXT runtime·read(SB),NOSPLIT,$0
MOVL $3, AX // syscall - read
MOVL fd+0(FP), BX
MOVL p+4(FP), CX
MOVL n+8(FP), DX
CALL *runtime·_vdso(SB)
MOVL AX, ret+12(FP)
RET
TEXT runtime·getrlimit(SB),NOSPLIT,$0
MOVL $191, AX // syscall - ugetrlimit
MOVL kind+0(FP), BX
MOVL limit+4(FP), CX
CALL *runtime·_vdso(SB)
MOVL AX, ret+8(FP)
RET
TEXT runtime·usleep(SB),NOSPLIT,$8
MOVL $0, DX
MOVL usec+0(FP), AX
MOVL $1000000, CX
DIVL CX
MOVL AX, 0(SP)
MOVL DX, 4(SP)
// select(0, 0, 0, 0, &tv)
MOVL $142, AX
MOVL $0, BX
MOVL $0, CX
MOVL $0, DX
MOVL $0, SI
LEAL 0(SP), DI
CALL *runtime·_vdso(SB)
RET
TEXT runtime·raise(SB),NOSPLIT,$12
MOVL $224, AX // syscall - gettid
CALL *runtime·_vdso(SB)
MOVL AX, BX // arg 1 tid
MOVL sig+0(FP), CX // arg 2 signal
MOVL $238, AX // syscall - tkill
CALL *runtime·_vdso(SB)
RET
TEXT runtime·raiseproc(SB),NOSPLIT,$12
MOVL $20, AX // syscall - getpid
CALL *runtime·_vdso(SB)
MOVL AX, BX // arg 1 pid
MOVL sig+0(FP), CX // arg 2 signal
MOVL $37, AX // syscall - kill
CALL *runtime·_vdso(SB)
RET
TEXT runtime·setitimer(SB),NOSPLIT,$0-12
MOVL $104, AX // syscall - setitimer
MOVL mode+0(FP), BX
MOVL new+4(FP), CX
MOVL old+8(FP), DX
CALL *runtime·_vdso(SB)
RET
TEXT runtime·mincore(SB),NOSPLIT,$0-16
MOVL $218, AX // syscall - mincore
MOVL addr+0(FP), BX
MOVL n+4(FP), CX
MOVL dst+8(FP), DX
CALL *runtime·_vdso(SB)
MOVL AX, ret+12(FP)
RET
// func now() (sec int64, nsec int32)
TEXT time·now(SB), NOSPLIT, $32
MOVL $265, AX // syscall - clock_gettime
MOVL $0, BX // CLOCK_REALTIME
LEAL 8(SP), CX
MOVL $0, DX
CALL *runtime·_vdso(SB)
MOVL 8(SP), AX // sec
MOVL 12(SP), BX // nsec
// sec is in AX, nsec in BX
MOVL AX, sec+0(FP)
MOVL $0, sec+4(FP)
MOVL BX, nsec+8(FP)
RET
// int64 nanotime(void) so really
// void nanotime(int64 *nsec)
TEXT runtime·nanotime(SB), NOSPLIT, $32
MOVL $265, AX // syscall - clock_gettime
MOVL $1, BX // CLOCK_MONOTONIC
LEAL 8(SP), CX
MOVL $0, DX
CALL *runtime·_vdso(SB)
MOVL 8(SP), AX // sec
MOVL 12(SP), BX // nsec
// sec is in AX, nsec in BX
// convert to DX:AX nsec
MOVL $1000000000, CX
MULL CX
ADDL BX, AX
ADCL $0, DX
MOVL AX, ret_lo+0(FP)
MOVL DX, ret_hi+4(FP)
RET
TEXT runtime·rtsigprocmask(SB),NOSPLIT,$0
MOVL $175, AX // syscall entry
MOVL sig+0(FP), BX
MOVL new+4(FP), CX
MOVL old+8(FP), DX
MOVL size+12(FP), SI
CALL *runtime·_vdso(SB)
CMPL AX, $0xfffff001
JLS 2(PC)
INT $3
RET
TEXT runtime·rt_sigaction(SB),NOSPLIT,$0
MOVL $174, AX // syscall - rt_sigaction
MOVL sig+0(FP), BX
MOVL new+4(FP), CX
MOVL old+8(FP), DX
MOVL size+12(FP), SI
CALL *runtime·_vdso(SB)
MOVL AX, ret+16(FP)
RET
TEXT runtime·sigtramp(SB),NOSPLIT,$44
get_tls(CX)
// check that g exists
MOVL g(CX), DI
CMPL DI, $0
JNE 6(PC)
MOVL sig+0(FP), BX
MOVL BX, 0(SP)
MOVL $runtime·badsignal(SB), AX
CALL AX
RET
// save g
MOVL DI, 20(SP)
// g = m->gsignal
MOVL g_m(DI), BX
MOVL m_gsignal(BX), BX
MOVL BX, g(CX)
// copy arguments for call to sighandler
MOVL sig+0(FP), BX
MOVL BX, 0(SP)
MOVL info+4(FP), BX
MOVL BX, 4(SP)
MOVL context+8(FP), BX
MOVL BX, 8(SP)
MOVL DI, 12(SP)
CALL runtime·sighandler(SB)
// restore g
get_tls(CX)
MOVL 20(SP), BX
MOVL BX, g(CX)
RET
TEXT runtime·sigreturn(SB),NOSPLIT,$0
MOVL $173, AX // rt_sigreturn
// Sigreturn expects same SP as signal handler,
// so cannot CALL *runtime._vsdo(SB) here.
INT $0x80
INT $3 // not reached
RET
TEXT runtime·mmap(SB),NOSPLIT,$0
MOVL $192, AX // mmap2
MOVL addr+0(FP), BX
MOVL n+4(FP), CX
MOVL prot+8(FP), DX
MOVL flags+12(FP), SI
MOVL fd+16(FP), DI
MOVL off+20(FP), BP
SHRL $12, BP
CALL *runtime·_vdso(SB)
CMPL AX, $0xfffff001
JLS 3(PC)
NOTL AX
INCL AX
MOVL AX, ret+24(FP)
RET
TEXT runtime·munmap(SB),NOSPLIT,$0
MOVL $91, AX // munmap
MOVL addr+0(FP), BX
MOVL n+4(FP), CX
CALL *runtime·_vdso(SB)
CMPL AX, $0xfffff001
JLS 2(PC)
INT $3
RET
TEXT runtime·madvise(SB),NOSPLIT,$0
MOVL $219, AX // madvise
MOVL addr+0(FP), BX
MOVL n+4(FP), CX
MOVL flags+8(FP), DX
CALL *runtime·_vdso(SB)
// ignore failure - maybe pages are locked
RET
// int32 futex(int32 *uaddr, int32 op, int32 val,
// struct timespec *timeout, int32 *uaddr2, int32 val2);
TEXT runtime·futex(SB),NOSPLIT,$0
MOVL $240, AX // futex
MOVL addr+0(FP), BX
MOVL op+4(FP), CX
MOVL val+8(FP), DX
MOVL ts+12(FP), SI
MOVL addr2+16(FP), DI
MOVL val3+20(FP), BP
CALL *runtime·_vdso(SB)
MOVL AX, ret+24(FP)
RET
// int32 clone(int32 flags, void *stack, M *mp, G *gp, void (*fn)(void));
TEXT runtime·clone(SB),NOSPLIT,$0
MOVL $120, AX // clone
MOVL flags+4(SP), BX
MOVL stack+8(SP), CX
MOVL $0, DX // parent tid ptr
MOVL $0, DI // child tid ptr
// Copy mp, gp, fn off parent stack for use by child.
SUBL $16, CX
MOVL mm+12(SP), SI
MOVL SI, 0(CX)
MOVL gg+16(SP), SI
MOVL SI, 4(CX)
MOVL fn+20(SP), SI
MOVL SI, 8(CX)
MOVL $1234, 12(CX)
// cannot use CALL *runtime·_vdso(SB) here, because
// the stack changes during the system call (after
// CALL *runtime·_vdso(SB), the child is still using
// the parent's stack when executing its RET instruction).
INT $0x80
// In parent, return.
CMPL AX, $0
JEQ 3(PC)
MOVL AX, ret+20(FP)
RET
// Paranoia: check that SP is as we expect.
MOVL mm+8(FP), BP
CMPL BP, $1234
JEQ 2(PC)
INT $3
// Initialize AX to Linux tid
MOVL $224, AX
CALL *runtime·_vdso(SB)
// In child on new stack. Reload registers (paranoia).
MOVL 0(SP), BX // m
MOVL flags+0(FP), DX // g
MOVL stk+4(FP), SI // fn
MOVL AX, m_procid(BX) // save tid as m->procid
// set up ldt 7+id to point at m->tls.
// newosproc left the id in tls[0].
LEAL m_tls(BX), BP
MOVL 0(BP), DI
ADDL $7, DI // m0 is LDT#7. count up.
// setldt(tls#, &tls, sizeof tls)
PUSHAL // save registers
PUSHL $32 // sizeof tls
PUSHL BP // &tls
PUSHL DI // tls #
CALL runtime·setldt(SB)
POPL AX
POPL AX
POPL AX
POPAL
// Now segment is established. Initialize m, g.
get_tls(AX)
MOVL DX, g(AX)
MOVL BX, g_m(DX)
CALL runtime·stackcheck(SB) // smashes AX, CX
MOVL 0(DX), DX // paranoia; check they are not nil
MOVL 0(BX), BX
// more paranoia; check that stack splitting code works
PUSHAL
CALL runtime·emptyfunc(SB)
POPAL
CALL SI // fn()
CALL runtime·exit1(SB)
MOVL $0x1234, 0x1005
TEXT runtime·sigaltstack(SB),NOSPLIT,$-8
MOVL $186, AX // sigaltstack
MOVL new+4(SP), BX
MOVL old+8(SP), CX
CALL *runtime·_vdso(SB)
CMPL AX, $0xfffff001
JLS 2(PC)
INT $3
RET
// <asm-i386/ldt.h>
// struct user_desc {
// unsigned int entry_number;
// unsigned long base_addr;
// unsigned int limit;
// unsigned int seg_32bit:1;
// unsigned int contents:2;
// unsigned int read_exec_only:1;
// unsigned int limit_in_pages:1;
// unsigned int seg_not_present:1;
// unsigned int useable:1;
// };
#define SEG_32BIT 0x01
// contents are the 2 bits 0x02 and 0x04.
#define CONTENTS_DATA 0x00
#define CONTENTS_STACK 0x02
#define CONTENTS_CODE 0x04
#define READ_EXEC_ONLY 0x08
#define LIMIT_IN_PAGES 0x10
#define SEG_NOT_PRESENT 0x20
#define USEABLE 0x40
// setldt(int entry, int address, int limit)
TEXT runtime·setldt(SB),NOSPLIT,$32
MOVL entry+0(FP), BX // entry
MOVL address+4(FP), CX // base address
/*
* When linking against the system libraries,
* we use its pthread_create and let it set up %gs
* for us. When we do that, the private storage
* we get is not at 0(GS), 4(GS), but -8(GS), -4(GS).
* To insulate the rest of the tool chain from this
* ugliness, 8l rewrites 0(TLS) into -8(GS) for us.
* To accommodate that rewrite, we translate
* the address here and bump the limit to 0xffffffff (no limit)
* so that -8(GS) maps to 0(address).
* Also, the final 0(GS) (current 8(CX)) has to point
* to itself, to mimic ELF.
*/
ADDL $0x8, CX // address
MOVL CX, 0(CX)
// set up user_desc
LEAL 16(SP), AX // struct user_desc
MOVL BX, 0(AX)
MOVL CX, 4(AX)
MOVL $0xfffff, 8(AX)
MOVL $(SEG_32BIT|LIMIT_IN_PAGES|USEABLE|CONTENTS_DATA), 12(AX) // flag bits
// call modify_ldt
MOVL $1, BX // func = 1 (write)
MOVL AX, CX // user_desc
MOVL $16, DX // sizeof(user_desc)
MOVL $123, AX // syscall - modify_ldt
CALL *runtime·_vdso(SB)
// breakpoint on error
CMPL AX, $0xfffff001
JLS 2(PC)
INT $3
// compute segment selector - (entry*8+7)
MOVL entry+0(FP), AX
SHLL $3, AX
ADDL $7, AX
MOVW AX, GS
RET
TEXT runtime·osyield(SB),NOSPLIT,$0
MOVL $158, AX
CALL *runtime·_vdso(SB)
RET
TEXT runtime·sched_getaffinity(SB),NOSPLIT,$0
MOVL $242, AX // syscall - sched_getaffinity
MOVL pid+0(FP), BX
MOVL len+4(FP), CX
MOVL buf+8(FP), DX
CALL *runtime·_vdso(SB)
MOVL AX, ret+12(FP)
RET
// int32 runtime·epollcreate(int32 size);
TEXT runtime·epollcreate(SB),NOSPLIT,$0
MOVL $254, AX
MOVL size+0(FP), BX
CALL *runtime·_vdso(SB)
MOVL AX, ret+4(FP)
RET
// int32 runtime·epollcreate1(int32 flags);
TEXT runtime·epollcreate1(SB),NOSPLIT,$0
MOVL $329, AX
MOVL flags+0(FP), BX
CALL *runtime·_vdso(SB)
MOVL AX, ret+4(FP)
RET
// func epollctl(epfd, op, fd int32, ev *epollEvent) int
TEXT runtime·epollctl(SB),NOSPLIT,$0
MOVL $255, AX
MOVL epfd+0(FP), BX
MOVL op+4(FP), CX
MOVL fd+8(FP), DX
MOVL ev+12(FP), SI
CALL *runtime·_vdso(SB)
MOVL AX, ret+16(FP)
RET
// int32 runtime·epollwait(int32 epfd, EpollEvent *ev, int32 nev, int32 timeout);
TEXT runtime·epollwait(SB),NOSPLIT,$0
MOVL $256, AX
MOVL epfd+0(FP), BX
MOVL ev+4(FP), CX
MOVL nev+8(FP), DX
MOVL timeout+12(FP), SI
CALL *runtime·_vdso(SB)
MOVL AX, ret+16(FP)
RET
// void runtime·closeonexec(int32 fd);
TEXT runtime·closeonexec(SB),NOSPLIT,$0
MOVL $55, AX // fcntl
MOVL fd+0(FP), BX // fd
MOVL $2, CX // F_SETFD
MOVL $1, DX // FD_CLOEXEC
CALL *runtime·_vdso(SB)
RET