1
0
mirror of https://github.com/golang/go synced 2024-11-19 02:24:41 -07:00
go/internal/lsp/fuzzy/matcher.go
Muir Manders 83d82311fd internal/lsp: fix fuzzy matcher inconsistency
Originally the fuzzy matcher required a match in the final candidate
segment. For example, to match the candidate "foo.bar", the input had
to have at least one character that matched "bar". I previously
removed this requirement as it is too restrictive for deep completions
to be useful.

However, there was still some lingering final-segment favoritism in
the matching algorithm. In particular, there were penalties for not
matching the final segment's first character and for not matching the
final segment's word initial characters. However, these penalties only
made sense when we also required a final segment match. Consider this
example:

User input: "U"

Candidate "ErrUnexpectedEOF" - with only a single segment, we got big
penalties for not matching the leading "E" (since it is the final
segment).

Candidate "ErrUnexpectedEOF.Error" - "ErrUnexpectedEOF" is no longer
the final segment, so we didn't get penalties. And we didn't get
penalties for the final segment "Error" because we finished matching
after the first "U". As a result, this candidate slips through with a
higher score.

Fix by simplifying the skip penalty. Now we only penalize for skipping
the first character of the first or final segment (and the penalty is
lower). For deep completions, the first and final segment are both
"important" segments, so I think it makes sense to focus on both of
them. We don't want to penalize all segment starts because that makes
it harder to match deeper candidates where you often "ignore"
intermediate segments.

I had to adjust a few scores in the tests, but I don't think the
impact will be too big other than fixing the bug.

Fixes golang/go#35062.

Change-Id: Id17a5c80bf0f80ce252fe990ccfbd51c1bac1c72
Reviewed-on: https://go-review.googlesource.com/c/tools/+/202638
Reviewed-by: Rebecca Stambler <rstambler@golang.org>
Run-TryBot: Rebecca Stambler <rstambler@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2019-10-22 21:05:28 +00:00

399 lines
9.9 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fuzzy implements a fuzzy matching algorithm.
package fuzzy
import (
"bytes"
"fmt"
)
const (
// MaxInputSize is the maximum size of the input scored against the fuzzy matcher. Longer inputs
// will be truncated to this size.
MaxInputSize = 127
// MaxPatternSize is the maximum size of the pattern used to construct the fuzzy matcher. Longer
// inputs are truncated to this size.
MaxPatternSize = 63
)
type scoreVal int
func (s scoreVal) val() int {
return int(s) >> 1
}
func (s scoreVal) prevK() int {
return int(s) & 1
}
func score(val int, prevK int /*0 or 1*/) scoreVal {
return scoreVal(val<<1 + prevK)
}
// Matcher implements a fuzzy matching algorithm for scoring candidates against a pattern.
// The matcher does not support parallel usage.
type Matcher struct {
pattern string
patternLower []byte // lower-case version of the pattern
patternShort []byte // first characters of the pattern
caseSensitive bool // set if the pattern is mix-cased
patternRoles []RuneRole // the role of each character in the pattern
roles []RuneRole // the role of each character in the tested string
scores [MaxInputSize + 1][MaxPatternSize + 1][2]scoreVal
scoreScale float32
lastCandidateLen int // in bytes
lastCandidateMatched bool
// Here we save the last candidate in lower-case. This is basically a byte slice we reuse for
// performance reasons, so the slice is not reallocated for every candidate.
lowerBuf [MaxInputSize]byte
rolesBuf [MaxInputSize]RuneRole
}
func (m *Matcher) bestK(i, j int) int {
if m.scores[i][j][0].val() < m.scores[i][j][1].val() {
return 1
}
return 0
}
// NewMatcher returns a new fuzzy matcher for scoring candidates against the provided pattern.
func NewMatcher(pattern string) *Matcher {
if len(pattern) > MaxPatternSize {
pattern = pattern[:MaxPatternSize]
}
m := &Matcher{
pattern: pattern,
patternLower: ToLower(pattern, nil),
}
for i, c := range m.patternLower {
if pattern[i] != c {
m.caseSensitive = true
break
}
}
if len(pattern) > 3 {
m.patternShort = m.patternLower[:3]
} else {
m.patternShort = m.patternLower
}
m.patternRoles = RuneRoles(pattern, nil)
if len(pattern) > 0 {
maxCharScore := 4
m.scoreScale = 1 / float32(maxCharScore*len(pattern))
}
return m
}
// Score returns the score returned by matching the candidate to the pattern.
// This is not designed for parallel use. Multiple candidates must be scored sequentially.
// Returns a score between 0 and 1 (0 - no match, 1 - perfect match).
func (m *Matcher) Score(candidate string) float32 {
if len(candidate) > MaxInputSize {
candidate = candidate[:MaxInputSize]
}
lower := ToLower(candidate, m.lowerBuf[:])
m.lastCandidateLen = len(candidate)
if len(m.pattern) == 0 {
// Empty patterns perfectly match candidates.
return 1
}
if m.match(candidate, lower) {
sc := m.computeScore(candidate, lower)
if sc > minScore/2 && !m.poorMatch() {
m.lastCandidateMatched = true
if len(m.pattern) == len(candidate) {
// Perfect match.
return 1
}
if sc < 0 {
sc = 0
}
normalizedScore := float32(sc) * m.scoreScale
if normalizedScore > 1 {
normalizedScore = 1
}
return normalizedScore
}
}
m.lastCandidateMatched = false
return -1
}
const minScore = -10000
// MatchedRanges returns matches ranges for the last scored string as a flattened array of
// [begin, end) byte offset pairs.
func (m *Matcher) MatchedRanges() []int {
if len(m.pattern) == 0 || !m.lastCandidateMatched {
return nil
}
i, j := m.lastCandidateLen, len(m.pattern)
if m.scores[i][j][0].val() < minScore/2 && m.scores[i][j][1].val() < minScore/2 {
return nil
}
var ret []int
k := m.bestK(i, j)
for i > 0 {
take := (k == 1)
k = m.scores[i][j][k].prevK()
if take {
if len(ret) == 0 || ret[len(ret)-1] != i {
ret = append(ret, i)
ret = append(ret, i-1)
} else {
ret[len(ret)-1] = i - 1
}
j--
}
i--
}
// Reverse slice.
for i := 0; i < len(ret)/2; i++ {
ret[i], ret[len(ret)-1-i] = ret[len(ret)-1-i], ret[i]
}
return ret
}
func (m *Matcher) match(candidate string, candidateLower []byte) bool {
i, j := 0, 0
for ; i < len(candidateLower) && j < len(m.patternLower); i++ {
if candidateLower[i] == m.patternLower[j] {
j++
}
}
if j != len(m.patternLower) {
return false
}
// The input passes the simple test against pattern, so it is time to classify its characters.
// Character roles are used below to find the last segment.
m.roles = RuneRoles(candidate, m.rolesBuf[:])
return true
}
func (m *Matcher) computeScore(candidate string, candidateLower []byte) int {
pattLen, candLen := len(m.pattern), len(candidate)
for j := 0; j <= len(m.pattern); j++ {
m.scores[0][j][0] = minScore << 1
m.scores[0][j][1] = minScore << 1
}
m.scores[0][0][0] = score(0, 0) // Start with 0.
segmentsLeft, lastSegStart := 1, 0
for i := 0; i < candLen; i++ {
if m.roles[i] == RSep {
segmentsLeft++
lastSegStart = i + 1
}
}
// A per-character bonus for a consecutive match.
consecutiveBonus := 2
wordIdx := 0 // Word count within segment.
for i := 1; i <= candLen; i++ {
role := m.roles[i-1]
isHead := role == RHead
if isHead {
wordIdx++
} else if role == RSep && segmentsLeft > 1 {
wordIdx = 0
segmentsLeft--
}
var skipPenalty int
if i == 1 || (i-1) == lastSegStart {
// Skipping the start of first or last segment.
skipPenalty += 1
}
for j := 0; j <= pattLen; j++ {
// By default, we don't have a match. Fill in the skip data.
m.scores[i][j][1] = minScore << 1
// Compute the skip score.
k := 0
if m.scores[i-1][j][0].val() < m.scores[i-1][j][1].val() {
k = 1
}
skipScore := m.scores[i-1][j][k].val()
// Do not penalize missing characters after the last matched segment.
if j != pattLen {
skipScore -= skipPenalty
}
m.scores[i][j][0] = score(skipScore, k)
if j == 0 || candidateLower[i-1] != m.patternLower[j-1] {
// Not a match.
continue
}
pRole := m.patternRoles[j-1]
if role == RTail && pRole == RHead {
if j > 1 {
// Not a match: a head in the pattern matches a tail character in the candidate.
continue
}
// Special treatment for the first character of the pattern. We allow
// matches in the middle of a word if they are long enough, at least
// min(3, pattern.length) characters.
if !bytes.HasPrefix(candidateLower[i-1:], m.patternShort) {
continue
}
}
// Compute the char score.
var charScore int
// Bonus 1: the char is in the candidate's last segment.
if segmentsLeft <= 1 {
charScore++
}
// Bonus 2: Case match or a Head in the pattern aligns with one in the word.
// Single-case patterns lack segmentation signals and we assume any character
// can be a head of a segment.
if candidate[i-1] == m.pattern[j-1] || role == RHead && (!m.caseSensitive || pRole == RHead) {
charScore++
}
// Penalty 1: pattern char is Head, candidate char is Tail.
if role == RTail && pRole == RHead {
charScore--
}
// Penalty 2: first pattern character matched in the middle of a word.
if j == 1 && role == RTail {
charScore -= 4
}
// Third dimension encodes whether there is a gap between the previous match and the current
// one.
for k := 0; k < 2; k++ {
sc := m.scores[i-1][j-1][k].val() + charScore
isConsecutive := k == 1 || i-1 == 0 || i-1 == lastSegStart
if isConsecutive {
// Bonus 3: a consecutive match. First character match also gets a bonus to
// ensure prefix final match score normalizes to 1.0.
// Logically, this is a part of charScore, but we have to compute it here because it
// only applies for consecutive matches (k == 1).
sc += consecutiveBonus
}
if k == 0 {
// Penalty 3: Matching inside a segment (and previous char wasn't matched). Penalize for the lack
// of alignment.
if role == RTail || role == RUCTail {
sc -= 3
}
}
if sc > m.scores[i][j][1].val() {
m.scores[i][j][1] = score(sc, k)
}
}
}
}
result := m.scores[len(candidate)][len(m.pattern)][m.bestK(len(candidate), len(m.pattern))].val()
return result
}
// ScoreTable returns the score table computed for the provided candidate. Used only for debugging.
func (m *Matcher) ScoreTable(candidate string) string {
var buf bytes.Buffer
var line1, line2, separator bytes.Buffer
line1.WriteString("\t")
line2.WriteString("\t")
for j := 0; j < len(m.pattern); j++ {
line1.WriteString(fmt.Sprintf("%c\t\t", m.pattern[j]))
separator.WriteString("----------------")
}
buf.WriteString(line1.String())
buf.WriteString("\n")
buf.WriteString(separator.String())
buf.WriteString("\n")
for i := 1; i <= len(candidate); i++ {
line1.Reset()
line2.Reset()
line1.WriteString(fmt.Sprintf("%c\t", candidate[i-1]))
line2.WriteString("\t")
for j := 1; j <= len(m.pattern); j++ {
line1.WriteString(fmt.Sprintf("M%6d(%c)\t", m.scores[i][j][0].val(), dir(m.scores[i][j][0].prevK())))
line2.WriteString(fmt.Sprintf("H%6d(%c)\t", m.scores[i][j][1].val(), dir(m.scores[i][j][1].prevK())))
}
buf.WriteString(line1.String())
buf.WriteString("\n")
buf.WriteString(line2.String())
buf.WriteString("\n")
buf.WriteString(separator.String())
buf.WriteString("\n")
}
return buf.String()
}
func dir(prevK int) rune {
if prevK == 0 {
return 'M'
}
return 'H'
}
func (m *Matcher) poorMatch() bool {
if len(m.pattern) < 2 {
return false
}
i, j := m.lastCandidateLen, len(m.pattern)
k := m.bestK(i, j)
var counter, len int
for i > 0 {
take := (k == 1)
k = m.scores[i][j][k].prevK()
if take {
len++
if k == 0 && len < 3 && m.roles[i-1] == RTail {
// Short match in the middle of a word
counter++
if counter > 1 {
return true
}
}
j--
} else {
len = 0
}
i--
}
return false
}