mirror of
https://github.com/golang/go
synced 2024-11-14 09:10:27 -07:00
d4a7ea1b71
Instead of open-coding conversions from *string to unsafe.Pointer then to *stringStruct, add a helper function to add some type safety. Bonus: This caught two **string values being converted to *stringStruct in heapdump.go. While here, get rid of the redundant _string type, but add in a stringStructDWARF type used for generating DWARF debug info. Change-Id: I8882f8cca66ac45190270f82019a5d85db023bd2 Reviewed-on: https://go-review.googlesource.com/16131 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Reviewed-by: Ian Lance Taylor <iant@golang.org>
160 lines
4.4 KiB
Go
160 lines
4.4 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"unsafe"
|
|
)
|
|
|
|
type slice struct {
|
|
array unsafe.Pointer
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
// TODO: take uintptrs instead of int64s?
|
|
func makeslice(t *slicetype, len64, cap64 int64) slice {
|
|
// NOTE: The len > MaxMem/elemsize check here is not strictly necessary,
|
|
// but it produces a 'len out of range' error instead of a 'cap out of range' error
|
|
// when someone does make([]T, bignumber). 'cap out of range' is true too,
|
|
// but since the cap is only being supplied implicitly, saying len is clearer.
|
|
// See issue 4085.
|
|
len := int(len64)
|
|
if len64 < 0 || int64(len) != len64 || t.elem.size > 0 && uintptr(len) > _MaxMem/uintptr(t.elem.size) {
|
|
panic(errorString("makeslice: len out of range"))
|
|
}
|
|
cap := int(cap64)
|
|
if cap < len || int64(cap) != cap64 || t.elem.size > 0 && uintptr(cap) > _MaxMem/uintptr(t.elem.size) {
|
|
panic(errorString("makeslice: cap out of range"))
|
|
}
|
|
p := newarray(t.elem, uintptr(cap))
|
|
return slice{p, len, cap}
|
|
}
|
|
|
|
// growslice_n is a variant of growslice that takes the number of new elements
|
|
// instead of the new minimum capacity.
|
|
// TODO(rsc): This is used by append(slice, slice...).
|
|
// The compiler should change that code to use growslice directly (issue #11419).
|
|
func growslice_n(t *slicetype, old slice, n int) slice {
|
|
if n < 1 {
|
|
panic(errorString("growslice: invalid n"))
|
|
}
|
|
return growslice(t, old, old.cap+n)
|
|
}
|
|
|
|
// growslice handles slice growth during append.
|
|
// It is passed the slice type, the old slice, and the desired new minimum capacity,
|
|
// and it returns a new slice with at least that capacity, with the old data
|
|
// copied into it.
|
|
func growslice(t *slicetype, old slice, cap int) slice {
|
|
if cap < old.cap || t.elem.size > 0 && uintptr(cap) > _MaxMem/uintptr(t.elem.size) {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer(&t))
|
|
racereadrangepc(old.array, uintptr(old.len*int(t.elem.size)), callerpc, funcPC(growslice))
|
|
}
|
|
|
|
et := t.elem
|
|
if et.size == 0 {
|
|
// append should not create a slice with nil pointer but non-zero len.
|
|
// We assume that append doesn't need to preserve old.array in this case.
|
|
return slice{unsafe.Pointer(&zerobase), old.len, cap}
|
|
}
|
|
|
|
newcap := old.cap
|
|
if newcap+newcap < cap {
|
|
newcap = cap
|
|
} else {
|
|
for {
|
|
if old.len < 1024 {
|
|
newcap += newcap
|
|
} else {
|
|
newcap += newcap / 4
|
|
}
|
|
if newcap >= cap {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if uintptr(newcap) >= _MaxMem/uintptr(et.size) {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
lenmem := uintptr(old.len) * uintptr(et.size)
|
|
capmem := roundupsize(uintptr(newcap) * uintptr(et.size))
|
|
newcap = int(capmem / uintptr(et.size))
|
|
var p unsafe.Pointer
|
|
if et.kind&kindNoPointers != 0 {
|
|
p = rawmem(capmem)
|
|
memmove(p, old.array, lenmem)
|
|
memclr(add(p, lenmem), capmem-lenmem)
|
|
} else {
|
|
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
|
|
p = newarray(et, uintptr(newcap))
|
|
if !writeBarrierEnabled {
|
|
memmove(p, old.array, lenmem)
|
|
} else {
|
|
for i := uintptr(0); i < lenmem; i += et.size {
|
|
typedmemmove(et, add(p, i), add(old.array, i))
|
|
}
|
|
}
|
|
}
|
|
|
|
return slice{p, old.len, newcap}
|
|
}
|
|
|
|
func slicecopy(to, fm slice, width uintptr) int {
|
|
if fm.len == 0 || to.len == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := fm.len
|
|
if to.len < n {
|
|
n = to.len
|
|
}
|
|
|
|
if width == 0 {
|
|
return n
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer(&to))
|
|
pc := funcPC(slicecopy)
|
|
racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
|
|
racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
|
|
}
|
|
|
|
size := uintptr(n) * width
|
|
if size == 1 { // common case worth about 2x to do here
|
|
// TODO: is this still worth it with new memmove impl?
|
|
*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
|
|
} else {
|
|
memmove(to.array, fm.array, size)
|
|
}
|
|
return int(n)
|
|
}
|
|
|
|
func slicestringcopy(to []byte, fm string) int {
|
|
if len(fm) == 0 || len(to) == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := len(fm)
|
|
if len(to) < n {
|
|
n = len(to)
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer(&to))
|
|
pc := funcPC(slicestringcopy)
|
|
racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc)
|
|
}
|
|
|
|
memmove(unsafe.Pointer(&to[0]), unsafe.Pointer(stringStructOf(&fm).str), uintptr(n))
|
|
return n
|
|
}
|