1
0
mirror of https://github.com/golang/go synced 2024-11-19 00:04:40 -07:00
go/src/runtime/hash32.go
Keith Randall d5e4c4061b runtime: remove size argument from hash and equal algorithms
The equal algorithm used to take the size
   equal(p, q *T, size uintptr) bool
With this change, it does not
   equal(p, q *T) bool
Similarly for the hash algorithm.

The size is rarely used, as most equal functions know the size
of the thing they are comparing.  For instance f32equal already
knows its inputs are 4 bytes in size.

For cases where the size is not known, we allocate a closure
(one for each size needed) that points to an assembly stub that
reads the size out of the closure and calls generic code that
has a size argument.

Reduces the size of the go binary by 0.07%.  Performance impact
is not measurable.

Change-Id: I6e00adf3dde7ad2974adbcff0ee91e86d2194fec
Reviewed-on: https://go-review.googlesource.com/2392
Reviewed-by: Russ Cox <rsc@golang.org>
2015-01-07 21:57:01 +00:00

90 lines
2.0 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Hashing algorithm inspired by
// xxhash: https://code.google.com/p/xxhash/
// cityhash: https://code.google.com/p/cityhash/
// +build 386 arm
package runtime
import "unsafe"
const (
// Constants for multiplication: four random odd 32-bit numbers.
m1 = 3168982561
m2 = 3339683297
m3 = 832293441
m4 = 2336365089
)
func memhash(p unsafe.Pointer, seed, s uintptr) uintptr {
if GOARCH == "386" && GOOS != "nacl" && useAeshash {
return aeshash(p, seed, s)
}
h := uint32(seed + s*hashkey[0])
tail:
switch {
case s == 0:
case s < 4:
h ^= uint32(*(*byte)(p))
h ^= uint32(*(*byte)(add(p, s>>1))) << 8
h ^= uint32(*(*byte)(add(p, s-1))) << 16
h = rotl_15(h*m1) * m2
case s == 4:
h ^= readUnaligned32(p)
h = rotl_15(h*m1) * m2
case s <= 8:
h ^= readUnaligned32(p)
h = rotl_15(h*m1) * m2
h ^= readUnaligned32(add(p, s-4))
h = rotl_15(h*m1) * m2
case s <= 16:
h ^= readUnaligned32(p)
h = rotl_15(h*m1) * m2
h ^= readUnaligned32(add(p, 4))
h = rotl_15(h*m1) * m2
h ^= readUnaligned32(add(p, s-8))
h = rotl_15(h*m1) * m2
h ^= readUnaligned32(add(p, s-4))
h = rotl_15(h*m1) * m2
default:
v1 := h
v2 := uint32(hashkey[1])
v3 := uint32(hashkey[2])
v4 := uint32(hashkey[3])
for s >= 16 {
v1 ^= readUnaligned32(p)
v1 = rotl_15(v1*m1) * m2
p = add(p, 4)
v2 ^= readUnaligned32(p)
v2 = rotl_15(v2*m2) * m3
p = add(p, 4)
v3 ^= readUnaligned32(p)
v3 = rotl_15(v3*m3) * m4
p = add(p, 4)
v4 ^= readUnaligned32(p)
v4 = rotl_15(v4*m4) * m1
p = add(p, 4)
s -= 16
}
h = v1 ^ v2 ^ v3 ^ v4
goto tail
}
h ^= h >> 17
h *= m3
h ^= h >> 13
h *= m4
h ^= h >> 16
return uintptr(h)
}
// Note: in order to get the compiler to issue rotl instructions, we
// need to constant fold the shift amount by hand.
// TODO: convince the compiler to issue rotl instructions after inlining.
func rotl_15(x uint32) uint32 {
return (x << 15) | (x >> (32 - 15))
}